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PREFACE

This publication is a collection of presentations given at the NASA Workshop on Surface Modeling, Grid
Generation, and Related Issues in Computational Fluid Dynamics (CFD) solutions held at NASA Lewis

Research Center, Cleveland, Ohio, May 9-I 1, 1995. The purpose of this workshop was to assemble engineers

and scientists from industries, universities, and government laboratories and who work on geometry model-

ing, grid generation, computational fluid dynamics for aerospace analysis and design. Specifically, the
objectives were to provide a forum on the topics; identify industry needs; assess strengths and weaknesses of

technologies on structured grid (patched and overset), unstructured grid, Cartesian grid, and hybrid grid; and
collectively assess for what problems each technology is uniquely suited.

This NASA Conference Publication (CP) closely follows the workshop agenda with the exception of Soft-
ware Systems (1) and (2):

• Industry Overviews
• NASA Overviews

• Structured Patched Grid Technology

• Structured Overset Grid Technology

• Cartesian Grid Technology

• Unstructured Grid Technology

• Hybrid Grid Technology

• Technology Assessment

• Software Systems (1)
• Surface Grid/Geometric Grid Generation

• Automatic Zoning for Structured Multiblock Grid

• New Methods/Approaches/Applications (1)

• New Methods/Approaches/Applications (2)

• New Methods/Approaches/Applications (3)
• Software Systems (2)

A summary of panel discussions that followed each of the five grid technology sessions, software demonstra-

tions, and small group discussions concerning future directions will be reported in a separate paper and
available at a later date.
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Future Requirements in Surface Modeling and Grid Generation

Raymond R. Cosner l

McDonnell Douglas Aerospace
St. Louis, Missouri

SUMMARY

The past ten )'ears have seen steady progress in surface modeling procedures, and wholesale changes

in grid generation tcclmology. Today, it sccms fair to state that a satisfactor 5, grid can be developed

to model nearly any configuration of interest. The issues at present focus on operational concerns such

as cost and quality. Continuing evolution of the engineering process is placing new demands on the

technologies of surface modeling and grid generation. In the evolution toward a multidisciplinarv

analysis-based design environment, methods developed for Computational Fluid I_'namics are finding

acccptance in many additional applications. These two trends, the normal evolution of the process and

a watershed shift toward concurrent and multidisciplina%, analysis, will be considered in assessing
current capabilities and needed technological improvements.

INTRODUCTION

Surface modeling and grid generation technology has long been recognized as a critical issue in

practical applications of Computational Fluid D),namics (CFD) analyses. Tools have been developed
to implcment these geomet_, modeling technologies in a reasonably versatile and efficient manner.

These tools, developed for CFD applications, are rapidly gaining acceptance in additional elements of

the aerospace design process: surface grid generation for processing data from prcssure sensitive paint

tests, surfacc and volume grid generation for electromagnetics and other field simulations. Technology

from these thrusts also is, m a sense, returning to its roots by providing enhanced capabilities in

generating surface panel networks for linear aerodynamic analyses.

In addition to the technical capabilities of the product, the developmcnt community also nmst consider

issues of quality (i.e., fimess to intended purpose) and risk. Surface models and computational grids,

of course, are not the desired end product - they are a necessary step toward producing CFD

predictions or other types of data. Thercfore, surface models and grids are of value only so far as they

allow high-quality flow predictions to be made at an acceptable cost. Quality of the product, therefore,

is dclermined by the CFD flow soh'er, and by the accuracy of the resultingflow predictions. Several

types of risk must be considered in our abilit,_' 1o attain these products. We can identify technical risk

(product may not be fit for the purpose), schedule risk (.job can't be done in the planned amount of

time) and budget risk (job can't be done in the allocated budget). Schedule and budget risk often

derive from the use of complex tools which are inadequately tested for representative problems, or

inadcquatciy integrated into the overall design process. CFD analysis, considering the whole process,

often is secn as being somewhat unpredictable in budget and schedule risk. Therefore, many program

managers appreciate the benefits of CFD analysis but are unwilling to use CFD if it becomes the
pacing item in the design cycle.

i Mcl)onnell Douglas Research and Engineering Fellow. CFI) Applications Manager - New Aircraft and
Missile Products l)ivision. AIAA Associate l:cllow.



Surface modeling tools have gained great sophistication in the last ten years. However, the interface

to Ihe subsequent CFD analysis codes often is cumbersome and restrictive. Functionally, this process

is unchanged since the 1980's, though it now may be carried out in a somewhat automated fashion.

Ten years ago, surface grid generation tools were highly tailored toward specific classes of geometry.

High versatility was unattainable, except at a U'emendous cost in calendar time and manhours. Non-

interactive ("batch") computer tools were the dominant technology, and they had attained impressive

power and wide acceptance. This line of technology reached its culmination in the EAGLE code,
developed at Mississippi State University under USAF funding.

Batch codes such as EAGLE are capable, in the hands of an expert, of providing a suitable grid about

a wide range of geometries. However, a substantial trial-and-error process often was required to
integrate the surface geometry input and the batch command streams to produce a satisfactory grid.

As a result, the technical capability was available, but often it could not be used on a range of high-end

problems with reasonable costs, by non=specialists, producing acceptable grid quality the first time.

The outcome, too open, was the fiusmiting situation where the expert could generate tantalizing results

which could not be produced, in a practical sense, by the engineer in the design environment.
Furthermore, these methods often had topological or block connectivity restrictions (e.g., point-match

between blocks) which greatly reduced their usefulness in many design applications.

Part of the solution to this bottleneck was the development of interactive procedures implemented
through the engineering workstation. Many efforts were initiated, through different organizations.

However, the effort which exemplified this watershed technology shift was the development of

GRIDGEN by General Dynamics, under USAF and NASA funding (Ref. !). Today, in CFD

technology the term "grid generation" is almost synonymous with interactive, graphics-oriented

technology.

Figure 1 - Pylon/Launcher/Missile Assembly
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Fhese technologies have enabled the routine generation of usable grids about almost-arbitrary complex

shapes of practical interes! (as seen in Figure I and Figure 2). The) havc enabled the penetration of

('F[) analysis into many elements of the aerospace aero-propnlsion design process.

t-to_ever, lh¢ qnalil_ of Ihc grids v_c call

produce remains a problem (remember.

tiualit _ i_ defined in Icrms of producing cost-

cffcctixc l]m_ prcdiclion,,, _hich are fil for

the pUrl>OSC of Ihc Sllld_, ). k_'e general b, lack

lt)o_'_ IC+ conduct _1 L'onllH-ehell_.:i_, c _ISSCSSIflL'Ill

o! surtacc mt_dcl and _rld tlualil _ Ihc onlx

.t_nnpachcnsi_c Hs_.usslllCl,II I _, prox idcd b_ the

lh>xs ,,,ot+cr. xxhich nlt:ans thai all\ dct_:cts

rctltilrlll _ CoFrt?ctl,.)n _ill incxilal)lv haxc a

major impacl on Ihc £t_Nt and schedule of the

(11) study Furthermore. even if wc set I:igure 2 - 17-15l! Geometr_ Modeled for ('FD

aside qualil,, _ssucs. Ihc ira>tess of surtacc .\nal3sis <()nlboard _'ing not l)isplayed)

nlo, lclin_ _tt+(I _rid gcnctal,_)n rclnains a

bolllencck in lilt' total d¢_,lgn process.

consuming_+ hlrgc resources (manhonrs. sk+llcd specialists, calendar time).

Ihc obscrsalions and opinions ple_;ented here are based on the author's experience. I belie_,,e that the

Isstlcs _,hich alc discussed I+clo+x. in large degree, arc common industry concerns, ttowever, the

anal,,rn+d in lhis imlWr ullimalcl_ rcprcsenls i)ersonal observations and opinions.

R I:QI Jl R EM[!NTS

l)esijL_i'u'cJctms I#_u___-. Surface modeling and grid generation technologies, of course, do not produce

a xchiclc design l'hc\ arc compot_enls of a complex design process. Thus, to consider future

requirements lot surface modeling and g0Jd generation technology,, lhe current limitations and future

dirccllOns ol the aerospace design process must be considered.

Ihc aerospace design process is under

trelncndous pressure to rednce cosn ('erlain

torms of cosl+ sanch +IS Ihe _,alue of the direct

engineering labor and lhe capilal assets used

in the pr¢x:ess, can be identified easil} Other

additional costs perhaps cannol be easii._

e_,ahaaled bill ihese costs oflen are more

critical lhan the direcl costs to the success

I_tal design efforl (sec Figure 2).

\ lalge-scalc engineering pro iect usuall_ is

vcr_ scnsilixc to calendm time. Econonlic

competitiveness depends _crn slrongl 3 on

bringintj the mosl advanced product Io lilt'

market, quicklx and affordabh. Further. the

O_rectCost_

• Englneenng Manhours
- Grid Generation Engineer
- Specialist Support (CAD?)

Value It Computef Assets

,4ddllfonal Costs
Calendar Time

• HIghly SkIlled and Speclahzed Labor
RISks (Process Vanablhty)

Technical Quality

Budget

Schedule

Identified risks cost of m_bgatlon plan

Surpnses- cost o! correctlo_

Figure 3 - Forms of Cost



ability to compress the schedule will (a) bring the product to market ahead of the competition, and (b)

produce a smaller development cost. Thus, schedule compression leads to economic success in several

ways.

Depending on tile type of study, either the
manhours or tile calendar time may be the

more important measure of cost. Tile

importance of geometry acquisition and grid

generation in these cost measures is
illustrated in Figure 4. These data are taken

fiorn a hi_l-end study performed in 1992-93
using Navier-Stokes structured gid methods.

Generally, smaller advanced desi_l

Calendar Time Manhours

Figure 4 - Distribution of Costs in a tli_>End CFD
Study

progranls are more sensitive to manhour
costs, while large development programs _e more sensitive to calendar time. The tasks related to

geometry acquisition and gid gencration consumed a substantial portion of tile rcsottrces t'or thc total
task in this exanlple. This work prior to rttnning the flow solver code consttmed about 80°4 of tile
total manhours! Clearly, in reducing the maidiours and thus the direct cost of CFD analysis wc should
t\_cus on the tasks of handlino the geometxT and building the grid. These also are important issues in

reducing the calendar time of the total CFD analysis process.

Grid Size
Millions of Points

25
Maximum Typical

20! ...""

I ."'"

15: ..'"

,o
..........

0 _ _t _ J .t I L k 1 -J

1990 1991 1992 1993 1994 1995 1996 1997 1998

Number of Tasks
60

5_ _ .............................

20'

IOoL _L_ ;
1990 1991 1992 1993 1994 19195 1996 19197 1;98

Figure 5 -Recent Histot3,' and Projection of Grid Generation Requirements

Without improvements in tile process, we can expect tile surface modeling and grid generation phase

of tile process to become a tar worse bottleneck in the next few years. As we succeed in establishing
confidence in CFD predictions, the demands for data have increased. With these data demands have
come demands for hiojmr accuracy. One element of providing increased accuracy is to use grids with

hi,mr fidelity. This means tile fimne _ids will represent more complete modeling of the vehicle, and
they will be at hi,mr _id density to provide higher accuracy. These trends, based on our experience,
are'illustrated in Figure 5. \Vithout an nptUlll in the overall level of engineering activity, we probably

should not anticipate an increase in the number of CFD application tasks performed each year (a task
is one study, consisting of a set of related grid generation and flow solution activities). However,



continuingacceptanceof CFD allowstheoverallnumberof tasksto remainconstantdespitea
generallydm_wardtrendinoverallengineeringactivity. Thedemandsfor higheraccuracy,coupled
with the evolutionof flow solvertectmologytowardparallelprocessingplatforms(allowingthe
solutionof largerproblems),providescontinuingpressuretowardrapidgenerationoneverlargerand
aforecompletecornputational grids.

AJlother "additional" cost is the need for highly skilled and specialized labor in elements of the surface

rnodeling and grid generation process. By definition, if a certain skill is described in those terms, it

is also a scarce skill. Thus, file need for specialized skills is a potential choke point in the process.

Concurrent Processes - kalother strong goal is to increase the concurrency in the aerospace design
process. In the jargon of computer technology, the process is shifting away from serial sequences of
tasks, and shifting toward s3_tchronized tasks spanning multiple technical disciplines. This thrust is
oflctt identified under the label of multi-discipline design or optimization. However, concurrent
analysis mi_t be a better descriptor in terms of current trends.

This thrust has several implications (additional impacts are being discovered, nearly every day). One
clear implication is to identif), common tools and common elements of the design process which can

support multiple disciplines. Clearly, surface modeling and grid generation is a high-leverage
lectmology in this process - it can support traditional aerodynamic analyses, wind tunnel model

development, and new areas of application such as signature estimation. Surface/grid technology
developed for CFD has been critical in surface mapping procedures for quantitative reduction of data
fiom pressure sensitive paint tests.

Another, more subtle, intpact of concurrent analysis is the need for high-fidelity analyses in all stages
of the process. Aggressive schedules generally are not consistent with a multi-stage, hierarchical

buildup in the fidelity of the suppolling analyses. The new goal is to do the task once, completely and

accuralely, and then move to the next task. This requirement leads to a requirement for very low
"latency" in the ability to produce high quality surface geometry and grids supporting the design
analyses.

A third impact of concurrent ergineering also must be considered. In a concurrent design process,

multiple elements of the process are intertwined. A delay or failure in one element of the process will

have an immediate, cascading effect ttu-oughout the process. An undetected defect in analysis products
will have a much more drastic impact in a concurrent design process, compared with the impact in a

more traditional sequential process. Therefore, (as always) it is important - critically important - to
minimize any possibility of producing

defective data. However, we must recognize
that true perfection carmot be achieved.

Therefore, it is also important to develop

procedures to test and veri_ the quality of
all intermediate products in the analysis
process, and identify urtfit products at the
earliest opportunity (Figure 6).

A schedule for elements of the design
process, once established, must be

maintained. The entire project (perhaps

several thousand people) cannot be put in the

!

When Discovered ] Probable Cost

Immediately 1-2 hours, 1 person

During flow solution 1 week, 1 person

During subsequent analysis 1-2 months, 2-4 people

During design verification 3-12 months, 4-20 people

During production 1+ years, many people

Product failure ?72

Figalre 6 - Impact of a Grid Generation Defect



positionof waitingfor a fewCFDpeopleto completeatardytask. But,buildingreservesintothe
schedulesothatdelayscanbeaccommodatedwill, just assurely,producethe same non-competitive
outcome - if a competitor is more successful at managing their schedule.

Risk Issues - One of the major impediments to wide acceptance of the CFD process is the perception

that the process exposes the customer to high risk, i.e., that the final technical quality, schedule or
budget will not be what was expected at the beginning of the CFD process. This perceived risk is
mitigated by setting conservative goals (thus failing to use the full potential of the technology) and by

setting aside reserves (schedule time or budget) to cover CFD variations. Thus, the current emphasis

on reducing all forms of cost leads to the following goals:

• Reduce risks by eliminating process variability or uncertainty (technical quality, budget, and

schedule).

• With variability under control, improve the process by reducing budget and schedule

requirements, and by improving the technical quality.

CURRENT PROCESS, ISSUES, CAPABILITY SHORTFALLS

Three broad classes of grid technology can be identified: structured grids (both overlapping and non-

overlapping), unstructured grids (various types), and hybrid grids (combining structured and
unstructured methods). All of these grid methods, however, obtain geometry from common sources

in surface modeling.

- An assessment of current issues in grid generation must consider the differing
maturities of structured and unstructured grid generation. For multi-block structured grid generation,

both the patched (non-overlapping) and the overset (Chimera, or overlapping) grid technologies can
be said to be approaching maturity. That is, tools are available which allow these technologies to be

used for (nearly) any problem by a range of engineers (i.e., not solely by experts). The standards for

quality are generally understood, though achieving quality for complex problems remains difficult.
Thus, the challenges in these areas, for the most part, are to improve the production capabilities of

these technologies. The research goals for structured grids are process issues: elimination of
bottlenecks in the work flow, improving the efficiency of the process, and ensuring that acceptable

(high) quality is always achieved in the products of the process.

Unstructured grid technology is also reaching production status for several types of applications, but

certainly not in the comprehensive sense in which structured technology has reached production status.
With unstructured technology, process issues (see previous paragraph) are important, but other more
fundamental issues of technology also can be identified. At present, Navier-Stokes unstructured grid

generation for 3-D geometries remains difficult, and often requires the direct participation of the

resident expert to achieve success. Standards of quality are difficult to assess and are not fully

understood, except in the most clear-cut cases. At present, we usually rely on the capabilities of the

grid generation tools as demonstrated in relatively simple problems. We often cannot evaluate the
quality of the grid product except by the behavior and the product of the flow solver. Visual inspection
of the volume grids, prior to beginning the flow solution, is virtually worthless. Useful quality

standards are not accepted, and quality assurance tools are almost non-existent.
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An intermediatelevelof technology,hybridstructuredandunstructured grids, has received relatively

little attention. This technology, perhaps, offers an operational compromise. It might permit the
engineering community to use proven viscous flow methods on structured grids near walls (maybe
restricted to _ near the walls), and take advantage of the versatility of unstructured methods in

complex, multiply-connected volume regions between vehicle components.

Domain Decomposition - For multi-block structured grid methods, volume grid generation must be
preceded by definition of the block boundaries. In overset grid methods, the exact location of block

boundaries away from the vehicle surface may not be a critical issue. Hyperbolic grid generation
procedures often are used, due to their high efficiency and the grid quality which they now can produce
(since the location of the outer edge of the grid block is usually not crucial). However, this overset

grid approach leads to difficult issues in generating the boundary condition coupling (interface) data
between communicating grid blocks (more on this later).

With structured/patched grid methods (i.e., non-overlapping or marginally overlapping grids), the
locations of block boundaries are quite important. These boundaries must be defined across the

computational domain at about the same point in the process where the surface grids are generated.
This process of defining block boundaries, oRen called "domain decomposition," consumes much time

(both calendar time and manhours). Several research efforts are underway with the goal of developing
automated tools for domain decomposition, often with the aid of artificial intelligence technologies.
As an intermediate step, perhaps the techniques of 3-D visualization can be used with interactive

cutting planes to define block boundaries quickly (in seconds or minutes).

Surface Modeling - For several years, the preferred source of surface geometry has been Computer-
Aided Design (CAD) systems, such as the Unigraphics system used at McDonnell Douglas. Often,
the CAD geometry must be edited - to correct defects, to trim the surfaces (i.e., to eliminate non-

physical edges of surface elements), or to modify the true geometry for the purposes of the analysis.
Next, the geometry often is converted to closely-spaced mathematical section cuts or a pointwise
definition for use in the CFD grid generation system.

Usually, the geometry is first defined within the CAD environment

as a wireframe model. Next, the wireframe is surfaced (i.e., all
geometry is defined to produce a complete 3-D definition of the

exposed surfaces). This step of CAD surfacing can be time
consuming, particularly if higher-order constraints must be

enforced for continuity in surface slope or curvature across abutting
surface elements.

CAD geometry ideally consists of surface patches or volume

elements which abut cleanly, with no gaps, overlaps, doubly
defined regions, or non-physical protrusions. In reality, these and

other types of defects occur, as are illustrated in Figure 7.

Correcting these geometry definition defects is perhaps the chief

bottleneck of the process. This is a non-value-added step. Ideally,

surface modeling tools would use safeguards to avoid generating
these defects in the geometry.

Figure 7 - Examples of
Surface Geometry Defects
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Oneneeded step is to develop surface modeling tools, outside the CAD environment, which can either

correct these defects or generate a suitable surface grid despite the defects. Howcvcr, a fundamental
issue remains: which definition is to be used wherc the surface is multiply defined? Can an automated

algorithm be established which can determine whether a protrusion in the surface geometry is correct

or a defect? Can an automated algorithm fully
address the issue of gaps in the geometry - what if

the gaps are intentional (for example, inlet bleed
slots)? It seems that semi-automated tools are

needed, to locate potential defects for human

inspection, with automated correction depending on
the outcome of the inspection. The development of
tools which are tolerant of surface defects would

greatly improve the cycle time of the CFD analysis
process. Some of these issues are summarized in

Figure 8.

Surface Modeling Issues

• Operational issues: high requirements for skilled

manhours, high calendar time

• Defects in surfaced geometry

• Ability to use wireframe data in addition to
surfaced models

Figure 8 - Surface Modeling Issues

Another needed step is to develop tools which allow grid generation to begin with an arbitrary

wireframe model, rather than a fully surfaced model. Perhaps high precision would not be required

in slope continuity across surface patch abutments, and for CFD purposes it probably would not be
necessary to provide continuity of curvature. These tools would be useful mainly in the advanced

design environment; for more accurate data in the later stages of design it would be necessary to use
"official" CAD surface geometry for consistency. The ability to use arbitrary wireframe data as input

to the grid generator, for advanced design purposes, would greatly improve CFD tumaround.

A third approach, which is gaining popularity, is to base the grid gcneration process on a 3-D surfaced

model external to the CAD system. The NASA IGES format (Ref. 2) is gaining favor in this role.

Surface Grid Generation - The next step in

the process is surface grid generation. This
step, for the most part, is common for all grid
methods. A quality surface grid, or mapping,

must be applied to all geometry surfaces

which are to be retained in the analysis. For
most methods, this step requires careful
definition of all intersection lines between

components. This is the step which becomes

highly subjective if defects remain in the
surface modeling. Some issues and
requirements for this step are presented in

Figure 9.

Surface grid generation, or a similar step to

Surface Grid Generation Issues

• Operational issues: high requirements for skilled

manhours, high calendar time
• Difficult to assess and maintain grid quality over complex

geometries

• Time-consuming need to define domain and sub-domain

(block) boundaries manually

Technology Requirements

• Scripting or batch tools for fast parametric variations

within new classes of geometry

. Fast acquisition of surface geomet_, including detection
and correction of defects

Figure 9 - Surface Grid Generation Issues

produce a satisfactory surface mapping, is a time-consuming step in the overall process. The quality

of the surface grid has a large impact on the overall quality of the final analysis product. Our

experience has shown that many methods do not ensure that the final surface grid points lie exactly on

the original defined surface. Indeed, systematic variations have been noted, which can produce large-
scale, erroneous, structures in the subsequent flow solutions. However, it is at present very difficult
to assess surface grid quality (orthogonality, stretching, curvature, alignment) by any means other than

visual inspection. Inspection, of course, is not a systematic process. The expertise and the sensitivities
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of eachinspectoraredifferent. Fuether,thereareveryfew absolutemeasuresof quality. This
approach leaves a high probability that defects will not be detected at this stage, and they will remain
in tile surface grid to have a magnified impact in later steps of the process.

Volume Grid Generation Volume grid
generation is the process of filling a defined
volume with a grid, using either structured or

unstructured technology. This step of the

process, by either technology route, is fairly
mature today. As indicated above, the major
issues are process issues (speed, reliability,
versatility) rather than basic technical
capability (see Figure 10).

In tile area of structured grids, several quality
issues must be resolved. Elliptic methods are

popular for the generality of their
capabilities. However, these methods still

Volume Grid Generation Issues

• Set grid density, stretching requirements manually in

every block

• Scripting or batch tools for fast parametric vanatmns

within new classes of geometry

• Automated domain decomposition

• Improved control of orthogonality near walls

• Batch/Script tools for fast generation of surface grids in
subdomains

- Structured Grids

- Unstructured Grids

• Default generation of volume grids within defined
subdomams

Figure 10 - Issues in Volume Grid Generation

have unresolved, systematic problems maintaining acceptable grid quality near both concave and

convex comers. Convex COl-hers invariably lose grid packing, while concave comers yield grid line
crossovers and negative volumes. For unstructured grids, we lack systematic useful standards of

quality - useful in terms of ability to represent the performance of the flow solvers without being
excessively reshictive.

Block Boundaries For multi-block

structured grids, either patched or overset,
the next step is to generate the block

boundary coupling pointers. This is an

identification of the grid point matchups

bem, een neighbor grids, for the purpose of
coupling tile flow solutions between adjacent

Block Boundary Issues

Difficult to assure quality m setting up coupled block

boundary conditions - structured/patched,
structured/overset, hybrid

Figure 11 - Block Boundary Issues

grids. This is a key problem area for both types of structured grid technology. Since this issue falls

somewhat ambiguously between grid technology and flow solver technology, often this issue is
addressed inadequately. Avoidance of this problem is one of the major attractive features of

unstructured grid technology (see Figure 11). Another quality issue is related to the placement of the

overlapping boundary (high-gradient regions in the flowfield should be avoided - shocks, wakes, etc.).

Ft, rther, cell sizes should be comparable in the two grids which are being coupled in the overlapping
region.

For patched (non-overlapping) grids, tile problem is perhaps slightly easier since the coupling pointers
are generated on two-dimensional surfaces (in the mathematical sense). For overset grids, the coupling
occurs in a three-dimensional volume which is common to two or more grids. In either approach, the

goal is to locate boundary points of one grid in terms of the mapping of the neighbor grid(s). Quality
tnust be achieved, without any errors, in this process or the subsequent flow solution in all probability

will be fatally compromised. This step of quality verification is time-consuming, though semi-
automated procedures are available to assist the engineer effectively in this step &the process.

A similar problem may occur with unstructured grids, if the subsequent flow analyses are to be

performed on a parallel processing computer system. For this application, a type of domain
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decompositionmustbeaccomplishedon the full unstructured grid to establish subsets which will be

passed to each processor. This decomposition can have a significant impact on the convergence rate
of tile composite solution and the processing time for each iteration. However, optimal characteristics

of this decomposition are not fully understood at present.

FI3IIJRE STATE

An attractive future state can be identified, within the context of current structured and unstructured

grid generation technology. This future state, I hope, can be achieved as a product of specific research
into issues such as those which have already been noted. Strawman estimates of the time required to

model a full aircraft configuration are noted for each step.

The nominal geometry (i.e., before any modifications based on analysis goals) is generated in the

CAD system. Either the CAD system or a separate procedure is used to identify defects,
omissions, etc., in a timely manner, so that they are corrected before the geometry is used for any

subsequent process. In the current process, these defects usually are to be corrected in the CAD
process, which can take several days. With a more robust process, as discussed above, the required

time should be greatly reduced.

• The geometry is modified, within the CAD environment, as appropriate for the subsequent

analyses.

The analytical tools for surface modeling and grid generation operate directly on the CAD surface
models, or on a data format that is immediately derived without compromise from the CAD

models. (Time for geometry acquisition: 2 minutes - a file transfer only).

Semi-automated tools are used for surface grid generation and domain decomposition. These tools

"suggest" default surface and block face grids, subject to approval by the engineer. Presumably,

this process must take into account the goals of the analysis: parameters to be predicted, required

precision, flow analysis code to be used. If the engineer chooses not to accept the suggestions, the
same grid generation environment provides full tools, with high automation, to implement the

engineer's desires. Quality of the final surface grid or mapping is verified by automated procedure
at the end of this step. (Time to generate surface and block face grids: 4 hours).

Overall parmneters of the volume grid blocks - tmmber of points, stretching functions, etc. - are
set by a semi-automated process (automatic recommendations, with engineer having opportunity
to modify the recommendations). This step, too, must take into account the goals of the analysis.

Having set the overall parameters of the grid blocks, the actual grid is generated by a fully

automated process. Quality of the grid is verified at the end of the process. (Time to generate

volume grids: 1 hour)

• Block interface data is generated by a fully automated process. Quality of the interface data is

verified at the end of the step. (Time to generate interface data - 10 minutes).

Each of these steps seems achievable over the next five years, with an appropriate research focus. It
should be noted, the strawman process times to generate a complete multiblock grid for a complete

aircraft, starting from a complete high-quality CAD definition, add up to less than six hours in this
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visionof tilefuture. Achievingthisvisionwill bea majorsteptowardprovidingthefastcycletime
neededto supportintensiveuseof analysis-baseddesignfor futureaerospacevehicles.Of course,

rnajor improvements in calend_ time for the flow solution and post-processing also will be needed.

Many technical communities in addition to CFD and the aero-propulsion community will benefit from
this research. The surface grids produced by this process will be of value to many other technical

conunt,nities in the design process that require definition of the exposed vehicle shapes.

SUMMARY AND CONCLUSIONS

The process of surface modeling and grid generation is, at present, based on interactive (manual)
operations from start to finish, often requiring some of the most highly skilled specialists in the

analysis corrununity. This technology fills the gap between the design community (based on CAD

systems) and the analysis conununity. These specialists must be conversant in both sets of tectmology.

Some of the key, recurring problems in this
area were mentioned previously. Several

sttggestions for future tectmolog 3,
development have been identified. Another

key issue has been mentioned, m various

contexts, earlier in this paper. To maintain
the highest quality in the products of surface
modeling and grid generation, we first must

be able to measttre tile quality. Metrics and

tools are needed for a meaningful assessment
of quality at every, step of the process. A

stmunary of these quality measurements
needs is presented in Figure 12.

Quality Measurement Requirements

• Surface Models

• Surface Grid Quality

- including fidelity in conforming to the prescnbed

geometw

• Volume Grid Ouahty
- Structured Grids

- Unstructured Grids

• Block Boundaq/Quality

- Boundary Condition Setup

- Coupled Interfaces Structured. Unstructured. Hybrid

Figure 12 - Quality Measurement Requirements
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SUMMARY

This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology
must meet for its effective use in aerospace design. General observations are made on current aerospace design
practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership
position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product
and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD
in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of
the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of
methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are
examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier.
Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD.
Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community
must address ifCFD is to play its rightful role in supporting the IPPD design environment needed to produce high
quality yet affordable designs.

INTRODUCTION

Over the last thirty years, we have seen a phenomenal growth in speed and memory of digital computers with
estimates ranging from three to four or more orders of magnitude. Scientists and engineers have successfully exploit-
ed this growth to significantly advance the frontiers of science and technology. In the present context, advances in our
ability to model complex flow fields are of most interest. The corresponding enabling technology, widely known as
computational fluid dynamics or CFD, is now an integral part of all science and engineering disciplines where fluid
dynamic interactions play an important role. From a scientific view point, the critical importance of CFD is obvious
from the role it is playing in providing a better understanding of the more complex flow physics in general and
turbulence in particular (ref. 1, 2). From the engineering vantage point, CFD holds considerable promise to
revolutionize the design of flight vehicles, automobiles, turbomachinery, etc., provided that its potential is successful-
ly harnessed. Even a cursory glance at the ever growing list of technical publications documenting CFD applications
should be enough to convince even skeptics of CFD's potential. It is impractical to include an exhaustive list of CFD

publications in this paper; interested readers should consult Reference 3 for a representative sampling of the variety
and complexity of geometries and flow fields that can be modeled using modern CFD techniques. However, it would
be a mistake to consider the number and volume of publications on CFD as a testimony to its effective use in the
aerospace design environment. With this basic premise, the present paper examines the issue of CFD effectiveness in
aerospace design and identifies some of the key requirements that CFD must meet in order to be fully effective. The
outcome of any examination is generally a function of the examiner's level of knowledge, past experiences and
personal biases. The reader should be forewarned that the present effort is also subject to the same influences.

The remainder of the paper is organized along the following lines. The section on Design Process and Role
of CFD immediately follows this Introduction section and contains author's observations on the general nature of the
aerospace design process and where CFI) fits in. Both conventional design practices and transformations taking place
to accommodate the emerging integrated product and process development environment are considered. The follow-

ing section provides an overview of the current state of the art in CFD and the direction it appears to be heading.
Requirements for effective use of CFD are discussed in the next section. The paper then concludes with a few
summary observations in the Concluding Remarks section.

*Technical Fellow

Copyright © 1995 by Lockheed Corporation. All rights reserved.
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DESIGN PROCESS AND ROLE OF CFD

In this section, some general observations are presented about current trends in aerospace design. What
follows is not a comprehensive discussion of all relevant issues; such a detailed discussion is probably outside the
scope of the paper and certainly beyond the limited abilities of the author. Instead, observations are presented mainly
to help set the stage for discussing the role of CFD and partly for the sake of completeness• While the author fully
recognizes subtle and sometimes not so subtle differences among the design processes of individual companies, it is
hoped that what follows will faithfully represent important aspects of the current trends at a majority of companies
and thereby provide a valid basis for the rest of the discussion. Readers are strongly encouraged to read many
interesting and thought-provoking articles that have appeared in literature over the past few years including but not
limited to a survey paper by Miranda (ref. 4) on application of CFD to airplane design, the Lanchester Memorial
Lecture by Hancock (ref. 5) on the role of computer in aerodynamics, a paper by Miranda (ref. 6) on challenges and

• opportunities for CFD in fighter design, a paper by Cosner (ref. 7) on issues in aerospace application of CFD, and the
Wright Brothers Lecture by Rubbert (ref. 8) on the role of CFD in the changing world of airplane design.

Conventional Design Practices

A schematic of the aircraft design process, shown in Figure 1, forms the basis for general observations about
the conventional design practices. The process is divided into three phases, (1) Conceptual, (2) Preliminary, and (3)
Production, that are carried out in sequence. In the conceptual phase, a set of candidate configurations is defined that
is expected to meet customer specifications and requirements. Following trade-off studies using estimates of
performance, weight, cost, etc., a single configuration is selected for further development. The design typically
undergoes numerous modifications during the conceptual and preliminary design phases. The goal is to create an
"optimum" design that satisfies all customer requirements. In the production design phase, the final layout and more
extensive validation are carried out prior to releasing the design for manufacturing. In each design phase, the myriad
of activities that take place can be broadly placed into synthesis or analysis categories. Synthesis covers defining,
refining, and altering concepts and configurations; analysis encompasses methods, tools and expertise to produce data
and its use in evaluating concepts and configurations. Their roles are illustrated in Figure 2.

Although highly sophisticated tools and techniques have evolved to support synthesis and analysis activities,
completing a design cycle with comprehensive and extensive evaluations of competing concepts and configurations
can take several months and many, many labor hours. Most of the time and effort goes into generating data for
different disciplines that design teams need to reach design closure. Many times, data from different disciplines create
conflicting demands on the direction in which a configuration should be altered. Such conflicts cannot be easily
reconciled without the timely availability of accurate quantitative information about the interdisciplinary relations
among the design variables. A simple example is that of wing design. The "best" set of geometric parameters obtained
from purely aerodynamic considerations may not look so good when structural integrity aspects are taken into
account. The real challenge then is to guide the design in a direction that offers the "best" balance between
aerodynamic and structural efficiencies. This can be accomplished only through a good understanding of the interre-
lationship of aerodynamic and structural design variables. Adding more disciplines such as producibility,
manufacturability, maintainability, cost, etc., further compound the problem but they have to be taken into account
before a design can be finalized. The same basic principles apply to the design of a complete aerospace system of
which wing may be just one component. However, the challenge grows nearly exponentially with increasing
complexity of the system. At present, procedures for generating quantitative data on interdisciplinary relationships are
less than satisfactory at best, and nonexistent at worst. Design team's decisions are therefore highly dependent on the
intuition and experience of its members, especially in the early stages of product development.

The large time and effort associated with a complete design cycle limits the number of cycles that can be
conducted to explore a wider spectrum of alternatives within schedule and cost. It cannot be overemphasized that
schedule and cost constraints are central to all industrial design processes; sometimes they get lost in discussions of
advanced technologies. It should also be noted that decisions made in the early stages of design have far-reaching
consequences for the life-cycle cost of the final design. It has been variously estimated that 70% to 90% of the
life-cycle cost of an airplane is locked in during the conceptual and preliminary design phases. Tools and techniques
used in the early phases are typically not as advanced or sophisticated as needed to produce highly accurate and
reliable data. As the product evolves over time and data from more detailed investigations come in, design teams face
the prospect of either changing the design at the expense of increased cost or retaining a design that may not meet all
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customerrequirementsandspecifications.

Transitionto IPPDDesignProcesses

It is obviousfromthediscussionabovethatthedeficienciesinconventionaldesignprocessesmakeit
extremelychallengingfordesignteamsto producehigh quality designs at affordable prices. The challenge is not
either quality or affordability_ but both simultaneously. Without successfully meeting this challenge, the U.S
aerospace industry will have a difficult time in maintaining its leadership position in the increasingly competitive
market place of the '90s and beyond. To address this concern, the industry and government jointly initiated many
studies during the 1980s which led to a widely accepted conclusion that industry must transition to an integrated
product and process development (IPPD) environment. IPPD is characterized by integration of all aspects of product
development including design, marketing, manufacturing, and product support. The IPPD approach relies on consid-
ering all requirements and constraints from the start rather than altering a design in its later stages to facilitate
manufacturing or accommodate product support needs. Proper trade-offs can therefore be made early and the need for
design changes later on is considerably reduced. The result is improved quality and increased productivity of the
entire development process.

In the IPPD context, design is viewed as an integrated multidisciplinary process. A key distinguishing feature
of the integrated process is that it incorporates fast, accurate and cost-effective means of generating data for each
contributing discipline as well as for complex interdisciplinary relationships among design variables. Availability of
such data is critical to driving the design in the right direction. The integrated process must not be construed as an
"automated design process." It cannot substitute for human creativity and unique synthesis ability. What it can do well
is to shorten the design cycle time by expeditiously providing design teams with data needed to make more informed
decisions and thereby alleviate the serious shortcomings of conventional design processes. Design teams can then
devote more time and effort to considering a broader set of options with attendant improvements in quality and
productivity. It must also be noted that the integrated process does not in any significant way differ from the conven-
tional process in what activities are actually carried out, the significant difference is in how.

Role of CFD

In the opinion of the author, the CFD technology will play a pivotal role in the implementation of the
integrated design process and in its eventual success in improving quality and reducing cost of aerospace designs.
Why? Because accurate estimation of aerodynamic data is essential to any flight vehicle design. Force and moment
data are needed to evaluate performance and flying qualities; surface pressures provide inputs for structural design;
and flow-field data facilitate systems integration, such as the integration of propulsion system with airframe. Using
wind-tunnels alone to produce the desired aerodynamic data is too costly and time consuming to meet the basic
requirements of the integrated process. A judicious mix of wind-tunnels and CFD is already beginning to pay off in
design projects; the paper by Bangert et ai (ref. 9) on F-22 tactical fighter design being a case in point. With continu-
ing advances in CFD, there is ample reason to believe that an even stronger partnership with wind tunnels will emerge
to produce aerodynamic data in a more timely and cost-effective manner.

Additionally, there are two areas where CFD can play an important role because it holds an edge over wind
tunnels. First, CFD affords a means of computationally defining and/or refining geometric shapes to produce certain
specified flow characteristics while satisfying some prescribed constraints; this is not feasible in a wind tunnel.
Second, a combination of CFD and advanced computational methods from other disciplines, such as structures,
controls, propulsion, etc., offers the only practical means of generating interdisciplinary relationships among design
variables which are a cornerstone of the IPPD design process. However, full benefits of CFD can only be realized if
we can use it effectively in the aerospace design processes. Before discussing the requirements for effectiveness, the
current state of the art in CFD is briefly reviewed in the next section.

CFD STATE OF THE ART

A variety of CFD codes are presently available to generate aerodynamic data for a given design. The codes
can be broadly categorized into four levels shown in Figure 3. Basic characteristics of each level of codes are
highlighted in this section. The categorization into four levels is based on a number of factors including the timeframe
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of introduction of the methodology to the flight-vehicle design environment, the nature of mathematical formulation,
and capabilities of the codes. The lowest level codes, introduced back in the mid to late 1960s, are now widely used
and accepted; the highest-level codes, introduced more recently, are still struggling to find their place. It has long been
known that the Level IV codes, based on the Navier-Stokes (N-S) equations, can in principle simulate nearly all flow
phenomena of interest to aerospace community for which the continuum assumption is valid. (The Boltzmann
equations based on the kinetic theory of gases need to be solved for modeling molecular flows; the related numerical
techniques will not be covered in this overview.) However, adequate computer power and efficient numerical
algorithms to solve the N-S equations were not available in the 1960s. This forced researchers to explore alternatives
based on inviscid approximations to the N-S equations; the first three levels correspond to codes based on a hierarchy
of inviscid approximations. Different mathematical formulations largely dictate the capabilities and limitations of the
codes in modeling flow physics, and the associated numerical formulations have a strong bearing on the usability and
applicability of the codes. In comparing the capabilities of different levels of codes, the focus is deliberately on
complex geometries as they dominate the aerospace design landscape.

Level I: Linear Potential Codes

The linear potential codes are based on the PrandtI-Glauert or Laplace equations which form the lowest level
of inviscid approximation to the N-S equations. Most of the codes employ the boundary integral approach to solve
the governing partial differential equations (PDEs). The equations along with the boundary conditions are cast in a
surface-integral form using Green's theorem. The solution is constructed by discretizing the geometry into small
elements and assigning a type of singularity (sources, doublets, or vortex filaments) to each element. The singularity
strengths are determined by satisfying the no-normal-flow condition at a control point on each element. Depending
upon the approximations used in surface discretization (mean surface or actual surface) and the type and functional
form of singularities (constant source, constant doublet, linear doublet, etc.), codes with different characteristics (ref.
4) can be developed. The simplest codes, widely known as vortex-lattice methods, employ mean-surface
representation of geometry and vortex-filament singularities, e.g., the VORLAX code (ref. 10). When the actual
surface geometry is used, the methods are commonly referred to as panel methods. Low-order singularity
distributions, constant on each element, have been employed in the QUADPAN code (ref. 11) and higher-order
distributions, linear or quadratic functions, in the PANAIR code (ref. 12).

Although the simplicity of mathematical formulation of the linear potential codes inherently restricts their
validity to purely subsonic and supersonic attached flows, they are quite extensively used in design efforts due to the
ease of use, computational efficiency, and a high level of confidence built upon years of use. An experienced user can
set up a computational model in a matter of hours even for relatively complex configurations like a complete aircraft.
The computational times are small ranging from a few seconds on supercomputers to a few minutes on workstations.
However, user expertise is crucial to ensure that results are correctly interpreted. The vortex-lattice methods and panel
methods generally provide good estimates of lift, induced drag, moment coefficients and pressures for steady flight
conditions. This data usually form the basis for performance and weight estimations in the early stages of design.
Some of the codes also offer a design option that can be used to determine geometric characteristics (like twist and
camber of a wing) for a prescribed set of aerodynamic parameters. To meet the aerodynamic data needs of the
aeroelastic and flutter disciplines, versions of doublet-lattice method (ref. 13) are the codes of choice. The linear
potential codes were first introduced into the aircraft design environment in the late 1960s and the entire class of codes
reached a high level of maturity in the early '80s. With the possible exception of the oscillatory aerodynamic codes
(ref. 14, 15), very little effort is presently going into research and development of this level of codes.

Level II: Nonlinear Potential Codes

The nonlinear potential methods are based on either transonic small perturbation (TSP) equations or
full-potential equations (FPE). Their ability to model transonic flows with shocks is the most significant benefit over
the Level I codes. However, this benefit comes at the expense of added complexity stemming from the need to resort
to a field approach to solve the nonlinear PDEs. The field approach requires that a region of the flow field surrounding
a given configuration be divided into small elementary volumes; it is no longer enough to just divide the surface. In
practice, TSP codes are easier to use than FPE codes, especially for complex geometries, because of the differences
in boundary condition treatment. The TSP approach permits a simplified treatment based on the application of the
no-normal-flow condition at a mean surface. In contrast, the FPE approach requires application to the actual surface.
Consequently, Cartesian field-grid systems suffice for a TSP code whereas the FPE codes need boundary-conforming

18



grids.Cartesiangridsareconsiderablyeasiertosetupascomparedtotheboundary-conforminggrids.Ofcourse,the
TSPcodessufferfromlimitationsontheclassof geometriesandflowconditionsthattheycanmodelaccurately--a
directresultof theirsimplifiedboundary-conditiontreatment.

Considerableprogresswasmadethroughoutthe1970stowardsdevelopingapracticaltransonic-flow
analysiscapabilitybasedonFPEandTSPapproaches.Forsteady-flowcomputations,theTSPcodeof Boppe(ref.
16)andtheFLO-seriesof FPEcodesofJamesonandCaughey(ref.17)arerepresentativeexamples.Thepromiseand
excitementofthenewly-foundabilityof computingtransonicflowsweresostrongthatevenwingdesignprocedures
(ref.18)weredevelopedwhiletheanalysismethodswerestill evolving.Reference19isagoodsourceof additional
detailsof progressmadeduringthe'70s.Sincetransonicflowsareparticularlysusceptibletoviscouseffectsassociat-
edwithshock/boundary-layerinteraction,considerableresearchwasalsodoneincouplinginviscidTSPandFPE
codeswithboundary-layercodes.In addition,anaeroelasticanalysiscapabilitybasedontheTSPformulation(ref.
20)wasdeveloped.

AlthoughtheLevelII codesofferedthemuchneededcapabilityof modelingtransonicflows,theydid not
findthesamelevelof widespreadacceptanceastheLevelI codes.A varietyof factorscontributedto thissituation
includingthethenlevelof gridgenerationtechnologywhichwasnotconducivetoapplyingthecodesonaregular
basisto anythingmorecomplicatedthanwingorwing-bodyconfigurations,andthelimitedregionof flightenvelope
(transoniccruise)wherethecodescouldproducedataof acceptableaccuracy.Applicationsof thecodesindicated,as
onemighthavesuspected,thatsolutionaccuracydeterioratedif theactualflowbeingmodeledcontainedstrongshock
wavesor largeregionsof vorticity(e.g.,leading-edgevortices).Usefulnessof thecodeswasthereforeseverely
limited.Forinstance,theycouldnotadequatelyhandleawholeclassofaerodynamicproblemsassociatedwithfighter
design.Intheauthor'sopinion,nonlinearpotentialcodeswerebasicallytakenoverbytherapidpaceof advancesin
Eulercodesintheearly'80s.Developmentof theTRANAIRcode(ref.21)wasanexceptiontothistrend.TRANAIR
adoptsanunconventionalhybridapproachcombiningtheflexibilityof panelmethodstohandlecomplexgeometries
withtheabilityof FPEformulationsimplementedonCartesiangridstohandlenonlinearitiesof transonicflows.
Considerablesuccesshasbeenreported(ref.3,chapters15and19)inapplyingthiscodeto aerospacedesign
problems.

Level III: EulerCodes

TheEulerequations,whichformthebasisof LevelIII codes,representthehighest-levelof inviscidapproxi-
mationtotheN-Sequations.Bypermittingnonisentropicshocksandrotationalflowstobepartof thesolution,Euler
codesalleviatethemajorlimitationsof potential-flowmethodsalbeitatthecostof additionalcomputationalexpense.
Theaddedexpensecomesfromtheneedto solveat leastfourandgenerallyfivecoupledfirst-orderPDEsinsteadof
onesecond-orderPDE.However,twofactorsatthedawnof theeightiesconvincedmostresearchersto shifttheir
focusto Eulerequations.Thesefactorswere:(1)projectedgrowthincomputerpower,and(2) developmentof more
efficientnumericalalgorithmstosolvetheEulerequations(ref.22,23).In addition,theacceleratedpaceofboundary-
conforminggridgenerationtechnologycombinedwiththeuseof finite-volumeconcepttodecoupleflow solvers
fromgridmappingsheldconsiderablepromisefor realizingCFDersdreamof analyzingrealisticgeometries,suchas
acompleteaircraft,onaregularbasis.A synopsis of the impressive progress made so far is presented here; details
can be found in many publications including Reference 3 and a recent AGARD report (ref. 24).

Two distinct development paths can be identified for Euler codes: one based on hexahedral structured grids
and the other on tetrahedral unstructured grids. During the-early part of the eighties, most researchers focused their
energies on structured-grid methods whereas the interest shifted considerably towards unstructured-grid methods
from mid-eighties onwards. This shift was prompted by the realization that unstructured grids afforded greater
flexibility in handling complex geometries and promised to "automate" the grid-generation process. Structured-grid
advocates pursued a multiblock strategy to overcome the difficulties encountered in handling complex geometries,
and codes based on patched or overset multiblock grids evolved to a high degree of sophistication. In spite of many
publications detailing the virtues of one approach over the other and considerable advances in grid-generation
techniques, the fact remains that constructing multiblock grids for complex geometries continues to be a
labor-intensive and time-consuming task and unstructured-grid generation is not yet sufficiently automated although
it certainly requires less time and effort. The recent resurgence in Cartesian-grid methods (ref. 25, 26) offers an
attractive alternative because it essentially dispenses with the difficulties of grid generation leading to a considerable
reduction in time and effort of applying them.
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Twootheraspectsof Eulercodedevelopmentdeservemention.First,shock-capturingratherthan
shock-fittinghasbecomethepreferredapproach.Bothupwindandadaptive-dissipationschemeshavebeenemployed
toagreatdegreeof successonall kindsof gridsystems.(Althoughthebattlebetweentheadvocatesof eachscheme
rageson,intensityhasgonedownconsiderablycomparedto theearlyyears.)Second,mostcodessolve
time-dependentformof theEulerequationsevenfor modelingsteadyflows.Convergenceaccelerationtechniques,
suchaslocaltimestepandmultigrid,areemployedtoobtaintime-asymptoticsteady-statesolutionsinacomputation-
allyefficientmanner.Bothexplicitandimplicittime-marchingschemeshavebeeneffectivelyutilized.Duetotheuse
of time-dependentequations,modelingof unsteadyflowsisrelativelystraightforward,andthisaspecthasbeen
exploitedtodevelopaeroelasticanalysismethods(ref.27).Recentattemptsatdevelopinginversedesign(ref.28)and
aerodynamicdesignoptimization(ref.29)methodologiesarealsonoteworthy;theirprogressisbeingcarefully
watched.

Eulercodesgiveusapowerfultooltoanalyzeconfigurationsofinterestthroughoutthesubsonictohyperson-
ic flight regime.This,combinedwiththeirdemonstratedabilitytoautomaticallycapturerotationalflow regions(such
aswakesshedbehindwingsandvorticesemanatingfromsharp,highly-sweptleadingedgesofdeltawings),requiring
noexplicitaprioridefinitionof suchregions,rendersthemsignificantlymoreusefulthantheLevelI or II codes.They
arealsobeginningto makeinroadsintosupportingthedataneedsof airplanedesignbut in laterstages(ref.9).
However,theimplicationsof neglectingviscosityshouldbeclearlyrecognized.WhereastheEulercodesaresuperior
tothenonlinearpotentialcodesinmodelingstrongshocks,theirsolutionsarenotnecessarilyclosertotheactualflow
whichis likely toexhibittheeffectsof shock-inducedseparation.SomeresearchershavecombinedEulercodeswith
boundary-layercodestomoreaccuratelymodeltransonicflows onwingandwing-bodyconfigurations.TheEuler
codesalsohaveanedgeoverpotential-flowmethodsincapturingleading-edgevortices.Butthelocationandstrength
of theprimaryvorticesmaynotbeaccurateincaseswherethesecondaryand/ortertiaryvorticesexertconsiderable
influence.Also,thecodescannotprovideanestimateoftotaldrag(includingskin-friction)ormodelflowseparation
fromsmoothsurfaces.It is,therefore,notsurprisingthatdevelopmentof N-Scodeshasbeenaggressivelypursuedin
parallel.

Level IV: Navier-StokesCodes

Navier-StokescodeshaveagreatdealincommonwithEulercodes.Inpractice,asinglecodeusuallyserves
theneedof solvingbothEulerandN-Sequations.Thisfollowsdirectlyfromthesimilaritiesbetweenthetwosetsof
equations.EliminationofdiffusiontermsreadilyconvertstheN-Sequationsto theEulerequations;theybothsharea
commonsetof convectiveterms.However,thepracticalimplicationsofthisseeminglyminordifferenceare
enormous.Forexample,sizeof thecomputationalmodelgrowsconsiderablydueto theneedof accuratelyresolving
thediffusiontermswhichrequirehighlyclusteredgridscloseto solidsurfaces(aswellasinother regionswhere
viscousstressesarelarge).Thishasabearingongridgeneration,numericalalgorithms,andcomputationalresources.
Withappropriategridclustering,wecansolvetheN-Sequationstosimulatelaminarflowsinarelativelystraightfor-
wardfashion.Butusingtheseequationsto directlymodelevensimpleturbulentflowsstretchesthecurrent
supercomputerstotheirlimits.At present,theReynolds-averagedNavier-Stokes(RANS)equationsareusedalmost
exclusivelytosimulatecomplexturbulentflows.Foralargemajorityofproblems,thethin-layerapproximationtothe
RANSequationsisemployedto reducetheproblemto amanageablesize.Butthesesimplificationsimposeaheavy
toll; wenowrequireaturbulencemodel!

A varietyofturbulencemodelshaveemergedinrecentyearsrangingfromrelativelysimplealgebraicmodels
to moresophisticatedReynolds-stressmodels.Theyhavebeenimplementedintovariouscodes.Impressiveresults
havebeenobtainedusingmultiblockstructured-gridmethods,bothpatched(ref.30)andoverset(ref.31).
Unstructured-gridtechniquesarealsoadvancingatanacceleratedpace(ref.32).Manycompetingapproachesare
evolvingrangingfromtetrahedralgridstohybridgrids(combiningprismaticgridsinclosevicinityofconfigurations
withtetrahedralorCartesianmesheselsewhere).In general,experiencesto dateinmodelingturbulentflowshave
producedrathermixedresults.Therehavebeenmanysuccessesinusingsimplemodelsfor relativelycomplexflows
andsomefailuresinusingthemoresophisticatedonesforrelativelysimpleflows.Attemptsto refineexistingmodels
anddevelopnew,improvedonescontinueunabated.Considerableresearcheffortisalsobeingdevotedtodeveloping
modelsforlaminartoturbulenttransition,anotherareaof greatsignificance.

Whileprogressisbeingmadeonmanyfronts,CFDpractitionersdilemmaisquiteclear.Fortheforeseeable
future,theywill haveto useRANSmethodsformodelingengineeringproblemsof interestinaerospacedesign.Yet,
theaccuracyandreliabilityof thesolutionsforturbulentflowswill continuetobesubjecttotheinadequaciesof
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turbulencemodels. The prospects of a universal model are rather bleak; capturing the complex nature of turbulence
in its entirety into a model with a few free parameters is a long shot indeed. Nevertheless, Level IV codes will

continue to find increasing use in the years to come not because the turbulence and transition modeling difficulties
will be fully resolved but to meet specific engineering needs. There are enough problems where viscous effects
dominate and they can be properly simulated only by solving the N-S equations. Internal flow problems (inlet,
diffusers, nozzles, etc.) and high-lift systems (multi-element wings) are two prime examples. Probably the best ratio-
nale for continuing use of Level IV codes, in spite of their limitations, may be taken from Bradshaw (ref. 33):

"...we cannot calculate all flows of engineering interest to engineering accuracy. However, the
best modern methods allow almost all flows to be calculated to higher accuracy than the best-
informed guess, which means that the methods are genuinely useful even if they cannot replace
experiments."

This brief overview of Level IV codes will not be complete without mentioning the recent emergence of
Digital Physics TM technology (ref. 34, 35), developed and marketed by Exa Corporation, Cambridge, Massachusetts.
Developers have shown preliminary incompressible-flow results on two test cases, backward-facing step and
cylinder, for which good correlation with measurements were obtained without any turbulence modeling! The
technology is claimed to have a fundamental advantage over conventional RANS CFD codes because it is free from
the artifice of discretization. Depending upon the success in extending the technology to compressible flows and
additional demonstrations, Digital Physics TM could provide a very attractive means of circumventing the turbulence
modeling problem altogether for engineering applications.

REQUIREMENTS FOR EFFECTIVE USE OF CFD

Webster's New Collegiate Dictionary defines effective as "producing a desired effect." In the context of using
CFD in an industrial setting, the important questions are: Whose desires? What is desired? It is instructive to look at
the whole issue from a customer/supplier viewpoint. The customer in our case is the design team and suppliers are the
CFD practitioners. Then, CFD use can be considered effective only if the desires and expectations of the design team
are met. (Note that your use of CFD is effective if the design team calls upon you the next time they have a need!)
Design teams need a variety of data ranging from integrated quantities like forces and moments to detailed flow
features like shocks and vortices. Their natural desire is to obtain data of highest fidelity within schedule and cost. It
follows that CFD use would be effective if the CFD team can produce the highest-fidelity data while meeting the
schedule and cost milestones of the design team.

The customer/supplier viewpoint also simplifies the issue of requirements for effective CFD use. It forces the
practitioners to look at CFD from the customer's angle--and the view turns out to be quite different. What we then
find is that the customer wants good quality aerodynamic data to help him do his job better, at the time that fits his
milestones, and at an affordable price; the customer does not want CFD per se. For example, engineers involved in
performance estimation want drag polars, stability and control engineers want derivatives of force and moment coef-
ficients, structural loads engineers want surface pressures or aerodynamic influence coefficient matrices. To
engineers in the design team, the important things are engineering data, schedule, and cost. If CFD can provide them
with data they need when they need it, then they consider the use of CFD to be effective. To them, CFD is just another
tool. They do not always, nor should they be expected to, understand subtle differences among various techniques
upon which the plethora of CFD methods are built. Many times, CFD practitioners have "oversold" CFD to customers
without fully appreciating each others point of view. This lack of appreciation has led to rather unpleasant situations
when CFD practitioners had difficulty in satisfying customer expectations.

For effective use of CFD in aerospace design environment, the most essential requirement is to have a
partnership between the design team and the CFD team. Before embarking on any task, it is crucial for design teams
to clearly define their data needs and the associated schedule and cost constraints. CFD teams should then devise
appropriate strategies and define a set of feasible options. The two teams should jointly select the option that best fits
the needs. Without such a partnership, a design team all by itself is most likely to select an option based on past
experiences and least likely to take advantage of new advances in technology. By the same token, CFD teams are
likely to resort to their favorite method to address every demand of data without fully analyzing the potential quality,
schedule, and cost implications.
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Havingdispensedwith theCFDeffectivenessissuefromthecustomer'sviewpoint,letusexaminethekey
requirementsfromtheviewpointofCFDsuppliersorcodedevelopers.Thisaspecthasreceivedconsiderable
attentionin thepastwithnotablecontributionsbyMiranda(ref.4),Bradley(ref.3, Chapter25),Cosner(ref.7),and
Rubbert(ref.8).Thecitedarticlescontainopinionsandobservationsof industryleadersfromLockheed,McDonnell-
DouglasandBoeing.Althoughthearticlesappearedatdifferenttimesoverthespanof overtenyears,manycommon
themesrunthroughthem.AsfarastherelationshipbetweenCFDeffectivenessandcodecharacteristicsisconcerned,
all viewscanbecondensedintothefollowingexpressiondueto Miranda:

effectiveness = quality × acceptance

Here, quality refers to accuracy and realism of the solution, and acceptance includes usability, applicability, and
affordability. This expression impresses upon CFD developers the importance of the simple fact that focusing on
either quality or acceptance alone is not desirable; our approaches must enhance both simultaneously if we wish to
increase the overall effectiveness of CFD in an aerospace design environment. The basic premise of this expression
is as true today as it was when originally proposed. Combining this expression with the role of CFD in the aerospace
design process discussed earlier, the author proposes three key requirements that CFD must meet in order to be
effective in an aerospace design environment: rapid turnaround, reliable accuracy, and affordability. A word of
caution is in order before we discuss each of them. All three must all be considered together and not separately in
evaluating the effectiveness of a particular CFD methodology.

Rapid Turnaround

The first and foremost requirement is rapid turnaround. "Minimizing calendar time" is identified by Bangert
et al (ref. 9) as one of the primary requirements based upon their assessment of CFD applications to F-22 design.
Turnaround is meant to cover the entire time it takes from the initial go-ahead to the final delivery of data to the
customer. A typical CFD application process requires three steps: (1) Pre-processing or acquisition of geometry and
setting up of a suitable computational model, (2) Running a flow solver, and (3) Post-processing or extraction of
desired aerodynamic quantities by processing the flow-solver output and delivery of data to the customer. In order to
reduce the total turnaround time, each step must be carried out with utmost efficiency. Of course, the level of the
selected CFD code, i.e., Level I or Level IV, has a strong influence on turnaround time; the lower-level codes offer
quick turnaround and the higher-level codes take longer. This is obviously not a desirable state of affairs when we
compare the regions of relevance among different levels of CFD in a simplified two-parameter design space as shown
in Figure 4. The large extent of the Euler and N-S regions clearly points to the potential of significant payoffs if their
turnaround time can be made comparable to that of the lower-level codes.

At present, the higher-level codes are considerably slower than the lower-level codes in producing
aerodynamic data. Days of geometry acquisition, weeks of grid-generation, hours of execution time on supercomput-
ers, and days of time-consuming and labor-intensive postprocessing, all contribute to the present situation. Pre- and
post-processing steps are the primary culprits when only few analyses are conducted using a single model. If a large
number of runs are made on a single model, the total amount of computer time (in wall-clock hours or elapsed time)
can be substantial and may even overwhelm the pre- and post-processing times. The most challenging situation arises
when the configuration geometry undergoes changes and multiple analyses have to be performed for each variation.
However, that is precisely what the IPPD design environment demands of CFD! An integrated design process that
significantly reduces design-cycle time depends on methods that are fast. The current higher-level CFD methods are
just not up to the challenge, except perhaps for component-level design for some limited region of the flight envelope.
The challenge for the CFD community is clear: develop appropriate technologies and integrate them in a manner that
brings the turnaround time for each analysis to a matter of minutes. The list of potential enabling technologies
includes: streamlined interfaces to computer-aided design (CAD) systems based on standard data-exchange
protocols; nearly automated grid generation; parallel processing of flow solver software; intelligent systems for data
analysis and management, to name a few. Ongoing research and development, some of it reported in the proceedings
of this workshop, gives considerable hope and encouragement to CFD practitioners that the target is achievable.

Reliable Accuracy

Although reducing turnaround time is crucial, producing data of reliable accuracy is of equal importance. A
solution of reliable accuracy is one that comes with a known and acceptable error band on all quantities of interest to
the customer. As pointed out by Bangert et al (ref. 9), F-22 design team relies primarily on wind-tunnel data due to
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thelimitationsof currentCFDcodesinmodelingviscouseffects,especiallywhenappliedtocomplexgeometriesand
verylargespeed,altitude,andmaneuverenvelope.An interestingthingto notehereis thatwindtunnelsarenot
necessarilythebesttoolsto generatedesiredaerodynamicdata.Theyhavelimitationsof theirownsuchassupport
andwallinterferenceeffects,scaleeffects,etc.Butdesignteamshavebuilt-inconfidenceindatacomingfromtunnels
whichhavebeenusedforalmostaslongasaeronauticshasbeenaround.Wind-tunneltestteamsknowtheircustomer
aswellasunderstandthelimitationsof theirtool.Theyhavedevelopedelaborateprocedurestocompensateformost,
if notall,sourcesof errorindata.Incontrast,CFDmethodsdonothavethesamelimitationsaswindtunnels;flow
analysiscan,inprinciple,beconductedforarbitraryflightconditions.But,inpractice,CFDteamshaveagooddeal
of difficultyinattestingtothereliabilityoftheirdata.Thesituationmustberectifiedbecausewithoutreliable
accuracyof CFDpredictions,producing"optimum"designsinanIPPDenvironmentwill remainanelusivegoal.

Accuracyof computedsolutionshastwocomponents:numericalandphysical.A solutionmaybeconsidered
accurateinanumericalsenseif it showslittleornosensitivitytochangesingridsaswellasothernumericalparame-
tersrelatedtothealgorithm.(It isassumedthatthecodeinquestionhasbeenverifiedastotheadequacyof its
numericalformulationinsolvingthegoverningequations.)Atpresent,therearefew,if any,practical means of
estimating the effect of grid resolution, truncation error, numerical parameters such as dissipation and dispersion, etc.
Schedule and cost constraints of a typical design effort do not permit extensive investigations to determine the optimal
grids and parameters. CFD teams usually rely upon previous experience and expertise but the situation is not totally
satisfactory. What is really needed is built-in means of quantifying the level of accuracy. The problem is admittedly
difficult but a solution is urgently needed if CED is to be utilized effectively in the IPPD environment. In combining
CFD with methods from other disciplines to produce interdisciplinary relationships among design variables, an
assessment of the level of accuracy and associated error bounds of the solutions is even more critical. Incorporation
of solution-adaptive techniques based on truncation error and/or numerical dissipation is one possible approach to
address the problem of estimating as well as minimizing numerical errors. Some of the approaches, such as
unstructured grids or Cartesian grids, are inherently more suitable to addressing this aspect.

Even if a code produces a numerically accurate solution on a given model, it is not trivial to determine how
well the solution stacks up against the real flow--a measure of the physical accuracy. Keep in mind that when CFD
is used in a predictive mode in a design environment, CFD teams do not have the luxury of comparing results with
other data to determine the level of accuracy! To date, CFD community has advocated and conducted extensive

"validation" exercises to generate correlations that can be used to substantiate claimed levels of physical accuracy. In
practice, we have been able to barely "calibrate" the codes for specific applications of interest. (See ref. 3, chapter 25
for definitions of validation and calibration.) Why? Because major difficulties arise in planning a comprehensive
validation effort. For example, how many test cases, what combination of flow conditions for each test case, and what
range of values for each condition must we consider before a code can be declared as fully validated? A matrix of runs
using a reasonable set of test cases and conditions quickly grows into a monumental task. Even if we assume that
adequate resources as well as measured data are available for carrying out such a task, we run against the tide of
technology dynamics. Rapid pace of advances in hardware, numerical algorithms, and models of turbulence and
transition fosters an environment where codes are never quite "finished." Sometimes the changes are nominal, many
times not. Cost/benefit assessment of any plan of allocating huge resources to validate a code that might be supersed-
ed the next day by a "new and improved" method does not support the validation route. CFDers inevitably fall back
upon calibration to meet the immediate needs for a class of problems of greatest interest. This situation is likely to
persist as long as we rely on RANS codes that require turbulence and transition models. For most applications, a
judicious mix of CFD and wind tunnels will be the most effective strategy. Experience shows that a properly calibrat-
ed code can go a long way in enhancing the overall cost-effectiveness of CFD in aerospace design.

Affordability

The third and final requirement is that of affordability. Costs associated with CFD use include both labor and
computing expenses. At present, labor expenses are mainly connected with pre- and post-processing steps. For
higher-level CFD codes, the labor expenses are still beyond the acceptable range. For example, the use of structured-
grid methods requires several person-weeks of pre-processing effort whereas a desirable value is closer to a few

person-hours. Unstructured-grid (tetrahedral and Cartesian) methods appear to be quite promising in reducing the
level of effort. Progress in developing streamlined interfaces between grid-generation methods and CAD systems is
crucial to reducing the geometry acquisition time. These improvements will also help in evaluating design changes in
an inexpensive manner. As a matter of fact, technologies needed to reduce labor hours are essentially identical to
those mentioned earlier for reducing turnaround time.
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Computingcostsmainlyrelatetorunningtheflowsolverandmayincludegridgenerationinsomeinstances.
Wetypicallyneedcomputerswithhighprocessingspeedsandlargememory.Withoutaccessto suchmachines,it is
verydifficultto producethedesiredsetof dataonschedule.A typicaldesigncyclecanrequirehundredsof runs
beforeasufficientamountof dataisgenerated.Sinceshorteningthedesigncycleisoneof thekeyobjectivesof the
designteams,datamustbegeneratedoveramatterofdaysandnotmonths.Computingexpensestogeneratethe
desireddatain thiskindof timeframemustnotbesolargethatthetotalproductdevelopmentcostwill actually
increaseratherthandecrease.Consequently,costandcomputationalefficiencyoftheentirehardwareandsoftware
systemareveryimportantconsiderationsfor effectiveuseofCFD.Strategiesto increasingcomputationalefficiency
andreducingcostmustbeanintegralpartof allCFDdevelopmentandapplicationsplanning.

CONCLUDINGREMARKS

CFDisakeyenablingtechnologyforthesuccessfulimplementationof anIPPDenvironmentneededfor
producinghighqualityyetaffordabledesigns.Keyrequirementsidentifiedin theprevioussectionmustbeaddressed
if CFDistoplayits rightfulrolein theintegratedmultidisciplinarydesignprocessthatispartof theemergingIPPD
environment.Thethreekeyrequirementsare:rapid turnaround, reliable accuracy, and affordability. Unless they are
met, the technology will not get fully incorporated into the industry design processes. Considering CFD as a tool--a
means to an end--is necessary to evaluating and selecting the "right" technologies for building future capabilities. We
must take a system-level approach to CFD; increasing the effectiveness of the overall CFD application process is
more important to realizing the full benefits of CFD than enhancing the state of the art in some selected constituent
elements. For example, development of a faster flow-solver will have the desired payoffs only if the associated pre-
and post-processing tools are also speeded-up to permit a significant reduction in the overall turnaround time.

The challenge facing the CFD community today is to channel their efforts and resources in a manner that
makes CFD fully responsive to the design needs. Numerous benefits will accrue from incorporating advanced CFD
methods into the design processes. Using CFD methods that offer rapid turnaround capability will reduce design cycle
time. Design teams can then explore a wider spectrum of alternatives within the schedule and cost constraints of a
typical product development effort than is currently feasible. Fast, accurate and affordable methods will increase the
productivity of the design process and reduce the number of expensive tests needed to support design data needs. The
use of advanced methods may also reduce the number of cycles required for design closure. Design teams will be able
to conduct extensive trade-offs needed to guide the evolution of a configuration in a direction that minimizes both
acquisition and life-cycle costs. Improved understanding of component interactions will permit design changes to be
made early and thereby reduce risk and increase the probability of meeting all customer requirements.
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SUMMARY

When computing the flow around complex three dimensional configurations, the generation of the mesh is the

most time consuming part of any calculation. With some meshing technologies this can take of the order of a

man month or more. The rcquircment for a number of design iterations coupled with ever decreasing time

allocated for design leads to the need for a significant acceleration of this process. Of the two competing

approaches, block-structured and unstructured, only the unstructured approach will allow fully automatic mesh
generation directly from a CAD model. Using this approach coupled with the techniques described in this
paper, it is possible to reduce the mesh generation time from man months to a few hours on a workstation.

The desire to closely couple a CFD code with a design or optimization algorithm requires that the changes to
the geometry be performed quickly and in a smooth manner. This need for smoothness necessitates the use of

Bezier polynomials in place of the more usual NURBS or cubic splines. A two dimensional Bezier polynomial
based design system is dcscribcd.

1 INTRODUCTION

The aerodynamic design of components is by and large achieved through "design by analysis". An engineer
will begin with an approximation to the shape of a part. This is then analyzed utilizing a suitable CFD tool. Based

on these results, changes to the geometry are postulated which will improve the part subject to certain

constraints. These improvements, for example, may aim to increase the efficiency or decrease the

manufacturing cost of the part. Having made the changes, the new design is reanalyzed and the results
evaluated. This process may be repeated a large number of times during the design process. In general a limited

amount of time and money are allocated for the design of a given component, hence the CFD code must allow a

number of design iterations within these restrictions. To achieve this geometrical approximations are made and

certain features are ignored because it is too costly to include them in the simulation. For some complex three

dimensional configurations where geometrical simplifications cannot be made the use of a wind tunnel proves to
be more cost effective.

With many currently available CFD technologies there is little room for improvement in component design

within the constraints of time and money. Further improvements can only be achieved by including more
geometric fidelity, reducing turnaround times and improving the physical models within the simulation. In this

paper methods for improving the former two items will be investigated.

Many impressive calculations have been performed on complex three dimensional geometries employing

block-structured techniques. However turnaround time makes these calculations impractical for routine design

work. In some cases it may be possible to usc these techniques in a design environment if mesh generation
software is tailored for one particular topology [1]. This approach however requires a significant investment of

time and money to develop such software which makes it too costly for a large number of problems. In addition
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anydesignchangethat resultsin a changein topologywouldrequiremuchrewritingof themeshgeneration
software.

Theuseof anunstructuredmeshpresentsapossiblesolution.Heremeshgenerationcanbemadeautomatic
for arbritrarygeometriestherebysignificantlyreducingturnaroundtimes.Howeverthegeometryspecification
(alsocommonto thestructuredapproach)andthegenerationof ameshsuitablefor aviscouscalculationstill
representformidabletasks.Theseareasareaddressedin detailin sections2,3 and4.

Of theavailableunstructuredmeshgeneratorsthereisnoaccepted"best" method.It ispossibleusinganyof
these methodsto generatea mesh for complexconfigurations.The relative merits of the competing
unstructuredandstructuredapproachestogetherwith examplesarepresentedin Section2.

Within industrythereisastrongtrendtowardsrepresentingall geometriesbyonesingleCADmodelwhichis
usedand modifiedby a varietyof disciplinesduring the designprocess.The model is ultimatelyusedto
manufacturethe part. This approachhasmanyadvantages,for example,the eliminationof the needfor
conversionprograms,andtheir associatederrors,to movebetweenonegeometryformat andanother.With
powerfulCAD packagesavailablethereseemslittle point indeveloping"in-house"softwareto representand
manipulategeometry.Theobviousnextstepisto usetheseCADmodelsasthebasisfor aCFDcalculation.Any

geometry modification required by the design process can be efficiently performed using the CAD package. In
section 3 the approach used to produce a computational mcsh directly from a CAD model is described.

The desire to perform viscous calculations adds further constraints to the mesh generation algorithm. For

these calculations high aspect ratio cells aligned with the flow gradient are required in the boundary layer and

wake regions. Existing unstructured mesh generation algorithms aim to produce tetrahedra close to equilateral,

or at best provide a limited ability to stretch elements. The use of equilateral cells in viscous regions would result
in a prohibitively expensive algorithm. In addition there will ultimately be a requirement to adapt the mesh in

viscous regions. To be efficient this adaption must be performed in an anisotropic manner, i.e. increasing the
resolution normal to the wall while maintaining the streamwise spacing. The generation of meshes meeting the

above requirements is the subject of much current research. An "inflation" technique to efficiently produce a

near wall prismatic mesh about complex geometries is described in Section 4.

Unstructured meshes lend themselvcs well to adaption by reinforcement where new nodes are added into an

existing mesh. In addition it is possible to use the refinement levels as the basis of a multigrid algorithm. Such a
scheme is described and compared to other multigrid schemes in section 5.

The exact mathematical formulation of the surfaces used in the CAD model of the component to be meshed

has been ignored and left to the CAD program. When it is desired to automate a CFD based design system the
mathematical form of thesc surfaces bccomcs important. Thc use of Bezier polynomials as a basis for such a

system is described in section 6.

Finally in section 7 rccommendations are madc for an idcal CFD system. These recommendations include thc

use of available technologies and the development of new ones.

2 MESH GENERATION

One of the aims when developing mesh generation software is to minimize the cost, both machine and human,

of generating a mesh. As a designer's time is more valuable than CPU cycles this inevitably means minimising
the amount of user interaction required to produce a mcsh. In two dimensions mesh generation is essentially a

solved problem. There are a variety of structured and unstructured algorithms which will produce a high quality

mesh around complex geometries. For examplc thc unstructured mcthod described in [2] requires a few minutes

of CPU time on a workstation and just four uscr inputs to generate a mesh: the file name for the geometry, the
maximum element size, the minimum element size and a boundary curvature sensitivity. The procedure begins

by placing points on the boundary to reflect surface curvature. These points are triangulated using a Delaunay
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procedure. New nodes are now repeatedly inserted into the mesh to remove poor quality elements. The process

is terminated when all elements satisfy the required quality measure. Figure 1 shows a mesh generated by this
approach.

In three dimensions automatic mesh generation for complex geometries represents a formidable, though not

intractable task. The block structured approach requires the specification of an initial blocking topology prior to

generating the mesh in the individual blocks. The specification of the initial blocking topology is a global
operation requiring knowledge of all the boundary surfaces. For the human brain this is a trivial task in two

dimensions requiring a few mouse clicks in a suitable user interface to specify the block topology. The problem is
significantly more difficult in three dimensions. Progress has been made in reducing the level of user interaction

[3,4] to some degree, but due to the need for complex global operations it is unlikely that this will ever be fully
automated.

In contrast the unstructured approach can be made automatic for arbitrary geometries. With these

approaches there is no need for complex global operations. All operations are simple and local, requiring only
local information. This fact alone makes it possible to automate the procedure.

There are three basic techniques used for automatic unstructured mesh generation:

(1) The octree approach [5,6] is based on successive subdivision of the domain to produce a Cartesian mesh. At

boundaries many compute-intensive line surface intersection operations are required. This results in a high
quality mesh in the interior with the worst mesh at boundaries. Smoothing operations are then used in an

attempt to improve the near-wall mesh. Octree approaches do not lend themselves well to the generation of high
aspect ratio cells needed for viscous simulations which will be described in Section 4.

(2) The Advancing front algorithm[7,SJ is a two step procedure. First each surface is triangulated. This is done

by placing nodes around the boundary of each surface in the model. These nodes are connected by edges to form

an initial two dimensional front, this front is then advanced into the surface by building triangles on each edge of
the front. In the second stage the triangulated surfaces form an initial front for the volume mesh. Using a similar

algorithm to that used for the surfaces the domain is filled by recursively building tetrahedra on each face of the
front.

(3) Delaunay based methods as described in [9,10,11] are the natural extension of the two dimensional

algorithm described in [2J into three dimensions. As with the advancing front algorithm a surface triangulation is

first generated and a constrained tctrahcdralization is formed of these boundary triangles. The tetrahedral
mesh is now generated by repeatedly inserting points into this mesh.

Of the above algorithms the advancing front and Delaunay methods have been found to produce smoother

and more regular meshes than the somewhat irregular meshes typically produced by octree approaches. A
comparison between the surface meshes produced by the advancing front and octree algorithms for a nacelle is
shown in figure 2. In addition the formation of an initial surface mesh provides a natural framework for the

viscous mesh generation procedure described in Section 4. Delaunay based methods have also been found to be
significantly faster than the advancing front and octree methods.

The current drawback of the advancing front and Delaunay methods is the need to provide a background
mesh. This background mesh is required to specify the mesh density throughout the flow domain. The automatic

generation of this file, using for example surface curvature to drive the placement of source terms, would further

accelerate the mesh generation process. An alternative approach suitable for the Delaunay algorithms is to

abandon the the background mesh altogether. The surface mesh can be generated as in 2D [2] with the
additional constraint that points be inserted into the mesh to resolve surface curvature. The 3D tetrahedral

mesh can then be generated in a similar manner again by inserting points based on element quality.

Another point to note here is that much of the speed and ease of use of an automatic unstructured mesh

generator can quickly be destroyed by the addition of a graphical user interface (GUI). These GUIs are of little

or no use to a designer who needs to repeatedly mesh and solve on a series of similar geometries. Having to
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repeatedly enter similar data is error prone and significantly hinders the mesh generation process. Much of the
effort expended in writing such interfaces would bc better utilized in further automation of the mesh generation

procedure. Ideally any graphics in a mesh generator should be used for viewing the mesh and not for

interactively generating the mesh.

3 LINK TO CAD SYSTEM

Computer Aided Design (CAD) systems can represent a component in three forms: solid, surface and
wireframe models. A solid model contains information at two levels, topology and geometry. The topological

entities are vertex, edge and face. Each face is surrounded by a number of edges, and a vertex lies at the ends of

each edge. For example a solid model of a cube would comprise six faces, 12 edges and 8 vertices. The underlying

geometrical entities used to define the actual shape of the object are referred to as point, curve and surface.
These can be of various types within the model, for example, the geometry for a surface could be based on

Non-Uniform Rational b-splines (NURBS) or Bezier polynomials. A surface model merely contains

geometrical information for the individual surfaces. All topological information on how the surfaces fit together
is lost. In addition there is no requirement that the bounding surfaces be closed. Wireframe models are a further

simplification which only contain information on the outlines of the surfaces.

The use of a solid model to represent components is becoming more and more prevalent throughout industry,

and are utilized by all disciplines from design to manufacturing. The models contain enough information to

manufacture the part and hence provide a logical starting point for mesh generation. Generally with these

models the solid part is the body, i.c. the metal, whereas to bc of use for a CFD calculation the model needs to bc

inverted so the solid is the gas path around the metal. Fortunately this a relatively straightforward procedure

within a CAD system.

An alternative approach is to base the mesh generation on a common surface model format such as IGES (or

NIGES). This approach initially appears attractive as CAD systems can output IGES files, hence if a mesh

generator can read IGES filcs it can work with all CAD systems. However with the surface model the topological
information required to automatically build the mesh is lost and must be input by the user during the mesh

generation process. Hence nacsh generation cannot be made automatic and much of tim advantage and elegance
of unstructured mesh generation is immediately destroyed. In addition this approach necessitates the

development and support of computer codes employing complex Graphical User Interfaces (GUI) to aid in the

input of this information.

The strategy being developed at GE CRD is to generate an unstructured mesh by interrogating the solid

model directly via thc vcndor supplied subroutine library in order to obtain itaformation necessary to build the

mesh. This is done as the subroutine package and solid model form a self consistent entity. Converting to some

intermediate format such as some as yet undefined extension to IGES opens up many issues, for example

tolerancing; while the model may be a perfectly valid solid model in one CAD package, it may fail some tests on
the common file format. Coupling unstructured mcsh generation with the native read of the solid model allows

the mesh to be built automatically from the solid model with no further intervention from the user. At GE, solid

models from the PARASOLID [12] based UNIGRAPHICS CAD system arc used.

Unstructured mesh generators typically require a limited number of low level geometry and topology

interrogation operations in order to build the mesh. It would bc extremely useful if all the CAD vendors agreed
on a standard in order to extract this information. Calls to these standard routines could then be made from the

grid generation code thus allowing meshes to bc generated from solid models from a variety of vendors.

As a standard set of geometry interrogation routines is not currently availablc an approach in a similar vein has

been adopted. A set of low level interrogation routines to bc used by the mesh generation package has been

defined. Within thcse subroutines arc the calls to the vendor specific routines which provide the required

information. Examples of the sort of topological and geometric ft, nctionality needed arc:
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1) Thetotal numberof faces,edgesandvertices

2) The(x,y,z)coordinatesfrom faceid numberandparametriccoordinates(u,v)
3) Theid numberof edgessurroundingaface
4) Thenearestpointon afaceto agiven(x,y,z)location

Figure3showsthesurfacemeshfor athreedimensionalgeometrygenerateddirectlyfromasolidmodelin 10
minutesonanHP735workstationusingamodifiedversionof theadvancingfront programof [7].

4 VISCOUS MESH GENERATION

Therequirementsfor aviscousmeshdiffersignificantlyfromaninviscidmeshasit isno longersufficienttofill
thedomainwith equilateraltetrahedra.Forefficientsimulationshighaspectratioelementsmustbegenerated
andalignedwithviscousgradients.A recentpaper[13]demonstratedsuchacapabilityin twodimensions.Here
a layerof structuredquadrilateralcellswaswrappedaroundthebodyandextendedinto wakeregions.The
interiorwasthen filledwith triangularcells.An exampleof suchameshisshownin figure4.Thequadrilateral
meshgivesvery efficient resolutionof boundarylayersand wakes.In addition it permits the directional
refinementnecessaryinviscousregions.This is illustratedin figure5. A natural extension of this approach to

three dimensions is to first place structured layers of triangular based prismatic cells on an existing surface
triangulation. This process can bc thought of as "inflating" the surface triangulation. The interior is then filled

with a tetrahedral mesh. The prismatic cells can have a high aspect ratio which will permit efficient resolution of

the boundary layers. They also possess quadrilateral faces which will ultimately permit the directional
refinement illustrated in figure 5.

There are a variety of methods currently being developed to produce near-wall prismatic meshes

[14,15,16,17,18]. All the methods bcgin with a surface triangulation which is then marched or inflated towards
the interior in a series of steps.

In [15] this marching is achieved through representing the initial surface triangulation by a number of
non-intersecting hexahedral elements (voxels). The triangulation is contained within these voxels. The outer

surface of these voxels is then smoothed to form the first inflated surface. Computing the intersection of normals

from the original surface with the inflated surface forms the first prismatic layer. The process is then repeated to

form the complete prismatic mesh. This method has the disadvantage (also common to Octree based methods)

that the mesh will change if the geometry is rotated with respect to the coordinate system.

The unstructured hype rbolic mesh generation technique [16] was also investigated. This method was found to

be prone to crossovers at sharp internal and external corners unless many explicit steps of the algorithm were

taken. For some relatively simple test cases even with many steps a valid mesh remained impossible to obtain.

With this method there is also little control over the spacing away from the wall. The specification of this spacing
is crucial for turbulent calculations.

The advancing layers method [17,18] inflates the surface along quasi-normal directions with a modified

advancing front type algorithm. When certain geometrical criteria are satisfied, such as distance from a wall or

element quality, the algorithm reverts to the standard method. Numerical experiments indicate that this method

can be made less prone to crossovers at sharp corners than the hyperbolic technique. It also has the advantage
that near-wall spacing may bc specified directly for turbulent flows.

The algorithm described in [14] also uses quasi-normal directions as a starting point for generating the

prismatic mesh. New nodes arc placed along thc normal directions to form a structured mesh of prismatic

elements which wrap around the viscous surfaces. The volume mesh generator uses this inflated triangulation as

its initial front rather than the initial triangulation. This algorithm will now be described in detail.
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To describe the combined algorithm of surface inflation and advancing front, a rectangular box with a

cylindrical hole will be used as an example. This geometry is illustrated in figure 6. The cylindrical surface and
lower wall are marked as viscous and are to bc inflated. All other boundaries are either inlet surfaces, exit

surfaces or inviscid walls and will not be inflated.

The procedure begins by triangulating the viscous walls using the surface meshing part of the advancing front

algorithm. This surface mesh is shown in figure 7(a). The next stage in the procedure is to compute a
quasi-normal direction at each node on the surface triangulation. The algorithm used to compute these normal

directions is described in [14]. The initial surface is now inflated a specified distance _5along these quasi-normal
directions. This gives the first layer of prismatic cells. This inflation process is repeated a number of times using

different values of 5 but the same normal direction, q3,pically 5 varies between one layer and the next by a fLxed

geometrical factor ranging between 1.0 for a uniform mesh and 5.0 for a highly stretched mesh. The resultant

prismatic mesh is shown in figure 7(b). The total thickness of this prismatic region is adjusted to encompass the

expected boundary layer.

The remaining non-viscous surfaces are now triangulated. Any new nodes and edges generated by the inflation

algorithm which lie on these surfaces are requircd to form part of the initial front for these surfaces. The newly
triangulated surfaces and the inflated triangulation are combined to form a closed front. This becomes the initial

front for the interior mesh generation algorithm. The rcsultant combined mesh is shown in figure 7(c).

For many cases this schcmc is found to work well. Howevcr for some complex geometries a suitable algorithm

to produce a set of normals, which in turn lead to a valid prismatic mcsh of acceptable quality remains elusive. In
addition, for boundaries which are close to onc anothcr, it may bc possible for the prismatic meshes to overlap.

To produce a robust mesh generator a fallback position is adopted. After the prismatic mesh is generated a
number of checks for cell quality arc madc. These chccks cnsurc that:

1) Each prismatic cell has positivc volumc,

2) No cell intersects any other and

3) Cells are of reasonablc quality.

Any cell failing these tests is tagged for deletion from the mesh.

When cells are removcd triangular and quadrilatcral faces of clcmcnts below the inflated surface are exposed.

To form a front the quadrilatcral faces arc dividcd into triangles. It is possiblc for these triangular faces to posess

a high aspect ratio, espccially ncar thc wall. A front containing such faccs has proven problematical to thc

volume mesh generator. The algorithm tk_r rcmoving thcsc high aspect ratio faces is dcscribcd in [14].

Meshes gcneratcd by this algorithm arc shown in figurc 8 for a turbinc bladc and figure 9 for a

wing/pylon/nacelle. Thc mcsh is illustratcd by making various cuts through the prismatic rcgion. As can be seen
the mesh is of high quality and provides a good starting point for a viscous calculation.

Meshes gencratcd by the abovc approach will contain a varicty of elcmcnt types. While it is possible to divide
these elements and produce a purely tetrahcdral mcsh this is not the most efficient method. Modifying the flow

solver to work directly on a mixed mesh is a bctter option.

5 ADAPTION AND MULTIGRID

Adaption forms an integral part of any unstructured CFD calculation, since using an unstructured mesh

without adaption utilizcs only half thc powcr of thc mcthod. Thc use of the various meshes generated by an

adaptive procedurc in a multigrid algorithm is an obvious step and has bccn demonstrated in [19,20,21,22].

There are two basic mcthods uscd for adaption: reinforcement, whcre ncw nodes are added into an existing

mesh, and remeshing whcre the entire gcomctry is rcmcshcd.
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Multigrid schemesbasedon adaptive remcshing have three disadvantages. The first is that the mesh

generation algorithm needs to be robust and fast. If the scheme is not fast, the mesh generation time can quickly

exceed the solution time and a lot of the benefit of multigrid is lost. The second disadvantage relates to the
difficulty in computing transfer operators for the unstructured mesh. As the meshes bear no relation to each

other this is a non trivial task. Complex data structures are required to avoid an O(n a) search. Finally, unless the

meshes are generated through solution adaption then a large percentage of the nodes on the finer meshes may
serve no useful purpose.

The multigrid scheme prescntcd iq [19] ovcrcomcs the above disadvantages. The process begins with an initial

coarse grid. An initial solution is obtained on this grid. This solution is then examined to determine if the grid is

sufficiently fine to resolve fcatures of intcrcst. In regions where more resolution is required the mesh is
enhanced through reinforcement. A solution is obtained on this new grid. The solve and refine process is

repeated until some desired level of accuracy is achicvcd. When using this approach the multigrid levels are

formed naturally by the refinement proccdurc. The construction of the transfer operators is a simple task

requiring a single pass through the data. Full dctails of thc multigrid scheme are presented in [19].

The reinforcement procedure can bc significantly fastcr than rcmcshing. Typically, the reinforcement

procedure gencratcs tctrahcdra at the rate of 25,000 per cpu second on an HP735 workstation. In contrast the

advancing front algorithm of [7] produces tctrahcdra at the rate of 66 per cpu second. The newer Delaunay

based meshing algorithms [9] arc significantly faster than advancing front though still slower than
reinforcement.

The initial grid for thc rcinforccd p,-occdurc meshes has to bc fine cnough to resolve all the features of the

geometry. If this is not so, it is possible for the node snapping procedure to produce a crossed over mesh, as
illustrated in figure 10. This restriction prevents the full bencfit of multigrid being realized on complex

gcomctrics as a relatively fine initial mesh has to bc used. A possible solution would bc to combine multigrid by

agglomeration [23] with the reinforcement based multigrid. Coarse multigrid levels could then be generated

from the initial mesh by _gglomeration and finer levels by reinforcement.

6 SURFACE MODELING

More complcx geometric models of internal and external systcms require a greater degree of rigor in
geometric dcfinition. This rcquircmcnt together with pressure for standardization and cost effective

engineering are driving design of acrodynamic dcviccs to bc either based on standard CAD systems or to

produce geometric models compatible with those packages. By basing the analysis on gencric CAD systems, it

bccomes feasible to analyze aerodynamic devices with incrcascd detail included, such as wings with flaps
dcploycd and nacclle/pylons attached instcad of analyzing an idcalizcd wing. Similarly, turbine blade models

may include shrouds, cooling holes, and cndwall gaps previously ignorcd. With increasing focus on system level

integration and optimization, all cnginccring disciplines require access to a consistent geometric model, often
rcfcrcd to as a master model.

The geometric model for ae,odynamic devices should provide good support not merely for representing the

final geometry but for the process of reaching that design. Aerodynamic surfaces are frequently free form

sculptured surfaces. While low ordcr polynomial (cubic) splines (or cubic NURBS in 3D) are quite suitable to

represent geometry of this type, they providc poor support for the design process [24,25,26,27]. As a designer

(either human or an optimizer) modifies a single cubic spline control point to find a better design, the surface

curvature develops large oscillations undesirable to the fluid flow (see figure 11). It has been found that using
high order Bczicr curves instead of cubic splines has a much more desirable response to control point

manipulation, as shown in figure 12. This technology has been developed into a quasi-3D turbine blade design

tool which finds application in both interactive design of blades and automated design where it is driven by an

optimization systcm I28].
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For themastermodelconceptandautomatedgridgenerationto delivertherequiredbenefitsin streamlining

the engineering process, the geometric processing required must proceed smoothly and reliably. Unfortunately,

the current state of commercial solid modelling software has not yet attained this level of robustness.

Automation and speed of the design process are dependent on the correct reliable performance of solid

modelling software.

Particularly in this age of virtual corporations, outsourcing, and strategic alliances, it cannot be expected that a

single CAD system will be selected as the universal supplier of geometry. While it is possible to set up a
standardized interface to geometry packages that grid generation software could use, as described in section 3,

experience in two-dimensions indicates that once you go beyond static CFD solutions and include analytic

sensitivites, design optimization or inverse design, it is required that the CFD tools have an explicit geometric

capability built in to them. It is quite possible to have a generic geometric interface for static geometry, but it is

not so clear that the design and sensitivity calculation capability in the CFD tools could get required geometric

operations from a general standardized interface to a variety of solid modellers.

This geometry coupling is the foundation of an innovative approach to interactive turbine blade design using
linearized Euler sensitivities developed in [29]. An Adaptive unstructured Euler equation solver produces a

non-linear mean flow solution using thc Bczicr curve gcometry as produced by the design tool. Additionally, the

flow solver can compute linearized steady perturbation solutions for arbitrary geometry deformations of the

blade shape. The perturbations specify the geometric sensitivity coefficients for each flow variable, such as

OP/Ox i for the pressure derivitive with rcspcct to thc i-th Bczicr control point. Since the design tool and the flow

solver both use the Bezier control point geometry to represent thc turbine blade profile, it is possible for the flow

solver to compute the geometric sensitivity for displaccment of any control point. By providing this data to the
design tool, as the designer modifies the bladc by interactively moving Bezier control points, the blade surface

Mach number distribution can be updated in real timc using a locally linearized approximation. Given the

baseline pressure (P0) from the non-linear mcanflow solution, the pressure P after altering the i-th control

point by a displacement dx i can bc computcd from
n

0P
P = P,, + 2 -5-_i dxi

i=1

to within the locally linearized approximation. For blade changcs beyond some range, the linear approximation
crror increases and the meanflow solution plus a new sct of scnsitivitics must be computed. The same geometric

sensitivites can also be used to accclcratc blade dcsign optimization using a gcncric cngineering optimization

package such [24,28].

7 RECOMMENDATIONS

The recommendations made here are intcndcd to define the "idcal" CFD system. Many of the technologies

either exist or are under active development. The CFD system should be modular so that if new technology

becomes available an existing module can easily be rcplaccd. The modules should be able to communicate with
each other via either a common file format, or a particular format and a subroutine library to extract data from

the file. There are five basic modules: Geometry definition, mesh generation, flow solution, adaption and

post-processing.

7.1 Geometry Definition

The best approach here is to use a solid model from a CAD program to define the geometry of the component
to be meshed, then for the reasons outlined in section 3 the grid generation program should read this model

directly. To achieve this for a number of CAD packages a standard set of subroutine calls to interrogate a solid

model will need to be defined, each CAD vendor will thcn nccd to providc an interface using these calls.
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7.2MeshGeneration

For the reasonsstatedin section2 meshgenerationshouldbe basedon unstructuredtechnology.The
followingproposedalgorithmis intcndcdto bcasautomaticandasefficientaspossible.Themethodbeginsby
triangulatingthesurfaceof thc bodywith themeshdensitybasedonsurfacecurvature.Thisremovestheneed
for anyadditionalinput throughfor exampleabackgroundmeshfile. For efficiencythe ability to generate
stretchedelementsalignedwith, for exampleleadingedgeswould be useful.A viscousmeshcan thenbe
generatedbyinflatingthissurfacetriangulation.Finallythe intcrior shouldbetetrahedralizedwitha Delaunay
basedalgorithmwherepointsareinsertedbascdonmeshqualityratherthanabackgroundmesh.Themajority
of componentsarein placcfor suchanalgorithm,theonlyrealneedis theremovalof thebackgroundmesh.

7.3Flow solver

Toconvergein areasonabletimeanyflowsolverneedsto employamultigridor implicit solutionalgorithm.
An attractiveandefficientwayto generatethemultigridlevelsisto agglomeratefrom theinitial meshtogetthe
coarserlevelsandadaptivelyrefinethroughpointinsertionto generatethefiner levels.Thetwo technologies
existto do thisbut to theauthors'knowledgetheyhavenotyctbccncombined.

Theuseof implicitalgorithmsonunstructuredmeshesisthesubjcctof muchresearch.Aswith theirstructured
meshcounterparts,it isunclearwhichalgorithmis themostrobustandcomputationallyefficient.

7.4 Refinement

Refinementismostefficientlydonebypointinscrtion:thiswill alwaysbefasterthanremeshing.Theabilityto
performone-dimcnsionalrefinementdcscribcdin section4 isan essentialpart of anyadaptivescheme.In
additionthisadaptionprocedurecanbcusedtogcncratcaone-dimensionalmultigridschemeto acceleratethe
solverinviscousregions.

7.5Postprocessing

Therearea numbcrof flcxiblc postprocessorsavailable.At thevery leastthesoftwaremustbecapableof
handlingdifferentclementtypesandanymixof them.Visual3andFIELDVIEW aretheonlygeneralpurpose
codesthatto theauthors'knowledgecanhandlemixedmeshes,thoughothersaremigratingin thatdirection.To
beof useto designersanypostprocessormustbcableto reducethelargethreedimcnsionaldatasetsto simple
x-yplotsof interesttoanengineer,for exampleprcssurcaroundawingsection.3Dviewsofsolutionsusingcolor
contourplots,whilcvcry niccfor publicitypurposcs,havclittle useto designers.
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Figure 1 Example inviscid mesh Figure 3 Surface mesh for 3D geometry

advancing front, nn=5805, nc4=28407 octree nn =5652, nc4 =26175

Figure 2 Comparison of advancing front and octree meshes
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Figure4 Mixedtriangular/quadrilateralmesh

I- J-J
2D Hexahedral

3D Prismatic

Figure 5 2D and 3D directional cell division

Figure 6 Cylindrical hole in box

Figure 7 Stages of viscous mesh generation
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Figure8Prismaticmeshfor turbine Figure9 Prismaticmeshfor installednacelle

Figure10crossoverproblemfor refinedmesh
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Figure 11 Response of surface curvature to displacement of a single cubic
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ABSTRACT

This paper presents "A view from the trenches" on CFD grid generation from a Pratt & Whitney
perspective. We anticipate that other organizations have similar views. We focus on customer

expectations and the consequent requirements. We enunciate a vision for grid generation, discuss
issues that developers must recognize.

BACKGROUND

The Engine Industry. Our grid generation goals are best understood in the context of the turbine

engine industry, which is in the process of re-engineering with the premise that turbomachinery is a
commodity in a mature business. This implies that specialists are used only in the core technologies,
otherwise generalists will be supplemented by outsourcing of labor and/or purchase of vendor codes
to meet business needs. The new paradigm of continual process improvement emphasizes driving
costs down and reducing cycle time. The user of a CFD system is not a PhD level CFD specialist but
rather a generalist designer. This represents a fundamental change from the last decade. The tight
coupling of reduced design cycle time with time-to-market and bottom line profitability in this
responsive business environment sets new CFD process requirements.

The Designer

A typical designer must balance theory, experiment, experience, and calculations covering a wide

span of disciplines including CAD, aerodynamics, heat transfer, structures, and manufacturing. A
designer is usually not a CFD expert. There is simply not time to develop in-depth skills in a specific
area because of the wide range of skills and knowledge needed for design and because of the
requirements to meet design deadlines.The designer may typically have a four month hiatus between

sets of analyses, where he or she closely monitors component tests to achieve the necessary
physical "feel" for the component. Thus the design systems must be easy to learn and relearn under
tight schedules.

Flow Solver Success. Three dimensional viscous flow predictions have recently become validated in
the engine industry as powerful design/analysis tools. Significant component improvements have

been demonstrated for CFD-based designs. These recent successes are producing increasing
pressure for expanding CFD capabilities to new component application areas. We have more

opportunities now in CFD than we have ever had! Consequently, increasing numbers of component
design systems are transitioning from correlation based algorithms to 3D viscous CFD analyses
"tuned" with experimental test data. The grid generators must handle these new components.

Flow Solver Spe¢0. A few years ago, the state of the art in industry was running jobs in queue on a
supercomputer. Users often waited days for results for a single engine component. Then came a

revolution: the use of networked workstations which currently produce ovemight turnaround with high
resolution. For example the flow analysis of a fan or compressor blade row, including details such as
shrouds and tip clearances, is routinely done overnight. Network computing and more user friendly
systems fueled a large expansion of the CFD user base to include the designers themselves, who

' Pratt & Whitney, West Palm Beach, FL



now run the overwhelmingmajorityof CFDcalculationsat P&W.Flowcalculationswith one half
million grid points are typical,withsomecasesemploying1.5milliongrid points.

Grid Generation Turnaround. For simple components, such as a fan or compressor stage, specialized
grid generators (developed over a ten year period) create the required grids without user intervention
or even inspection. For complex new 3D components such as nacelle installations, complete
combustor/diffusers, rocket turbopumps, etc., current grid generators may require days to months of
elapsed time. In other words, the elapsed flow solver time can be a small fraction of the elapsed grid
generator time!

Grid Generation Caoability. Although current grid generators are rather general and applicable to a
wide range of problems, some problems remain unresolved. For instance current grid generators
currently cannot cope with some new applications such as the highly swept, highly wrapped
(staggered), close-spaced periodic centrifugal inducer blade elements with multiple sets of
embedded splitters as encountered in modern rocket turbopumps.

The Designer is the Customer. The designer ultimately decides which flow solver and grid generator
are used, and which ones become "trashcan" CFD codes. Those that best meet the designer's needs
get used. Those that do not best meet the designers' needs are discarded, even if such codes are
"technically" superior. As a practical matter, the CFD grid generator developer must have a tight
communication link with both the designer and the flow solver developer, so that the right needs are
answered. The grid generator must integrate perfectly with the flow solver, and this requires constant
communication as the target flow solvers and computing systems change regularly The key to this is
understanding that the designer is the ultimate customer, and the flow solver/grid generator
combination must meet design needs. This situation is like buying a house, where the advice is
"location, location, location." Here the advice is "designer, designer, designer;" it is that simple. In

practice, it is fully recognized that ,for logistical reasons, there may be "gatekeepers" between the
developer or vendor and the designers. This does not alter the fact that the designer is the ultimate
customer.

VISION

CFD Process Vi$iqn.The requirement for the CFD process in this new market-driven business

environment is one day turnaround for the everyday aerodynamic design CFD cycle illustrated in the
first slide. This cycle is composed of inspection of the preceding nights' run, conceptualization of
modifications expected to improve performance, defining the new geometry using a CAD system,
CAD-to-grid geometry transfer, grid generation, flow boundary condition specification, flow solution,
and post-processing. The flow solver unattended running occupies 16 hours of this cycle. This new
design may have a different topology than previous cases. The grid generation occupies one hour
of this cycle, leaving at least four hours for the designer to conceive and define a new geometry to
improve on the current design. This 24 hour design-analysis cycle is in tune with the human circadian
rhythm, allows a large number of design cycles, and cuts time to market for new products. Each of the
CFD system components must be sufficiently automated to allow the designer to operate them on a

sporadic basis with minimal specialized training and support from CFD "experts". The second slide
illustrates that others also recognize this one day turnaround requirement.

Grid Generator Reauirements. The requirement is reliable one hour grid generation turnaround for

one-time geometries when run by designers. The system must incorporate CAD to grid links which
resolve tolerance issues, and produce grids with quality good enough for the flow solver. The

designer must feel that the grid generation process is under control and predictable, since the grid
generation process is now viewed as part of an overall CFD process which is expected to produce

46



engineeringanswers in a day.The one hourgrid turnaroundrequirementwas derived by starting with
the desired customer-defined goal and working backward.This requirements-driven approach will
produce technologies significantly different (and more responsive to designer needs) than will a grid
code written in isolation and then "thrown over the wall". We do not envision a new grid generator
replacing our specialized grid generators (which usually run in at most a few minutes); in general the
geometries we wish to analyze will be complex and significantly different from previous geometries.
We also require that the grid generation be more automated with minimal user interaction to decrease

variation between users, and to reduce training and retraining costs. Remember, every time the user
must provide input, the variation in the grid increases! An automated approach for non-specialist
customers is even more important for vendors than for intemal developers, since local help and
training may not be quite as close.

This one hour grid turnaround requirement is reality and must be fully accepted by CFD process
providers. This is not an easy thing to do, given the current evolving state of grid generation. The
development of grid generators to meet the one hour turnaround requirement may seem daunting
taken out of context. Reliable one hour grid turnaround by generalist design users for up to a million
cells is believed realistic based on hardware improvement projections and significant software
process enablers discussed below. The one hour grid inside the one day CFD analysis will be the
routine working environment of tomorrow!

Evolution or Revolution? Looking at how we have selected and deselected grid generation codes
over the last decade at P&W, it becomes clear that we tend to hold on as long as possible to a

technology that works, and only change codes or vendors when the current codes cannot effectively
solve our problems in a timely manner. When we finally made the change to new codes, the
technology always was a revolutionary jump, not an evolutionary improvement. For example, we
switched from a command-line text driven grid generator to an interactive grid generator. As another

example we ceased use of conformal mapping based generators when the coding changes required
for flexibility became too time consuming because the basic code was not created with interaction in
mind. When we switch codes, we typically evaluate the market leaders and "select" one within a
single class of technology. Incremental improvements help postpone the date of transition to a new

technology level, but do not change the outcome. We thus expect our next generation grid generators
to be revolutionary, not evolutionary. Automation, which the dictionary defines essentially as "without
human interaction," will increase and interaction will decrease.

. o

The first generation of grid generators required typically thousands of command-line or script
commands for complex cases. The second generation used graphical interaction to simplify the user
interface, but still requires thousands of user decisions such as where to place a cursor and click. The
interaction accelerated the user decisions and increased the probability of correctness, but did not

significantly reduce the number of user decisions. Newer technology aims at reducing the number of
decisions by automating tasks within the current process paradigm, such as the provision for more

automated blocking or the ability to add components separately using templates. Simultaneously,
altogether different gridding paradigms are emerging, such as the advancing front tetrahedral grid
generators and the geometric grid generators discussed in Reference 3.

The interrelation between reliability and automation is illustrated in the fourth slide. A skilled user

called on to make a moderate number of decisions will usually make the correct decisions, but as the
number of user decisions grows, the probability of incorrect decisions grows. Given a fixed

technology, the more user input "knobs" available, the higher the reliability if the user input is flawless.
These trends interact to produce a reliability that at first increases with the number of user decisions,
reflecting more user knobs to control special cases, but then decreases as the number of user
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decisions grows further due to user errors. The idea is to automate the processes to move the left side

of this curve dramatically upward and to the left. This movement, labeled "progress", is where the
current frontier lies. Specialized grid generators tuned for limited geometries tend to have high
reliability and few decisions. This is typical of the specialized cascade grid generators we have
developed over the last 20 years. They are not expected to be displaced by new technology since
they already fully meet the design needs for their limited scope of application.

Revolution Enablers Recent hardware, software, communications, and flow solver improvements
have dramatically altered the computing and coding environment, making the one hour grid
turnaround requirement a realistic goal.

Significant hardware advances have occurred in cost, speed, core storage, disk storage, and
graphics. Workstations have lowered the cost per computational unit of work by order(s) of
magnitude. Development has been accelerated by computing environments where there is no (or
only a negligible) chargeback based on use. Developers can afford to experiment with new methods

which show promise without having to justify the computing expenses. The impressive speed of
modem workstations exceeds that of a single IBM 3090 processor of just 4 years ago. Just ten years
ago, it was difficult to get authorization for 2 megabytes of core on a mainframe, now workstations
typically have 32 times this amount. With this much core, one can try out new ideas quickly by not
being concerned (in the 1st cut) with storage. The disk storage of typically 10 "cylinders" of ten years
ago is now replaced by disk storage typically 100 to 200 times as much. This allows room for better

documentation and stored verification cases, improving the code quality. The field of 3D graphics is
about to explode. While there have been 3D graphics workstations available, the workstation market

sales leader has announced that their next CPU chip will contain three subsystems: an integer unit, a
floating point unit, and a graphics unit. You evidently will not be able to buy one without powerful 3D
graphics capability! Others are developing increasingly inexpensive 3D graphics cards. A personal
computer company has announced a 3D version of their "Quick Draw" operating system code which
can display 3,000 facets in real time without an accelerator card. Since grids are 3D relationships in
space, graphical visualization is an absolute necessity for the development of grid codes. This holds
true even when automated grid codes do not need graphics for running; they still need the graphics
for code debugging.

Significant software and communications advances include overlapping windows, the "make" facility,
code checkers, sorting and searching algorithms, publications, and the Internet. The overlapping
windows and concurrent processes capabilities allow development work to proceed on several
different fronts at once. The UNIX operating system and the "make" facility simplify the construction of

large codes. Typically a flow solver of ten years ago would range from 2,000 to 8,000 lines. Todays'
flow solvers and grid generators often range from 50,000 to 150,000 lines of code. Progress on the
code quality front has also proceeded on a rapid track. The ftnchek FORTRAN code checker of

Reference 4 is capable of finding errors (such as uninitialized variables) in code even six levels deep
in subroutines. The lint checker serves similar functions for "C" code. Computer science has
contributed by establishing an "object attitude" relative to modular coding which again has allowed
large, complex projects to be successfully completed. The knowledge of rapid sorting and searching
algorithms has been developed and published extensively, and much faster codes can result.There

are now a number of popular magazines and books devoted to coding techniques, while there were

only a handful ten years ago. The Internet can be viewed as the world's biggest, best library as well
as a source of technical news, technical papers, and assistance. It also simplifies collaboration
between developers on a project.The power of this resource is growing at an exponential rate.These

hardware and software advances work together to bootstrap the rate of code development; and this
process will continue. We know of developers today who produce at a rate 2 to 8 times higher than
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tenyearsago.

Anotherenableris the relative insensitivityof modemfinitevolumeflowsolversto grid elementquality
(distortion)comparedto thefinite differenceflowsolversof the past.Thelaw of diminishingretums
impliesthat oncea grid is "goodenough"for theflowsolver,furtherimprovementsare hard to come
by and mightnot be economicallyor timejustified.This presumesthat predictivegrid quality
measuresfor the flow solverare known,so that "goodenough"is a measurablequantity.The simple
grid qualitymeasure"flatness"describedin Reference3 hasworkedwell for our Eulerflow solver.By
relaxingthe grid requirementsfrom "perfect"to "goodenough",new grid generationparadigms
becomefeasible.Of coursethe grid muststill be fineenoughto resolvesignificantfeaturesso that
grid independenceis achieved.

USER NEEDS

Needs__.We askeddevelopers,designers,and otherCFDusersat P&Wto identifytheir grid
generationneeds,and were inundated.The resultswere merged,categorized,and are presentedin
the attachedslides.They are a "wish"list basedon ourcurrentexperiences,and do not includeall
possiblerequirements.

ImDlicati0n_;. An examination of the needs listed in the slides leads one to conclude that there are

certainly a lot! This implies that the grid generator codes of the future will be large. These large codes
will have more links between sections, greatly increasing the importance of coding quality standards

and error avoidance procedures. Vendors may have an advantage with large codes since they can
spread their costs over many customers, if there are only a few vendors. Another possible scenario is
cooperative work between developers in different organizations to each address different needs, with
coordination over the Intemet. The National Grid Project and the NASA IGES effort are examples of

such cooperation. An interesting topic for discussion is whether one dominant vendor will emerge, as
in personal computer operating systems, or whether cooperative efforts of smaller groups will be the
norm.

CONCLUSIONS

This presentation concentrated on grid generation requirements from a customer-driven viewpoint.
We first identified the designer as the customer, then discussed design requirements and presented
perceived designer needs. We assert that the grid generation requirement is one hour turnaround
for unique complex geometries on a workstation by a designer.We believe that this is an achievable
goal, given significant enabling hardware and software developments. In closing, the bottom line is to
recognize that the customer is the designer, and to be customer-driven.
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One Day Turnaround CFD
DESIGN CYCLE

8 AM 5 PM

FLOW SOLVER

One Day Turnaround CFD
we are not alone

"In aerodynamic design work for commercial aircraft,
CFD calculation results for aerodynamic analysis
should be produced ... with short turnaround times
(for large, complex calculations, 1 day, say)"

Boerstoel, J.W., Spekreijse, S.P., and Vitagliano, P.L., "The Design of a System
of Codes for Industrial Calculations of Flows around Aircraft and Other Complex

Aircraft Configurations," 10th AIAA Applied Aerodynamics Conference, Paper #
AIAA-92-2619-CP, Palo Alto, CA, June 1992.

"The significance of this is that the total elapsed
time for redesigning and arriving at a wing which
meets all aerodynamic and manufacturability
requirements can now be envisioned to approach
the order of one day!"

Rubbed, P., "CFD and the Changing World of Airplane Design," AIAA

Wright Brothers Lecture, Anaheim CA, Sept 1994
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One Hour Grid Generation

The requirement is for reliable one hour grid
generation turnaround for one-time geometries
when run by designers. The system must include
CAD-to-grid links which resolve tolerance issues
and produce grids with a quality good enough for
the flow solver. The designer has to feel that the grid
generation process is under control and is
predictable.

The Designer is the Customer
CFD only counts if it gets into the product

RECOGNIZE WHO THE CUSTOMER IS
RESPOND TO ACTUAL CUSTOMER NEEDS
FOR GRIDS, THE FLOW SOLVER IS ALSO A CUSTOMER
THIS REQUIRES LOTS OF COMMUNICATIONS
NO "OVER THE WALL" APPROACHES

DECISIONS
A MEASURE OF A UTOMA TION

RELIABILITY

1.0 e_ SPECIALIZED

1 10 100 1,000 10,000

NUMBER OF USER DECISIONS
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Enablers

Workstations

Speed/Cost
Large core
Large disk
Overlapping windows

Make
Code checkers

Object attitude
How-to publications
Internet
Fast 3D surface

Graphics
In CPU:

integer
floating
graphics

Robust Flow Solvers

Process Reliability & Stability Needs

sufficient user control to ensure process nearly always works

soft landing after error with meaningful messages and waypoint capability
stability and reliability is usually more Important than added features

check all user input for range & reasonableness, allow re-entry of data

reduce user Input: every time you require user Input, you Introduce variation

be predictable enough for just-in-time grid generation

handle often imperfect CAD data with gaps, overlaps, tolerances

handle scales differing by 5 orders of magnitude

prevent bus errors and segmentation (memory) errors
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Ease of Use Needs

simplicity, lots of feedback on progress, active on-screen help

automate everything you can, then use graphical interaction for the rest

reduce need for grid generation knowledge & expertise

clear and consistent menus, messages, code appearance, process
directions, and documentation

if something fails, suggest alternatives or corrective action on screen
provide visualization to track progress and detect failures

provide automated or simplified block decomposition

support general, non-restrictive script and data format with in-line comments
scripting and journal file for:

batch running

template construction by experts for "push-button" specialized uses

coupling with other automated processes

simplified re-learning and work organization for sporadic users

restart from partially executed process waypoints
reduced variation

Integration Needs

block face points which are conceptually the same must be IDENTICAL

input and output source code to simplify Integration into existing systems

read existing user formats, ie: VSAERO

batch running

Standards Needs
write generic visualization files (ie: Wavefront .obj format)

accept standard CAD output formats (IGES, sterolithography, ...)
write Postscript files for design documentation

provide hardware platform independence where possible

all platforms should run identically

support the hardware platforms which designers have on their desks

use terminology and notation familiar to designers, where possible
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Developer Communication Needs

rapid response to critical bug reports, tell user if fix is not planned
good code/version control process and results tagging
Internet

new features

hints, suggestions
feedback

data base of outstanding and resolved bugs

Miscellaneous Needs
common grid generator with International divisions and industrial partners

unstructured output capability, even for structured grids

adaptive tie-in to solver

Implications

Large quantity of needs implies large codes needed

Large codes imply coding quality much more important

Will a dominant vendor emerge?
ability to spread development costs
like personal computer operating systems

Will cooperative efforts prevail?
National Grid Project
NASA IGES
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APPLICATION OF CFD IN AERONAUTICS AT NASA AMES RESEARCH CENTER

Catherine M. Maksymiuk, Francis Y. Enomoto,
and William R. Van Dalsem

NASA Ames Research Center

Moffett Field, California

Summary

The role of Computational Fluid Dynamics (CFD) at Ames Research Center has
expanded to address a broad range of aeronautical problems, including wind
tunnel support, flight test support, design, and analysis. Balancing the
requirements of each new problem against the available resources - software,
hardware, time, and expertise - is critical to the effective use of CFD. Several
case studies of recent applications highlight the depth of CFD capability at
Ames, the tradeoffs involved in various approaches, and lessons learned in the
use of CFD as an engineering tool.

Outline

• CFD as an Engineering Tool

• CFD Process in Action--4 Case Studies

• Assessment of Current Technology

• Conclusions
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Balancinq Requirements and Resources

(__ ___) money

unkecessary __lp"

geometric flow

complexity complexity

When CFD is used as an engineering tool, care must be taken to achieve an
appropriate balance between a project's modeling requirements and the
associated cost. Time and cost constraints become direct limitations on how
much complexity is retained in the surface model and how much
approximation is made in the fluids model. If the models are oversimplified,
the resulting "cheaper, faster" process might produce results that are not
useful. Similarly, a simulation which models every imaginable detail might take
so long that the results, however accurate, are too late to influence design
decisions. The CFD engineer must keep his resources and requirements in
equilibrium and must still avoid undue risk and uncertainty. This thought
process should accompany every CFD application.
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Applied CFD at NASA-AmeF

Wind Tunnel Support
- Model/Support/Tunnel Design
- Wall/Sting Interference Prediction
- Tunnel Data to Flight Extrapolation
- Tunnel Data Analysis

• Flight Test Support
- Flight Test Design
- Flight Data Analysis

•Vehicle (or Component) Design & Analysis:
- Concept Downselect & Preliminary Design
- Design Optimization
- Detailed Analysis

CFD is applied in many ways at Ames. These projects range from short-term,
limited-scope analyses to detailed design studies or intensive analyses lasting
many months. A corresponding range of tools and expertise are available to
address these problems. The following slides will highlight some recent
applications projects, showing how we rely on CFD and noting some continuing
problems in the process.
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Advanced Subsonic Transoort

M. Aftosmis, J. Melton

Problem
Investigate aft flow environment

Constraints
Turn-around ASAP

Approach
Vortex-dominated flow required high degree of geometric fidelity
Turn-around time precluded Navier-Stokes or any time-intensive grid system
Cartesian Euler with solution adaption offered quickest gridding

Outcome
Dominant flow structures were identified and results were coordinated with lower-

order methods and water tunnel experiments.
Although the strength of the vortex structures is questionable due to the lack of

viscosity, the trajectories are thought to be accurate.
The requesting agency, flight test center, and aircraft manufacturer were favorably

impressed with the results and their timeliness.

Lessons Learned
CAD and surface grid generation are still a labor-intensive bottleneck.
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Planar cut, Isobars, and Streamribbons

M.Aftosmis

Navier-Stokes Analysis of Flow about a Flap Edge

D. Mathias, K. Roth, J. Ross, S. Rogers, R. Cummings

Problem

Increased interest in aerodynamics and acoustics of high lift systems prompted an
intensive analysis using CFD and wind tunnel tests

Constraints

Accurate representation of physics needed for full understanding of flow

Approach

Moderately complicated geometry was readily handled with algebraic and
hyperbolic overset grids; a grid scripting system was created to facilitate
handling future model with similar topology.

Flow conditions required the influence of viscosity but compressibility could be
neglected.

Outcome

Initial results were used to locate pressure taps on model and proved to be an
excellent prediction of wind tunnel data.

Lessons Learned

Engineering an overset grid system for a class of problems requires a significant
investment up front, but can pay off in later similar problems.

Proper location of overset grid boundaries is critical to obtaining desired
convergence.
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Incompressible Navier-Stokes Analysis

of a Half-Span Flap
streamlines colored by static pressure

overset surface grids

Optimization of a Transonic Business Jet Wing

J. Gallman, M. Madson, R. Kennelly, R. Chandrasekharan,
V. Hawke, M. Hinson, D. Saunders, R. Mendoza, J. Reuther

Problem

Design a new transonic business jet wing using numerical optimization and CFD

Constraints
Limitations on wing geometry due to manufacturing considerations
Performance requirements for CDwAvE, CLMAx and no shock-induced separation
Short design period requiring efficient CFD and geometry modeling tools

Approach
Set of CFD codes included wing-alone full potential with numerical optimization,

full configuration Cartesian full potential, wing-alone full potential with strip
boundary layer, and wing-body structured Euler

Common geometry input from an automatic surface geometry program

Outcome
Strong influence of fuselage and nacelle on wing design
Design met most goals and was experimentally validated

Lessons Learned
Future aerodynamic design tools need to include fuselage and nacelle modeling,

more accurate maximum lift estimates, and boundary layer effects
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Oblique All-Wing Supersonic Transport

R. Kennelly, D. Saunders, S. Cheung, C. Lee

Problem

Aerodynamic design of an Oblique All-Wing supersonic transport

Constraints

Thickness constraints due to passenger cabin requirements
Pitching and rolling moment constraints

Approach

Set of CFD codes included airfoil and wing full potential with numerical optimization,
airfoil full potential with boundary layer, full configuration Cartesian full potential, and
overset Navier-Stokes methods

NURBS representation used for design variables in airfoil aerodynamic optimization
Chord and thickness tapers designed with numerical optimization

Outcome

Extensive geometric parameter studies led to an asymmetric planform design
Design met goals and was experimentally validated

Lessons Learned

Parametric surface definition was useful for making numerous design iterations
Full configuration analyses were indispensable in design process, but hampered by CAD

to surface grid bottleneck
Navier-Stokes analyses took months
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Oblique Wing I
full configuration
overset/ OVERFLOW

Process Time for Case Studies

1.5 months

TIME FRAME

lay

MONTHS

SubsonicTransport I 3 daysCartesian / TIGER
6,sd.ys

Half-span flap
(subsequent runs)
overset / INS3D

4 days ?: days DAYS

I
Wing design I 1 hour
Cartesian I TRANAIR I

DCAD

10 minutes

: iii
HOURS

GridGeneration D Solution _ Post-Processing

It is instructive to compare process times for the various methods and applications.
The design cycles for the Oblique Wing and the Business Jet Wing took 1 year and 4
months respectively; the full processes are not represented here. The Navier-Stokes
analysis of the Oblique Wing took several months. The full configuration was a
complicated CAD model, and the grid required considerable effort. Once a complete
overset grid system was obtained, changing the configuration by moving or removing
any of the modular parts was relatively simple, and several such configurations were
studied. Post-processing was automated to extract desired information from the
solution files.

The full-configuration transport analysis is an example of a short-term, limited-scope
project. The short process time was a major goal, which dictated the choice of
method. The elapsed time for CAD modeling is a little deceptive, since several people
worked on the model.

The Half-span Flap analysis is similar to the Oblique Wing design study. Considerable
time was invested to set up a system that could be used for future work on similar
configurations; such studies can now be run in a few days. Because the resulting
database is used for continuing study, especially in connection with wind tunnel data,
the post-processing time is shown as indeterminate.

The most efficient process shown is a TRANAIR run, concluded in only a few hours.
The CAD process was actually a surface modeling process not involving conventional
CAD software. Analytical surface modeling was done specifically to avoid having to
work with a CAD model.
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Assessment of Current Technology

_ routinely applied by _ cautiously applied by _ reaearch area _knowledgeable people specialists experts required
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Cartesian Overset Patched Unstructured Hybrid
Tetrahedral

CFD software has traditionally been used by very specialized engineers and
researchers. Lately, there has been some effort to make codes usable by people less
experienced in CFD. Although progress has been made, most applications are still
carried out by CFD specialists.

The most usable codes are those which have been available for a long time and have
seen the most development or those which have achieved the most automation
through extensive development or inherent capability. Experience with the grid
generation procedure and the flow solver's limitations is still necessary for effective
results. Less well-developed or well-validated techniques require more effort in grid
generation, more understanding of the modeling in the flow solver, and/or more
acceptance of uncertainty in the results. Several important methods still require
considerable research before they can be routinely applied.
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Missing Pieces

RANS

Euler Hybrid

Full
Potential

Overset Patched
Unstructured
Tetrahedral

Cadeeian

I
• , _ TurbulenceAutomated

efflc0ent ( ) m-_-i

Validation _ • Effective
& ulmr (_ _ solution

experience _ adaption D

Available

Nearing its potential

Extensive

development needed

Not Applicable

No CFD method for complex configurations has a simple process path at this time.
Despite the advances in standardization by NASA-IGES, the CAD/surface grid
interface is still very cumbersome. Overset and patched methods lack automated
gridding and are not conducive to efficient solution adaption. Navier-Stokes methods
need attention in many areas; hybrid methods may be able to overcome the inherent
inefficiency of unstructured Cartesian or tetrahedral grids, yet offer more automation
of grid generation than overset or patched methods.
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Conclusions

• No one method is the best for all problems. Select the strategy which meets the
deadline with the available resources and addresses the important physics of the
problem.

•To address a wide range of problems effectively, a full range of tools must be available.

• There is a long process-time gap between Euler and Navier-Stokes analysis.

•Unstructured methods have done well for Euler problems but have not been
satisfactorily demonstrated for viscous 3D problems.

• Structured methods for a class of problems can be automated for quick
turnaround; generalized fast structured capability still does not exist.

• Hybrid methods could be the answer, if they combine the best of each method.

• Fast Euler methods are attractive from a process-time standpoint, but users must be
aware of approximate physics.

• For complicated or detailed geometry, CAD-to-grid is still a major bottleneck.
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GEOMETRY LABORATORY (GEOLAB) SURFACE MODELING AND

GRID GENERATION TECHNOLOGY AND SERVICES

Patricia A. Kerr, Robert E. Smith,

and Mary-Anne K. Posenau

NASA Langley Research Center

Hampton, Virginia

Abstract

The facilities and services of the GEOmetry LABoratory (GEOLAB) at the NASA Langley

Research Center are described. Included in this description are the laboratory functions, the

surface modeling and grid generation technologies used in the laboratory, and examples of
the tasks performed in the laboratory.

1 Introduction

Discussion of the concept of GEOLAB began in the late 1980s when computational fluid

dynamics had demonstrated the capability to produce accurate and relatively inexpensive

flow fields about complex geometries. The bottleneck for obtaining solutions, however, was

the amount of time required to prepare the surface geometry and grid data for the flow field

solvers. Typically, several months of intense activity was required to produce geometry data

after which the first flow field solution could be obtained in a matter of hours. A similar

amount of time was required each time a new configuration was undertaken. Computer-

Aided Design (CAD) software and emerging grid-generation software potentially could in-

crease the surface and grid data productivity, but it had to be organized and integrated into

the overall computational environment. The concept of GEOLAB was to centralize those

geometry activities requiring specialized (but broadly applicable over many disciplines and

organizations) talents, software, and hardware and to decentralize those tasks which required

individual engineering tuning. Training and communications were, and still are, the essential
ingredients for the concept.

GEOLAB was initially formed in 1990 to support Langley researchers performing Com-

putational Fluid Dynamics (CFD) analyses. GEOLAB focuses on high performance work-

station hardware, CAD and grid generation software, and the skills to efficiently produce

geometry data. The main goals of GEOLAB are to improve the efficiency in performing

geometry related functions such as surface modeling and grid generation, to promote tech-

nology development of new geometry techniques, and the transfer of such development to

customers both internal and external to the Langley Research Center. In the past four years,

GEOLAB has expanded its capabilities in order to support projects involving conceptual de-

sign, model production, structural analyses, materials, multi-disciplinary optimization, and
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reverse engineering.

Since its inception GEOLAB has reduced the time to perform a surface modeling and

grid generation task defining a volume grid of a full aircraft complete with tail surfaces,

fillets, pylons and engine nacelles from 6 months to 2 weeks. In addition, this also represents

an approximate "order of magnitude" decrease in the cost of grid generation for a detailed

Navier Stokes CFD analysis in a typical project.

2 GEOLAB Resources

GEOLAB is equipped with state-of-the-art hardware and software. The hardware includes

10 high-end Silicon Graphics workstations and 7 NCD X-terminals. The workstation con-

soles are located in a communal area near desk space where the X-terminals are located. A

CYBERWARE laser digitizer and a Calcomp Flatbed Digitizer are also available in GEO-

LAB to enable mathematical surface reconstruction from physical objects and blueprints.

The equipment is used primarily for the production of surface models, computational grids,

and for software development; users must be involved in surface modeling or grid generation

projects to qualify for accounts and use the equipment during prime hours. In addition, re-

searchers working on parallel algorithms are given accounts in order to test their algorithms

in a clustered workstation environment during non-prime hours. There are over 75 users

including the GEOLAB team.

The GEOLAB software includes CAD, grid generation, and visualization tools that have

been developed or acquired to facilitate the generation and analysis of surface representa-

tions, surface grids, and volume grids for both structured and unstructured analysis tech-

niques. Among the tools currently in use in GEOLAB are: GRIDGEN, ICEMCFD, VGRID,

GridTool, CSCMDO, SurfACe, SCAFFOLD, and VOLUME. Each of these software tools is

briefly summarized in Appendix A.

A key element to productivity and efficiency in GEOLAB is the integrated computing

environment provided by the system administration techniques employed. All user files and
software files are cross-mounted so that all utilities are available on all machines. Network

licenses are purchased when buying commercial software so that no workstation needs to be

reserved for a particular function. Passwords are common across the machines. Access to

general-purpose tools and utilities such as printers, manual pages, electronic mail, editors,

etc. are available from any machine. An attempt is made to keep the workstations at the

same revision of the operating system and to keep the amount of memory and CPU type

uniform across the cluster. In general, the user is presented with the same environment and

resources transparently, no matter which workstation is used.

The hardware and software are matched with a team of skilled specialists consisting of 5

civil servants, a National Research Council fellow, a university post doctorate, two university
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civil servants, a National Research Council fellow, a university post doctorate, two university

doctoral candidates, and 7 non-personal services (NPS) contractors. The members of the

team have mechanical or aerospace engineering, computer science, and mathematics back-

grounds. The contractor team members are responsible for performing most of the surface

modeling and grid generation tasks in response to the Research and Technology Group at

Langley and other external organizations. Also they are heavily involved in the development

of specialized software tools that are needed to improve the efficiency of the process or to

provide a custom tool to support a research project initiated in the Research and Technol-

ogy Group at Langley. The civil service personnel are involved in the development of new

methodologies for surface modeling and grid generation, data transfer and computing envi-

ronment issues, and the administration of GEOLAB. While the expertise of team members
lies in different specialty areas, most are cross-trained in all the software tools used in the

laboratory in order to maintain a cohesive and flexible response to customers.

GEOLAB is currently located in the Scientific Applications Branch of the Information

Systems Division, Internal Operations Group at the NASA Langley Research Center. The

GEOLAB team has access to advanced tools for scientific data visualization, data base

management, image processing, and high performance computing as a part of the Scientific

Applications Branch. In addition, the team has ready access to other services within the

Internal Operations Group that support wind tunnel model production and experimental

testing. The availability of these capabilities greatly enhance both the scope of problems

GEOLAB is able to address and the quality of the resulting work performed in GEOLAB.

3 GEOLAB Functions and Experiences

GEOLAB functions can be divided into 4 categories: (1) production surface modeling and

grid generation tasks; (2) software development supporting surface modeling and grid gen-

eration; (3) research into new technology; and (4) training and technology transfer.

3.1 Surface Modeling and Grid Generation Tasks

GEOLAB performs a wide variety of production surface modeling and grid generation tasks

enabling researchers to effectively proceed with their computational analyses. The details of

these tasks include data repair such as adding missing features; blending features together;

and reconstructing surface models from grid points, blueprints, or measurement of existing

physical models. Other tasks include preparation of surface and grid data for parametric

studies and production of denser or sparser grid sets.

Most 'production surface modeling and grid generation tasks take 2 to 6 weeks to com-

plete depending on the complexity of the configuration, the accuracy required to support

the intended analysis tool, the nature and condition of the input data, and the format of the
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output data. Projects in which the input data is not in electronicformat, i.e., coefficientsor
points in adesignbook,blueprints, or modelsfor which ahigh degreeof accuracyis neededto
support Navier-Stokesanalysis,maytake 6 to 12months to complete. Usually theseprojects
areonly undertakenif severalgroupsof researchershaveneedfor the data. GEOLAB also
providessupport for much smaller tasks suchas data conversion,geometry visualization,
and quick data verification for researchers.These tasks usually require anywherefrom an
hour to 3 days. Tool developmenttasks requireanywherefrom 2 to 12monthsdevelopment
time. The tasks areusually brokendown into sub-taskswith specificdeliverablesand sched-
ule. The researcheris involved at an early stageas the requirementsare decidedupon and
as each major subsectionis developedand demonstrated. This involvement also provides
severalpoints at which priorities may be re-assessedand adjusted.

3.2 Software Development

The software used in GEOLAB is licensed from commercial companies, obtained free from

government sponsored development projects, or created in-house. The choice of which source

to use is based on availability, cost and timeliness. CAD software, as a rule, is always licensed.

Grid generation software is usually acquired from freeware sources or created in-house. Spe-

cial purpose software is almost always created in-house. The programs SurfACe, GridTool,

SCAFFOLD, and CSCMDO described in Appendix A are representative of the software

developed in GEOLAB. The rationale for creating them in-house follows.

SurfACe (Fig. 1) is a software package used to evaluate the quality of surface grids. It

allows visualization of the surface of multi-component configurations and the characteriza-

tion of several grid quality functions on the surface. Since SurfACe is tailored to evaluate

surface grid quality, it has been designed to expedite these operations. This gives SurfACe

its primary advantage over systems such as FAST, a freeware visualization system or FIELD-

VIEW, a commercial visualization system.

GridTool (Fig. 2) is a surface grid generation program originally written to prepare

unstructured surface grids for the VGRID unstructured volume grid generation system.

GridTool has evolved to be a versatile utility bridging the gap between CAD geometry and

grid generation programs. GridTool creates grids on patches that are projected to the CAD

description, thereby easily generating grids that are on the precise CAD description of the
surface.

SCAFFOLD (Fig. 3) is an interactive program written to recreate numerical geometry

models from measured data obtained by scanning physical models with the CYBERWARE

laser digitizer. SCAFFOLD provides the bridge between measured models and CAD models.

It is an example of the specific software developed in GEOLAB to meet a specialized need

across many organizations.

CSCMDO (Coordinate and Sensitivity Calculator for Multidisciplinary Design) (Fig. 4)
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is an automatic volumegrid generatorthat operates in a batch environment in conjunction

with a shape optimization process. It is based on being given a surface grid for a high-speed

civil transport configuration and an initial volume grid possibly generated with software

such as GRIDGEN or ICEMCFD. CSCMDO automatically adjusts the volume grid to small

changes in the shape of the configuration surface. Large changes in the surface shape,

topology or number of surface grid points require a new volume grid from another source.

CSCMDO was developed at the request of the Multidisciplinary Design and Optimization

Branch of the Langley Research and Technology Group.

3.3 New Techniques for Surface Modeling and Grid Generation

The establishment of GEOLAB was based on many prior years of grid generation research

in the Analysis and Computation Division at the Langley Research Center (LaRC). The

development of new techniques is now an integral part of GEOLAB. There are two in-house

project under way: (1) The rapid generation of airplane configurations using engineering

parameters, and (2) The development of high aspect ratio unstructured grid generation

techniques. Appendix B presents a short description of each of these projects.

4 Training and Technology Transfer

Besides surface modeling and grid generation tasks, GEOLAB also provides training in the

software tools used in the lab. The tools may be commercial software or they may have been

developed under contract for NASA to researchers at LaRC, other NASA centers, govern-

ment agencies or industrial partners. Included in the list of tools supported to this extent are:

GRIDGEN, ICEMCFD, GridTool, and CSCMDO. GEOLAB presents two grid generation

classes a year on elements of grid generation, the use of GRIDGEN for structured grids, and

the use of VGRID for unstructured grids. These classes include hands-on tutorials. During

these sessions GEOLAB is dedicated to the training class to allow the participants access to

the hardware. The lab environment is ideal for this type of activity with 10 machines in one

area and easy access for the instructor. One-on-one training is provided on request in the

use of specialized tools like SurfACe, GridTool, and CSCMDO. Over 200 people have been

trained by GEOLAB since its inception.

GEOLAB is committed to technology transfer to the Langley researchers, other govern-

ment and university centers, and U. S. industry. In addition to offering training, GEOLAB

makes available its non-proprietary software tools upon request. By far, the most requested

software is GridTool. At this writing, 80 copies have been distributed throughout the United

States, in addition to its use at Langley.

Cooperative Agreements between GEOLAB and outside organizations can be made to

produce surface models and grids. GEOLAB staff will demonstrate the software tools and
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methodologieson geometryproblemsof interest to the requester.Agreementsof this nature

have been entered into with David Taylor Research Labs, Boeing Company, McDonnell Dou-

glas Corporation, and Ford Motor Company. These agreements are normally coordinated

through the Technology Applications Group (TAG) at Langley

5 Data Management and Communications

Data Management and Communications are an extremely important aspects of GEOLAB.

Surface geometry is normally communicated in Initial Graphics Exchange Specification

(IGES) or NASA-IGES (NIGES) files. This standard formatting of surface data allows rapid

interaction with customers, both government and industrial, for surface geometry problems.

Langley Wing Geometry Standard (LaWGS) and PLOT3D files are also used.

A data management system called PRISM is used to manage large quantities of data

pertaining to a given project. PRISM arose out of the High Speed Airplane Integrated Re-

search (HiSAIR) study and is comprised of a Graphical User Interface (GUI) and a software

interface to a Database Management System (DBMS). The PRISM GUI uses the X Win-

dows System and the Motif toolkit to provide a window based "point-and-Click" interface.

PRISM used the commercially available Informix DBMS with a Sun SPARCstation currently

functioning as the database server. The PRISM software provides for automatic searching

or querying for particular data sets (or subsets) to the user's workstation, storing new data

sets, and an administrative/security mechanism controlling access to shared databases.

6 Future Directions

There are several problem areas that GEOLAB would like to address in the future. The

most important is the length of time it currently takes to produce a surface representation

and computational grid for analysis. As was stated earlier, it usually takes 2-6 weeks to

prepare the geometry and volume grid for a detailed Navier-Stokes analysis. To meet the

needs of industry, this time must be reduced to hours. To meet this need, better tools are

needed to run in a more automatic fashion with little or no human intervention. In addition,

these tools must also be flexible and robust enough to handle computations dealing with a

high degree of complexity.

Further work is indicated in other specific areas in which GEOLAB is currently involved.

More diagnostic tools are required to guarantee that any given computational grid is satis-

factory, thereby reducing the number of revisions needed to allow accurate modeling of the

physical processes being studied. These tools need to be developed for computational struc-

tural mechanics problems as well as for computational fluid dynamics problems. Additional

work is needed in the area of unstructured grids in order to allow the generation of un-
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structured grids to handle viscous flows. Further work in the area of parameterizing surfaces

with respect to design variables is needed to shorten the design and preliminary design cycles.

In addition, expansion of effort in other areas is indicated. New advances in the area of

reverse engineering are to be studied. New techniques to relate 2-D CT scans to an accurate

3-D surface representation of a model or structural element are needed. Also, more robust

algorithms for surface reconstruction from point clouds measured from laser digitizers are

needed. More experience is needed within the GEOLAB team to become more familiar with

grids for structural analysis.

As the team works to solve individual task requests, new tools are being generated and

existing tools are being improved to increase the efficiency of all aspects of the grid generation
process.

7 Conclusions

GEOLAB has become the focal point for geometry issues at Langley. It is providing an

essential function for all continuum simulation in a cost effective manner. Researchers do

not need to be geometry experts in order to accomplish their mission. GEOLAB has become

an interface between Langley Research Center organizations and their customers to allow

rapid interchange and use of geometry data. GEOLAB is developing new technology for

surface modeling and grid generation, and in addition to using the technology in-house, is

transferring it to other NASA, government, university, and industrial organizations.
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Figure 1: An unstructured surface grid for the V22 Osprey is shown in SurfACe

along with a shaded representation of the surface geometry.
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Figure2: The surface geometry for the Apache helicopter is shown in GridTool

with several patch boundaries and point distributions defined prior to projection to the surfaces.
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Figure3: Themeasuredpointsfromthe wingof anF-22modelis shownalong
with thenewlyfitted mathematicalsurfacein the SCAFFOLDprogram.

PooR 
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Figure 4: The integration of the CSCMDO program into the design loop is shown

Coordinate and Sensitivity Calculator for Multi-Disciplinary
Desi :imization (CSCMDO)

Premmre Coefficient
(Cp) Solution Evory 3rdgrld

line drawn

8O



A Software Tool Summary

GEOLAB uses a variety of software for surface modeling, grid generation, and flow field

validation of geometry. The purpose of the Appendix is to give the reader an overview of
the software. The Commercial packages are:

• GRIDGEN

• ICEMCFD

• AZ2000/AZ3000

• PATRAN

Tools developed in GEOLAB available to the U.S. Government, Universities, and Industry
are:

• CONVERT

• CSCMDO

• GridTool

• SCAFFOLD

• SurfACe

• VOLUME

Tools developed at Langley or other NASA facilities and available to the U.S. Government,
Universities, and Industry are:

• VGRID/USM3D

• TLNS3DMB

• CFL3D

A.1 GRIDGEN

GRIDGEN version 8 is a system of four codes for the generation of 3D, multiple block,

structured grids: GRIDGEN version 8 was developed by MDA Corporation and sponsored

by the Langley Research Center. The four programs are:

GRIDBLOCK is an interactive code for decomposition of the domain of interest into

blocks, distribution of points along edges, and algebraic surface grid generation.
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GRIDGEN2D is an interactive code for elliptic PDE refinement of 3D surface grids on

the six faces of each block in the system.

GRIDGEN3D is a batch code for the generation of 3D volume grids on the interior of

each block in the system.

GRIDVUE3D: Interactive code for inspecting volume grids.

The three interactive codes have been written using the Silicon Graphics IrisGL graphics

library for both the user interface (e.g., buttons, text input) and the grid rendering. As such,

these codes will only run on hardware that supports IrisGL. Version 8.3 of Gridblock, Ver-

sion 8.4 of Gridgen2d, Version 8.8 of Gridgen3d, and Version 8.6 of Gridvue3d are currently
available.

GRIDGEN version 9 integrates the functions of GRIDBLOCK and GRIDGEN2D into

a single interactive program. GRIDGEN version 9 was developed by MDA corporation and

sponsored by the AMES Research Center. GRIDGEN version 9 is available from COSMIC.

A.2 ICEMCFD

ICEMCFD is a grid generation system built on top of a full CAD system. Geometry data

can either be created within the system or read as either point format or IGES format. The

grid is created independent of the geometry and at the end of the process projected directly

onto the CAD surface geometry. This patch-independent approach can overlook small gaps

and overlaps of the surfaces in the geometry.

ICEMCFD can be used to produce multi-block structured grids, unstructured tetrahe-

dral grids, and body-fitted Cartesian grids. The resulting grids, topology and boundary

conditions can be output in a number of formats to match different flow solvers that may be

used.

A.3 AZ2000/AZ3000

AZ2000/AZ3000 are software packages developed by Program Development Corporation

for generating and displaying two and three dimensional multiblock structured grids.The

packages automatically determine the blocking structure around complex geometries and

accommodate nested grids. One license for the 3D 500 block, 1 million grid point code has

been purchased, for assessment of code capabilities.
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A.4 PATRAN

P3/PATRAN is a general purpose three-dimensional Mechanical Computer-Aided Engineer-

ing(MCAE) software developed by PDA Engineering. P3/PATRAN provides a graphical

environment where geometry can be modeled and pre-processed for analysis; the analysis
results can be post-processed within the P3/PATRAN environment. It allows direct ac-

cess to geometry from CAD systems such as Unigraphics, Pro/ENGINEER, and CATIA or

as Initial Graphics Exchange Specification(IGES) entities. It also provides analysis prefer-

ences for code specific data input for analysis codes such as ABAQUS, ANSYS, MARC, and
MSC/NASTRAN.

A.5 CONVERT

CONVERT is a batch program that allows one to convert grids to/from various formats such

as binary, formatted, unformatted, single precision, double precision, PLOT3D, GRIDGEN,
LaWGS, Tecplot, etc.

A.6 CSCMDO

CSCMDO is a general multi-block three dimensional volume generator suitable for multidis-

ciplinary design optimization. The code is highly automated, robust, and efficient. Algebraic

techniques are used to generate and/or modify block face and volume grids to reflect geo-

metric changes resulting from design optimization. Volume grids are generated/modified in

a batch environment and controlled via an ASCII user input "deck". This allows the code to

be used directly in the design loop. The code has been written in ANSI "C" to be platform

independent. CSCMDO has been tested extensively on aerospace configurations. The test

cases range from simple wing/body configurations to full HSCT geometry with tail surfaces,

engine nacelles, and canards. The code is also used outside the design loop in the GEOLAB

for rapid modification and quality checks of existing CFD volume grids.

A.7 GridTool

GridTool is an interactive program for IRIS workstations. This program has been developed

for unstructured and structured grids. In unstructured areas, the code is capable of gener-

ating an input file for VGRID systems. Surfaces can be read either in point form such as

GRIDGEN, PLOT3D, LaWGS, etc., or NURBS form such as IGES-128. Then, the surfaces

are represented internally as NURBS surfaces. Also, the code can be used to project either

unstructured or structured surface grids onto NURBS surfaces. There is a batch version

available for projecting unstructured and structured surface grids.
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A.8 SCAFFOLD

SCAFFOLD is an interactive program that allows surfaces to be constructed from a group of

points, such as surface measurements from a laser digitizer or cordax machine. The program

accepts x, y, and z point values in the following formats: ECHO (laser digitizer), LaWGS,

PLOT3D, and GRIDGEN. A new surface is created first by defining the points along the

surface edge by selecting existing points. From the edge points, four edges are specified by
selecting four corner points. An m x n mesh is defined by bilinearly interpolating points

along the edges and in the interior of the new surface. The mesh is then projected onto the

point sample using a normal projection algorithm to obtain the curvature of the original

sample. The program also includes other tools to aid in surface development such as surface

shading, displaying surface normals, and interactive means to rotate and translate surfaces.

SCAFFOLD is coded in the C programming language and runs on Silicon Graphics Iris

workstations. The code is still under development with most of the effort concentrated on

automating the process described above. Currently, work is being directed toward developing

methods to extract geometry and topology from a group of points to form mathematically

represented surfaces. SCAFFOLD is a simple solution to this problem since it provides the

tools necessary to develop surfaces that can be manipulated by existing CAD/CAM packages,

but it requires heavy user interaction and user knowledge of the topology represented by the

sample points. More sophisticated algorithms can be easily incorporated into SCAFFOLD

as they become available.

A.9 SurfACe

A Surface Analysis Code (SurfACe) has been developed to help researchers assess surface

grid quality of computational grids used in CFD analyses. Anomalies in grids used in these

analyses can result in flow solutions that are not consistent with the true flow field charac-

teristics of the vehicle. SurfACe can be used to highlight grid generation errors that are not

easily detected in wireframe or shaded representations of a grid and thereby can increase the

cost effectiveness of CFD as a design tool.

SurfACe can be used to evaluate both structured and unstructured surface grids on a

number of grid quality parameters that indicate changes in surface curvature and changes in

surface grid quality. Surface curvature parameters included related to grid smoothness are:

the magnitudes of the x-, y-, and z-components of the surface normal vectors, first and second

derivatives of these vectors, and the normal, Gaussian, and mean curvatures. Grid quality

parameters included related to grid resolution are: surface grid cell area, orthogonality, and

aspect ratio. Each parameter is displayed on the geometry using a variable color map. The

displays can be viewed dynamically with rotation, translation, and scaling being controlled

either by the keyboard or by the mouse. Wireframe, hidden line, and shaded views of the

surface grid are also available.
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A.10 VOLUME

VOLUME is an interactive program written for IRIS workstations to generate multi-block

structured volume grids. The code reads the surfaces of each block in either GRIDGEN or

PLOT3D format. A transfinite method is used with the following blending functions: (1)

Soni, (2) exponential, and (3) natural log. The unique feature of this program is the capa-
bility of not only specifying the boundary surfaces of each block but also the internal surfaces.

A.11 VGRID/USM3D

The VGRID/USM3D aerodynamic analysis system is available for computing the flow-

fields around complex configurations. VGRID is a robust, user-oriented code for generating

unstructured tetrahedral grids around very complex geometries by the Advancing Front

Method. USM3D is an upwind flow code for solving the Euler equations on tetrahedral

grids. Input for the system is facilitated through the GridTool utility developed by CSC

Corporation and available through GEOLAB. The system is widely used and is supported

by the Transonic Aerodynamics Branch (Contact: Dr. Neal Frink/804-864-2864).

A.12 TLNS3DMB and CFL3D

Two Reynolds-Averaged Navier-Stokes solvers developed in the Computational Fluid Dy-

namics Laboratory (Bl192) are available for computations on block-structured grids. The

two codes, TLNS3DMB and CFL3D, can and have been used extensively for a variety of

applications across the Mach number range. The features of the two codes are:

Steady and unsteady strong conservation law forms of compressible flows

Finite-volume discretizations

Euler and Navier-Stokes (laminar and Reynolds-averaged) solvers

Second-order spatial accuracy

Range of turbulence models from algebraic to two-equation models

Full MultiGrid (FMG) acceleration, including grid sequencing, to steady state

Perfect gas equation of state

The TLNS3DMB code has evolved from central-differencing concepts for the convective

and pressure terms while the CFL3D code has evolved from upwind-differencing concepts.

Both codes treat the viscous terms with central differencing. Either code allows an arbitrary
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number of generalized coordinate blocks. The CFL3D code has generalized patched and

overset grid capabilities while TLNS3DMB requires a one-to-one connection between the

grid points of the blocks. A unified input and output format is currently being developed

and tested for both codes. Contact: Dr. Chris Rumsey (804-864-2165) for CFL3D and Dr.

Veer Vatsa (804-864-2236) for TLNS3DMB.
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B

B.1

In-House Projects

N95-28730

Rapid Airplane Parametric Input Design (RAPID)

Robert E. Smith

NASA Langley Research Center

Hampton, Virginia

Abstract

RAPID is a methodology and software system to define a class of airplane configurations

and directly evaluate surface grids, volume grids, and grid sensitivity on and about the config-

urations. A distinguishing characteristic which separates RAPID from other airplane surface

modelers is that the output grids and grid sensitivity are directly applicable in CFD analysis.

A small set of design parameters and grid control parameters govern the process which is

incorporated into interactive software for "real time:' visual analysis and into batch software

for the application of optimization technology. The computed surface grids and volume grids

are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The gen-

eral airplane configuration has wing, fuselage, horizontal tail, and vertical tail components.

The double-delta wing and tail components are manifested by solving a fourth order partial

differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The

design parameters are incorporated into the boundary conditions and therefore govern the
shapes of the surfaces. The PDE solution yields a smooth transition between boundaries.

Surface grids suitable for CFD calculation are created by establishing an H-type topology

about the configuration and incorporating grid spacing functions in the PDE equation for

the lifting components and the fuselage definition equations. User specified grid parameters

govern the location and degree of grid concentration. A two-block volume grid about a

configuration is calculated using the Control Point Form (CPF) technique. The interactive

software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be

continuously varied and the resulting surface grid to be observed in real time. The batch

software computes both the surface and volume grids and also computes the sensitivity of

the output grid with respect to the input design parameters by applying the precompiler

tool ADIFOR to the grid generation program. The output of ADIFOR is a new source

code containing the old code plus expressions for derivatives of specified dependent variables

(grid coordinates) with respect to specified independent variables (design parameters). The

RAPID methodology and software provide a means of rapidly defining numerical prototypes,

grids, and grid sensitivity of a class of airplane configurations. This technology and software

is highly useful for CFD research for preliminary design and optimization processes.
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B.2

N95- 28731

Algorithms for High Aspect Ratio Oriented Triangulations

Mary-Anne K. Posenau

NASA Langley Research Center

Hampton, Virginia

Abstract

Grid generation plays an integral part in the solution of computational fluid dynamics

problems for aerodynamics applications. A major difficulty with standard structured grid

generation, which produces quadrilateral (or hexahedral) elements with implicit connectiv-

ity, has been the requirement for a great deal of human intervention in developing grids

around complex configurations. This has led to investigations into unstructured grids with

explicit connectivities, which are primarily composed of triangular (or tetrahedral) elements,

although other subdivisions of convex cells may be used. The existence of large gradients in

the solution of aerodynamic problems may be exploited to reduce the computational effort by

using high aspect ratio elements in high gradient regions. However, the heuristic approaches

currently in use do not adequately address this need for high aspect ratio unstructured grids.

High aspect ratio triangulations very often produce the large angles that are to be avoided.

Point generation techniques based on contour or front generation are judged to be the most

promising in terms of being able to handle complicated multiple body objects, with this

technique lending itself well to adaptivity. The eventual goal encompasses several phases:

first, a partitioning phase, in which the Voronoi diagram of a set of points and line segments

(the input set) will be generated to partition the input domain; second, a contour generation

phase in which body-conforming contours are used to subdivide the partition further as

well as introduce the foundation for aspect ratio control, and; third, a Steiner triangulation

phase in which points are added to the partition to enable triangulation while controlling

angle bounds and aspect ratio. This provides a combination of the advancing front/contour

techniques and refinement. By using a front, aspect ratio can be better controlled. By using

refinement, bounds on angles can be maintained, while attempting to minimize the number

of Steiner points.
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N95- 28732

lq y ..<-/z / /

SURFACE MODELING AND GRID GENERATION

FOR AEROPROPULSION CFD

Yung K. Choo, 1 John W. Slater, 2 James Loellba£h, 3 and Jinho Lee, 4
NASA Lewis Research Center

Cleveland, Ohio 44135

SUMMARY

The efforts in geometry modeling and grid generation at the NASA Lewis Research Center,

as applied to the computational fluid dynamic (CFD) analysis of aeropropulsion systems, are

presented. The efforts are mainly characterized by a focus on the analysis of components of an

aeroprol_ulsion system, which involve turbulent viscous flow with heat transfer and chemistry.

Thus, this discussion will follow that characterization and will sequence through the components

of typical propulsion systems consisting of inlets, compressors, combustors, turbines, and nozzles.

For each component, some applications of CFD analysis will be presented to show how CFD

is used to compute the desired performance information, how geometry modeling a_d grid
generation axe performed, and what issues have developed related to geometry modeling and

grid generation. The discussion will illustrate the following needs related to geometry modeling
and grid generation as observed in aeropropulsion analysis: (1) accurate and efficient resolution

of turbulent viscous and chemically-reacting flowfields, (2) easy-to-use interfaces with CAD

data for automated grid generation about complex geometries, and (3) automated batch grid
generation software for use with design and optimization software.

Components of Turbojet Engine

Inlets Turbomachinery Combustors Nozzles

ISeuior Scientist, CFD Branch, In _ ernal Fluid Mechanics Division

2National Research Council Associ _te, CFD Branch, Internal Fluid Mechanics Division

3Research Associate, Institute for Computational Mechanics in Propulsion (ICOMP)
4Senior Engineer, NYMA, Inc.
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Inlets

NASA Lewis inlet analysis from subsonic to hypersonic flight

Inlet flow characteristics to compute include:
Pressure Recovery

Distortions at compressor face

Cowl drag

Flow quantity and engine matching

Flow stability

Flow angularity

Surface Modeling/Grid Generation / CFD:
CAD software for surface modeling

NASA-IGES for data exchange

Interactive domain decomposition for multi-block grids

Space-marching, reduced-Navier-Stokes solvers on structured grids

Time-dependent, Navier-Stokes solvers on multi-block, structured grids

CFD codes are characterized by specialization to propulsion flowfieids

The purpose of the inlet is to provide the desired quantity and quality of airflow to the

engine for stable production of thrust. The analysis of inlets at the NASA Lewis Research

Center encompass flight speeds from subsonic to hypersonic.

The CFD analyses are applied to determine such information as the mass flow rates, pressure

recovery, distortions at the compressor face, inlet drag, flow angularity, and flow stability [1].

Most analyses involve steady-state flow; however, some unsteady flow analyses are conducted

when examining inlet stability.

The primary CFD codes used at the NASA Lewis Research Center for inlet analysis include

RNS3D [2] and NPARC [3]. The RNS3D code solves the reduced Navier-Stokes equations to

effidently model the flow using a space-marching method. The NPARC code solves the full,

unsteady Navier-Stokes equations using time-marching methods. Both codes have undergone

development to focus their abUities towards the analysis of propulsion flowtields, which are domi-

nated by turbulent viscous effects. The codes include capabilities for bleed boundary conditions,
turbulence models capable of predicting separation of flow from inlet walls, and compressor face

boundary conditions. Both codes use structured grids primarily because of familiarity with the

performance of the numerical methods and the desire to efficiently and accurately model tur-
bulent viscous flows. The NPARC code uses multi-block, structured grids to model complex

geometries. The blocks may overlap in a non-contiguous manner for difficult geometries.
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Inlet Shape Design and Optimization

Bifurcated Transitioning S-Ducts Subsonic Transport Inlet Optimization

Use of CFD in design environment
Geometry defined by geometric parameters

Desire grid generation to be batch operation

Grid generation software as callable libraries

Two applications of CFD methods to inlet shape design and optimization studies are pre-

sented to illustrate how geometry is modeled parametrically and grids are generated as batch

processes. This requires grid generation software to be accessible in a format callable by the
design software.

The first application is the analysis of bifurcated transitioning S-ducts for high-speed trans-

port applications [4]. The analysis used the RNS3D and NPAItC codes to compute pressure

recovery and distortion at the compressor face. It is desirable to understand the relationship

between the turbulent flow patterns and the shape of the cowl surface and the length of the

inlet. The shape of the cowl was defined by parameters of an analytic equation. The structured
grid was computed automatically with desired stretching for viscous resolution.

The second application is the shape optimization of a subsonic inlet [5]. The analysis modeled

a 180 degree section of the inlet from the crown to the keel assuming symmetric geometry and

flow conditions. At each section of the cowl, the profile was defined by a set of parameters of

a superelliptic equation. The parameters varied as a function of the section angle. A three-

dimensional grid was generated as a sequence of two-dimensional grids generated at eaz.h section
angle of the inlet using an elliptic grid generation method from GRAPE2D. The NPAItC code

was used to compute the Mach number distributions on the surfaces of the inlet. The objective

was to optimize the shape of the interior of the cowl such as to minimize the peak Mach number

within the inlet. The optimization loop required the grid generation to be a batch process to
allow regeneration of the grid at each optimization iteration.
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Geometric Complexity in Inlets

Geometric Features

Bleed slots, holes, passages

Vortex generators

Struts

-r ......... T......

Geometry Modeling and Grid Generation Methods
NURBS curves and surfaces, multi-block, structured grids

NASA-IGES interface

An inlet may consist of several complex geometric features, including bleed slots and holes,

bleed passages, vortex generators, and struts. The struts are present due to structural and

ducting requirements. The scale of the bleed slots and holes and the vortex generators are
often small compared to the size of the duct, but their influence on the inlet flowfleld may be

quite significant. They are usually introduced to stabilize and to improve the flow. Because

of their significance to the flow, an analysis usually includes their pressence either numerically

or physically. RNS3D includes a numeric representation of a set of vortex generators as vortex
sources in the flow. NPARC includes flow boundary conditions to simulate bleed surfaces.

Some studies have begun to physically model bleed features and vortex generators as a way

to bypass numerical modeling of these features. The figures above show some examples of grids

generated about inlet geometries that include vortex generators. The high-speed inlet shown
above made use of the capabilities of the ICEM DDN software to create a geometry model of the

inlet from blueprint drawings [6]. Such a geometry model may come from a CAD effort. The
ICEM CFD software was then used to create a multi-block, structured grid about the vortex

generator. Some compromise of the vortex generator tip geometry was needed to simplify the

mnlti-block format.

The F/A-18 inlet analysis shown above used the I3G/VIRGO and GRIDGEN software to

create the geometry and multi-block, structured grid from axial station coordinates [7]. The

turbulent viscous flow analysis examined the flow in the inlet for high angle-of-attack flow

conditions. The analysis includes the geometric modeling of a pair of vortex generator within

the duct.
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Turbomachinery Geometry Issues

Primary geometric features,
such as endwall and blade

shapes, are accurately
represented.

Secondary features, such

as cooling holes and seals,

are often ignored to reduce
cost.

The cost of accurately representing

small geometric details is very high,
from both grid generation and flow

solution standpoints.

Turbomachinery refers to a broad class of devices which transfer energy to or from a work-

ing fluid by tiJe use of rotating components. Examples include nonreciprocating pumps and

compressors, and turbines. Turbomachinery research at NASA Lewis is focused on applications

to aircraft propulsion (radiaJ and axiaJ compressors and axiaJ turbines in turbojet engines) and

rocket propulsion (radial pumps and axial turbines ,n liquid fuel turbopumps). The objective

of any ,_urbema, ninety compoaent is to accomplish the desired transfer of energy to or from the

working fluid with as little loss as possible in order to maximize the overall efficiency.

The typical level of geometric modeling used in numerical analyses of turbomachinery corn

ponents consists of accure_te representations of the channel boundaries (hub and tip endwails)

and the blade shapes. Small geometric features such as coolant holes and passages, tip clearance

gaps, and seals between rotating and nonrotating components are often ignored in the interest

of reducing the solution cost. The fluid-dynamic effects of certain small geometric details can

sometimes be numerically modeled in the flow solver without accurate geometric representation,

but usually to only a low order of accuracy. When the fluid dynamic effects of the small geo

metric details are of primary importance, they must be included in the geometric model. This is

very costly, from both the grid generation and flow solution standpoints. Automated methods

for topology determination and grid generation could be of use for such geometric complexity.

Geometry modeling techniques commonly used for turbomachinery configurations include

CAD-based methods, NURBS representations, or simple discrete point representations of sur

faces used in conjunction with different sur.face fitting and interpolation schemes. There currently

is no real standard for geometry modeling of turbomachinery components.
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Turbomachinery Grid Generation Issues

Multi-Block Structured Grids

-mature, accepted technology

-applicable to many solvers

-topologically limiting

periodicity

geometric

complexity

blade row

...._ skewed domains

close component coupling

Unstructured Grids

-geometrically and topologically flexible
-less amenable to viscous flows

A variety of grid types have been used in turbomachinery component analysis, ranging from

single-block and multi-block structured grids to fully unstructured grids. Common structured

grid topologies for turbine and compressor blades include C-, H-, and O-meshes. Multiple blocks

are required for all but the simplest of configurations. Although the use of unstructured grids

for turbomachinery analysis is increasing, the use of structured grids remains somewhat more

common. This is due to the generally lower computational resource requirements of structured

flow solvers and the availability of techniques for generating highly-stretched structured grids

for viscous flows.

It is often only necessary to generate a grid for a single blade in a given row; the grids for

the other blades in the row are copied and rotated from the original grid. Smooth transmission

of flow properties across the boundaries of adjacent grids requires either that the grids be

periodic or that the flow solver account for nonperiodic grids. Blade rows which rotate relative

to each other are usually separated by a sliding grid interface, which therefore must be axially

symmetric. These constraints, when applied to closely coupled, high-solidity blade rows, often

result in computational domains with high inherent skewness and make the generation of nearly-

orthogonal structured grids difficult. For viscous calculations, grid points should be clustered

normal to solid walls and in the blade wake regions. This is difficult to achieve in unsteady,

multiple blade row calculations in w_,ich the wakes of rotating components move with time.

The use of unstructured grids can alleviate some of the problems mentioned above due to their

greater geometric flexibility. Hybrid techniques combine both structured and unstructured grids

in a single calculation in an attempt to exploit the advantages of each approach.

94



Turbomachinery Flow Solution Issues

Actual flows are unsteady and strongly affected by
turbulence and viscosity.

Steady-state analyses of isolated components can usually be

performed in body-fixed, rotating coordinate systems.

Mixing-plane interfaces can be used to couple components

when unsteady interactions are not required.

Otherwise, time-accurate, unsteady, simultaneous solution

techniques must be used for multiple components.

Several 3D Navier-Stokes solvers have been developed

specifically for turbomachinery problems.

The choice of solver depends on what problem is being solved,
and what information is desired from the solution.

Actual turbomachinery flows are unsteady due to the relative rotation of components. They

are also strongly affected by viscosity and turbulence because of the influence of upstream

components and the internal nature of the flow. Typical engineering values of interest include

blade loadings, loss distributions, and heat transfer rates. Time-averaged values are useful for

overall performance evaluation while unsteady values are used to determine peak loads and

temperatures. Blade loadings can sometimes be accurately predicted using Euler methods.

Accurate loss and heat transfer predictions, however, require Navier-Stokes techniques free from

excessive numerical diffusion, and grid systems appropriate to the flow problem and solver.

The analysis of isolated turbomachinery components can often be performed in a steady

manner by using body-fixed, rotating coordinate systems. Mixing-plane interfaces can be used

to transmit tangentially-averaged solution data between components when unsteady interactions

are not significant. When such interactions are significant, time-accurate, unsteady, simultaneous
solutions for the components are required.

Several three-dimensional, Navier-Stokes solvers are used at NASA Lewis for turbomachinery

analysis. These include the structured solvers HAH3D [8], RVC3D [9], TRAF3D [10], MSTAG

[11], and BTOB3D [12] and the unstructured solver USMaD [13], among others.
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Typical Generic Combustor Geometry Injector Detail
(Usually Modeled as BC)

Research Combustor

Fuel Injector/Swirler

_' Cooling Slots

"_" -- ,...,.-_-,.-.- t _ Dilution Holes /

(Fief. Sturgess)

In any aeropropulsion system, the chemical potential of the fuel is converted into momentum

gain in the combustor section. The next generation of commercial subsonic and supersonic

aircraft require engines whose performance must be substantially better than current propulsion

systems. This requires higher operating pressures and temperatures for the combustor. In

addition, these engines must be capable of high performance with lower emissions levels to satisfy

more stringent environmental regulations. Furthermore, these problems need to be resolved at

a lower cost and in a shorter time frame.

Today's propulsion systems use very complex combustor and fuel injector geometries to

obtain high combustion and mixing efficiencies for maximum gain of thrust from a given chemical

potential. A typical gas turbine engine combustor geometry consists of a number of combustor

"cans" arranged in annular form. The cannister illustrated in cross section above, contains a fuel

injector with fuel atomizer, swirler, dilution holes, combustor liner with transpiration cooling

holes, and slots with coolant injectors.
Combustor analysis requires the prediction of (HC, CO, NOx) emission characteristics, exit

pattern factors, liner wall temperature levels and gradients, ignition, smoke and soot production,

flame stability, flame blowout and relight.

The development of a new combustor design is often very difficult and costly. Present design

analysis methods consist largely of one- or quasi-two- dimensional empirical and semi-empirical

analyses, previous experience, and a large number of expensive component testing with a long

development cycle time [14] [15].
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ALLSPD Low Speed Combustor Model Prediction Using Methanol Chemistry Model

Combustor With Spray Injector Blockage

Particles

Internal Blocka_

EEE Combustor Flowfield(K.H.Chen)

An improved analytical tools are needed to predict the performance of the combustor for

complex combustor geometries. Design engineers would like to have analytical tools that contain
the optimal balance of the best possible physics. These include accurate turbulence and chem-

istry models, fast and accurate numerical methods, the ability to handle complex geometries
rapidly, and the capability to interface with other analytical tools.

In order to satisfy these challenges, fast and accurate analytical CFD tools are being devel-

oped at the NASA Lewis Research Center with refined physical models for combustor design.

Two implicit LU solvers for reacting flows have been developed. The RPLUS code [16] is being

developed for high-speed combustor flowfield analysis. The ALLSPD code [17] is being devel-

oped for low-speed combustor analysis. Both of these codes use the implicit treatment of the

chemical source terms and have the capability to handle detailed finite-rate chemistry models,

global chemistry models, Monte-Carlo PDF models [18], a low Reynolds number two-equation

turbulence model, a spray chemistry model, and multiple-block structured grid systems.

The capability of the ALLSPD code is illustrated by the prediction of the temperature

field inside of generic low-speed combustor shown above. A low-speed, low Reynolds number

transition duct is used as a combustor, with combustion simulated using a methanol spray

chemistry model. The figure also shows the flow pattern predicted by ALLSPD for the EEE

combustor. Some of the more complex geometry, such as the combustor liner, is also modeled
along with the spray chemistry.

An unstructuredcombustor solverwith the majorityofthephysicalmodel featurescontained

in the ALLSPD code isalsobeing developed.
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High Speed Combustor Fuel Pattern

The capability of the RPLUS code to predict the complex fuel injection patterns for a

chemically reacting flowfield is shown above. The CFD prediction of the fuel penetration pattern

generated by a swept ramp fuel injector is shown along with the experimental data. The fuel

penetration and mixing is key to understanding and controlling combustion behavior.
For combustor analysis, additional chemical reaction / species transport equations are needed

for the chemistry models, which can easily triple the number of equations which must be solved

by the CFD codes. Three-dimensional combustor flowfield analysis with detailed chemistry

models, until recently, has been limited to basic research efforts involving simplified geometries.

The stiffness generated by the chemical time scales further restricts the convergence rate, which

also restricts the size of the problem.

Research is being conducted to understand and to reduce the impact of uncertainties in the

numerical modeling of turbulence, chemistry, and unresolved geometrical features. The combus-

tor geometrical features such as fuel injectors and swirlers must either be numerically modeled

as boundary conditions or resolved physically. Presently, the majority of these complexities are

modeled as simple boundary conditions in order to reduce the computational cost.

98



The RPLUS and ALLSPD codes can be used with any structured grid generation software,

such as CFD GEOM, GRIDGEN, NGP, GRIDPRO, and INGRID3D. The prevalent use of multi-

block, structured grids has been due to the available wealth of mature numerical technology.

As illustrated, the complex combustor geometry can be effectively treated using a structured
multiple block grid topology with generalized block interface treatment.

Regardless of the topology, these codes will require: refined near-wall grid resolution with

low cell aspect ratio, holes with various geometrical configurations, and smooth and nearly

orthogonal grids. In addition, flexible internal grid structures for specification of blockages with
irregular geometrical shapes fixed in space are also highly desirable.

The analysis of next generation combustor designs requires that the CFD solvers have either

the ability to accurately model or to numerically resolve the following key combustor design

features: swirlers, fuel injectors, canister shapes with slots, dilution holes, cooling slots, and
perforated walls.
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Nozzles

NASA Lewis nozzle analysis from subsonic to hypersonic flight

Nozzle flow characteristics to compute include:
Thrust

Flow mixing

Boattail drag

Noise

Mixer/Ejector Nozzle
Surface Modeling / Grid Generation / CFD

Time-dependent, Navier-Stokes solver on multi-block, structured grids

Interactive domain decomposition for multi-block, structured grids

The purpose of the nozzle is to efficiently convert the thermal energy of the combustion

products into the kinetic energy of the exhaust jet and to straighten the gas flow. The analysis of
nozzles at the NASA Lewis Research Center encompass fright speeds from subsonic to hypersonic.

The CFD analyses are applied to determine such information as the thrust, boattail drag,

and level of flow mixing of primary and secondary flows. The flows are dominantly turbulent

viscous flowiields. The primary CFD code used for nozzle flow analysis is the NPARC code.

One example of the type of nozzle flow analysis being conducted at the NASA Lewis Re-

search Center is the flow in a mixer/ejector nozzle during take-off and landing conditions [19].

Secondary flow is entrained into the primary jet flow through a set of lobed chutes introduced

into the primary flow. The chute forms vortices which aid in the flow mixing. After take-off, the
chutes retract back into the nozzle walls. The objective is to reduce the jet noise during take-off

and landing. An application of such a nozzle would include high-speed civil transports.

Another significant problem under analysis is the computation of the boattail drag at tran-
sonic flow conditions. The objective is to generate a database of drag data for varying flow and

geometric parameters.
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Geometry and Grids for Mixer/Ejector Nozzle

Mixer/Ejector Nozzle

_ _dt mam--_

Geometry read from detailed drawings

Geometry simplified to include only flow passages

Flow domain is 1/2 wavelength of chute lobes

8 structured grid blocks, clustered for turbulent flow computation

Interactive domain decomposition and grid generation

Grids include about I million grid points

The mixer/ejector nozzle represents the typical geometric complexity of CFD analyses of

nozzles. For the analysis discussed in reference [19], the geometric dimensions for the nozzle

were read directly from detail drawings. Mechanical elements such as acuators, hinges and seals

were not included in the geometry model. The flow domain consisted of 1/2 of the wavelength

of a lobe of the chute with assumptions of flow symmetry. The I3G/VIRGO software package

was used to define the surface geometry and grids. The INGRID3D software package was used

to generate the volume grids. The grid contained 8 blocks with a total of about 1 million grid
points. The grid used an H-grid topology. The grid was clustered near the walls for resolution

of turbulent flow. One difficulty in generating the structured grid for the block containing the

lobe of the chute was excessive grid skewing due to the S-shaped turn. This grid is typical of

those used in the analysis of nozzle flows. The GRIDGEN software package is also used for grid
generation.
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Concluding Remarks

Some concluding remarks that can be stated from this overview of the geometry modeling

and grid generation from the perspective of the CFD analysis of propulsion components include

the following:

• The geometry modeling and grid generation activities at NASA Lewis are oriented

to the application to components of aeropropulsion systems.

• The aeropropulsion flowfields are dominantly turbulent viscous flowfields with heat
transfer and chemical reactions.

• The complexity of the geometry and flows and limitations of computational resources

require a compromise between numerical and physical modeling.

The majority of the analyses are performed using structured grids because of the

maturity of the CFD methods as applied to the computation of viscous flows with
and without chemical reactions.

As computational resources increase, the capability to include greater geometric com-

plexity improves. This requires an easy-to-use interface with CAD representations

and more automation in grid generation.

• Automated grid generation must still allow proper control over the grid distribution

to properly resolve the flowfield.

Design and optimization processes use CFD and grid generation in a batch mode.
Interactive-based software, perhaps, can include an option for either the use of a

graphical user interface or the use of callable libraries.
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MARSHALL SPACE FLIGHT CENTER SURFACE MODELING AND GRID

GENERATION APPLICATIONS

Robert W. Williams, Theodore G. Benjamin, and Joni W. Cornelison

NASA George C. Marshall Space Flight Center

Computational Fluid Dynamics Branch

Marshall Space Flight Center, Alabama

Gimballed Nozzles in Solid Rocket Motors

b-

The Solid Rocket Motors (SRM) used by NASA to propel the Space Shuttle employ gimballing
nozzles as a means for vehicular guidance during launch and ascent. Gimballing a nozzle renders the
pressure field of the exhaust gases nonaxisymmetric. This has two effects: (1) it exerts a torque and
side load on the nozzle; (2) the exhaust gases flow circumferentially in the aft-dome region,
thermally loading the flexible boot, case-to-nozzle joint, and casing insulation. The use of CFD
models to simulate such flows is imperative in order to assess SRM design.

The grids for these problems were constructed by obtaining information from drawings and
tabulated coordinates. 2D axisymmetric grids were designed and generated using the EZ-Surf and
GEN2D surface and grid generation codes. These 2D grids were solved using codes such as FDNS,
GASP, and MINT. These axisymmetric grids were rotated around the center-line to form 3D non-
gimballed grids. These were then gimballed around the pivot point and the gaps or overlaps
resurfaced to obtain the final domains, which contained approximately 366,000 grid points. The 2D
solutions were then rotated and manipulated as appropriate for geometry and used as initial guesses
in the final solution. The analyses were used in answering questions about flight criteria.

For more information, contact Dr. Edward J. Reske.
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ALS LOX Sustainer Feed Line - Eighty-Degree Bend with Turning Vanes

The purpose of this CFD study was to determine the vane loading and the amount of secondary
flow downstream of an eighty-degree vaned pipe bend. The pipe in question was a liquid oxygen
rocket engine feed line in the Advanced Launch System Propulsion module.

The geometry was generated on a Intergraph CAD system and transferred electronically by
General Dynamics in NIGES format. The NIGES file was read into CAGI. Options were selected in
CAGI to automatically discard many intermediate construction surfaces. The necessary surfaces were
then extracted and written out in IGES format. The strong curvature of the guide vanes made it
necessary to use a NURBS definition to properly model and maintain the blade shape. The IGES file
was then read into GENIE++ where points were distributed on the surface and the volume
constructed. Two grids were generated. Each grid had five zones totaling 115,000 and 360,000 grid
points, respectively.

Since the version of INS3D that was used to solve the flow field did not support overset grids, an
H-type grid was used to describe the geometry. This increased the complexity of adding the vanes.
More recent releases of INS3D-UP have overset capabilities allowing greater grid generation
flexibility.

For more information, contact Robert W. Williams.
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Alternate Turbopump Development Turnaround Duct

During testing of the ATD high pressure oxidizer turbopump at Stennis Space Flight Center cracks
were found on the heat exchanger inner guide vane. A team was formed to assess the potential causes
for the cracking and to propose changes to eliminate the problem. There was significant CFD
analysis performed in support of this team. Over 50 2D or axisymmetric cases and six 3D cases were
run. The actual turn-around duct geometry is 3D, but the 2D cases were run as axisymmetric to allow
for rapid analysis of different configurations.

The geometries for the 2D grids were obtained partially from CAD systems and partially from
faxed drawings. The grids were generated in GENIE++ and then smoothed using GEN2D. The 2D
grids model a cross-section of the turn-around duct which contains a splitter vane, two heat exchanger
vanes and heat exchanger coils. The 3D grid modeled the 22 struts on which the splitter vane is
mounted. The data for the struts was obtained in the form of tabulated coordinates at midspan. Due
to the nature of the 2D grids and to the time in which the grid was generated, the four intersecting
boundaries along the strut were hand calculated. Later consideration indicates it may have been
possible to use the surface-surface intersection option in GENIE++. A single passage between two
struts was first generated and then rotated to obtain the full 3D grid. The 3D grid contains
approximately one-half million grid points. REFLEQS was used to obtain the flow field for the 2D
and 3D cases.

For more information, contact Joni W. Cornelison.
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Modular Thruster for a Tri-Propellant Engine

This geometry was received from Rocketdyne via an IGES file. The inlet region to the throat was a
single NURBS surface; the exit from the throat was represented by two NURBS surfaces. All three
surfaces were joined in NGP so that they could be split uniformly. Because there was no line of
constant parametric value at the desired coordinates for splitting, the surface was split short of the
desired coordinates and joined with a NURBS curve which lay on the symmetry plane. This was done
in GENIE++ and these were combined on a NURBS surface. From that point in GENIE++, the flow
field was discretized into an 87,451-point grid.

The flowfield was initialized using isentropic relationships and was solved in FDNS. This solution
was checked for reasonableness and found acceptable. The purpose for this exercise was to develop a

template for other similar geometries that are now beginning to be analyzed in tri-propellant engine
design.

For more information, contact Theodore G. Benjamin.
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Simplex Turbopump Nozzle

Turbine aerodynamic design support was provided for the Simplex turbopump, an in-house
project at Marshall Space Flight Center. The turbine was designed as a supersonic/impulse turbine.
Several 3D CFD calculations of the nozzle were performed using the FDNS code. Results from the
analyses were provided to support design changes and rotordynamics, dynamics, stress and thermal
analyses.

The single-zone nozzle grid was generated entirely in GENIE++ and contains approximately
190,000 grid points. It was necessary to model the nozzle with a full 3D grid since the inlet plane
and the exit plane are rotated 90 degrees apart. The cross-section of the nozzle was generated as an
O-grid. Later consideration indicated an H-grid may have eliminated problems in smoothing the exit
surface and an H-grid would have been necessary in generating a combined nozzle and turbine blade
grid. The elliptic inlet and exit surfaces were obtained by generating elliptic boundaries and rotating
to the proper angle. For this grid this approach was found to work better than using the surface-
surface intersection option.

For more information, contact Joni W. Cornelison.
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Inducer Technology Model Volute Collector

CFD analysis was performed on the volute in the ITM (Inducer Technology Model) to assess radial
loads, total pressure losses, flow separations, and any unusual flow phenomena that might occur
within the volute system.

The volute and exit pipe geometries were obtained from drawings. A 2D cross-section of the
volute was quickly generated using GENIE++ and then input to GEN2D for smoothing. The 2D
axisymmetric grid was read back into GENIE++ and rotated about the centerline to form the 3D grid.
The grid which models the exit pipe connected to the volute was generated totally in GENIE++. The
inlet section of the pipe is rectangular and intersects with a conic section near the exit of the pipe.
The intersection of these two surfaces was performed successfully by using NURBS surfaces and the
surface-surface intersection option. Various modifications were made to the volute housing and were
quickly generated using GENIE++. The two-zone grid contains approximately 45,000 grid points.

FDNS was used to perform the incompressible flow analysis on three cases. Each case showed
secondary flows in the volute housing and exit pipe. Based on these results, a honeycomb ring will
be inserted at the pipe exit to eliminate the secondary flow.

For more information, contact Joni W. Cornelison.
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Simplex Diffuser and Volute

The Simplex Turbopump is an in-house project at Marshall Space Flight Center. The data for this
geometry was extracted from drawings. The shape of the vanes is fully two-dimensional and it was
modeled by fitting a curve through points which define the contour and stacking this contour axially.
The volute is square in cross-section until the exit region, where the square cross section intersects
with a conic section. This intersection was performed impressively well in GENIE++, which was
utilized for the entire grid-generation process. The final grid contained 207,894 grid points in 10
zones.

This design was subjected to three-dimensional hydrodynamic analysis using the FDNS code.
These analyses revealed a flaw in the initial design which caused separation on the pressure side of the
vanes; this prevented the design from producing the desired diffusion. Alternative designs were
proposed (and rapidly generated in GENIE++) and analyzed. As a result of the CFD analyses, one of
these alternative vane proposals was incorporated into the final design before machining had begun.

For more information, contact Theodore G. Benjamin.
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Simplex Turbopump - Inducer

The Simplex Project is an in-house project at MSFC to design and build a turbopump to supply
liquid oxygen to a hybrid rocket motor. The pump was required to deliver liquid oxygen at 570
gallons per minute and 1,500 pounds per square inch with a wheel speed of 25,000 revolutions per
minute. The objective of this study was to use CFD during the design phase of the pump to predict
performance and blade loading.

Blade surfaces were output from an Intergraph CAD system and transfered electronically in IGES
file format. The surfaces described in NURBS were read into GENIE++ where points were distributed
on the blades. The hub and shroud surfaces were generated by projecting an arbitrary surface
constructed at the root and tip respectively on a boundary of revolution. For grid resolution studies,
changes were made to appropriate indices in the GENIE++ history file and then the grid generator
was rerun using those inputs. All grids consisted of three zones and ranged in size from 25,000 to
680,000 grid points.

Flow solutions were obtained using FDNS in the relative reference frame. Results were post
processed using FAST and an in-house code to evaluate and make plots of performance and blade
loads.

For more information, contact Robert W. Williams.

112



Simplex Turbopump - Impeller

The Simplex Impeller was designed to operate in liquid oxygen at 25,000 revolutions per minute
and deliver the fluid at 570 gallons per minute and 1,500 pounds per square inch. The purpose of
this study was to aid in the design phase and determine performance and blade loading.

The geometry was transferred electronically from an Intergraph CAD system in IGES format.
The NURBS surfaces were read into CAGI where streamlines were selected along periodic lines. The
streamlines were set-up into an input file and read into TIGER. TIGER interactively generated the
grid allowing control over Bezier curves connecting leading and trailing edges at the hub and tip.
Several grids were generated in single and multiple zones. Grids ranged in size from 125,000 to
250,000 grid points. Later grids also modeled cavities between the impeller and diffuser. The
cavities were added using GENIE++.

The flow field was solved using FDNS. Results were post-processed using FAST and an in-house
code to calculate and plot performance and blade loading.

For more information, contact Robert W. Williams.
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Advanced Liquid-Hydrogen Turbopump - Inducer / Impeller with Single Splitter

The development of the Advanced Long Life Turbopump is a cooperative agreement among the
United States Air Force, NASA, and Pratt and Whitney. The pump was designed to deliver liquid

hydrogen at 2,625 gallons per minute and has a rotational speed of 140,000 revolutions per minute.
The pump is a combination inducer and impeller. In this analysis the pump was modeled with one
set of splitter blades. It is shown above with three blades at the inlet and six blades at the exit. The
actual geometry has three blades at the inlet and 24 blades at the exit.

Periodic conditions along each full blade were assumed simplifying the model to 120 degrees of

the complete geometry. The geometry was received from P&W electronically in an ASCII text file.
The geometry was represented by nine blade streamlines on each of the pressure and suction surfaces
and the pmnp hub and shroud contours. The streamlines and contours were read into a translation

program, the surfaces extracted, and written out into PLOT3D format. The surfaces were then read
into GRIDGEN where points on the surface were redistributed and the volume was discritized. Two

grids were generated. Each grid has four zones with the total number of grid points ranging from

16,000 to 116,000.

The problem was solved using FDNS in the relative reference frame at design flow conditions.
Results were post-processed using FAST and an in-house code to calculate and plot performance and

blade loading.

For more information, contact Robert W. Williams.
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Advanced Liquid-Hydrogen Turbopump Turbine and Volute

In support of the Air Force Phillips Lab ALT turbine aerodynamic design, NASA/MSFC is
performing CFD parametrics to help determine optimum size and performance of this radial turbine.
Unsteady CFD analysis is also being performed on the coupled volute and rotor. This turbine is in its
design phase with the design work being performed by Pratt and Whitney.

The original surface grids for both sides of the rotor blade were obtained from an IGES file
received from Pratt and Whitney. These surface grids along with the tabulated coordinates for the

hub and shroud profiles were then input to TIGER. An initial volume grid was generated for a single
blade passage and then input to GENIE++ to define the blade tip clearance region. The rotor grid
currently contains three zones and consists of approximately 161,000 grid points. The volute grid is
still in progress and when finished will be combined with a full 3D rotor grid.

Baseline balde analysis was performed using FDNS. The results indicate there are several problemares that must be addressed.

For more information, contact Joni W. Cornelison.
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Simulation of Bone Cement Flow During Hip Implant Insertion

The purpose of this study was to simulate the flow of bone cement during hip implant insertion.
For proper simulation of the induced cement flow, the surface of the stem and bone must move
relative to each other at a velocity which corresponds to the insertion angle and rate. As a
consequence, the grid must be continuously regenerated as the solution progresses. The mass flow of
cement displaced out of the bone cavity is equal to the sum of the jacobian at each individual grid
point.

The geometry definition was supplied by Howmedica Incorporated in IGES file format. The IGES
file was read into CAGI where the hip-implant stem surface and the bone reamed-cavity surface were
extracted and output in PLOT3D format. The two surfaces were then read into GENIE++ and
transformed into NURBS surfaces for point distribution before building the discretized volume. The
flow field for the 45,000 grid-point single-zone grid was then solved using FDNS modified to
accommodate moving boundaries.

The analysis revealed the detrimental flow patterns which caused flaws in the solidified cement.
The design was changed so that nonuniformity in the cement matrix was eliminated. A patent has
been issued for this redesign.

For more information, contact Francisco Canabal.
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Pollutant Environment from RD-170 Propulsion System Testing
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The objective of this study was to assess the exhaust-plume pollutant environment of the RD-170
engine during a hot-fire test on the F1 Test Stand at MSFC. A 3D simulation of the Russian-built
kerosene engine was performed including: 3D air entrainment, 3D multiple-nozzle plume interaction
and mixing with air, finite-rate after-burning reaction, plume impingement with flame bucket and
plume quenching through deluge water, and 3D restricted plume expansion. Afterburning was
modeled using l 1-species, 18-reaction finite-rate chemistry. Water-quenching was computed
assuming a homogeneous two-phase formulation.

Geometry was obtained from blueprints and test stand observation. Computational grid generation
was performed using the EZSURF code. The edge curves of the nozzle exits, aspirator, flame
deflector, and multi-zone block edges were generated first. Transfinite interpolation was then applied
to create the initial surfaces. The flame deflector and nozzle exit surfaces were elliptically smoothed
using Bezier curve and local redistribution techniques. The volume grid for the first block was
created using two linear stackings -- one from the top of the block to the nozzle exit plane and then
another from the nozzle exit plane to the bottom of the aspirator. The flame deflector block and
subsequent atmosphere block volume grids were created using transfinite interpolation. The three-
zone grid has a total of 300,000 points.

For more information, contact Dr. Ten-See Wang.
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Adaptive Gridding of a Four-Engine Clustered Nozzle Configuration
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The objective of this study was to propose a computational methodology that could effectively
anchor the base flowfield of a four-engine clustered nozzle configuration. For an efficient CFD
calculation, a Prandtl-Meyer solution treatment was applied to the algebraic grid lines for resolution
of initial plume expansion. As the solution evolved, the computational grid was adapted to the
pertinent flow gradients.

Making use of the symmetrical nature of the geometry, a grid was generated for a small wedge of
the complete flowfield. The "plume impingement symmetry plane" and the "nozzle symmetry
plane" intersect along the "model centerline" at a 45-degree angle. Plume impingement and
recompression would occur along the first symmetry plane and the centerline of the nozzle passes
through the second symmetry plane. A two-zone baseline algebraic grid was generated with
GENIE++. The first zone started from the base proceeding downstream, including the nozzle and
plume region. The second zone (the outer shell) consisted of the ambient environment and a portion
of the expanded plume. Grids ranged in size from 120,000 to 250,000 grid points. Initial plume-
angle grid resolution was essential to the accurate prediction of base flow properties. Algebraic grids
were generated for each pressure ratio resolving the initial plume angle by applying the isentropic
Prandtl-Meyer plume-expansion theory.

The SAGE code was used to refine the initial plume angle resolved algebraic computational grid.
Since mach number contour was closely associated with the plume boundary layer and the pressure
gradient follows the recompression shock, these two flowfield variables were used as pertinent grid-
adaptation parameters. Adaptation was applied downstream of the nozzle lip to maintain the initial
plume-expansion angle. Grid-line clustering follows both the plume boundary layer and the
recompression shock.

For more information, contact Dr. Ten-See Wang.
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WB001 Wing-Body Vehicles

The volume grid for supersonic flow

simulations (159x129x43)

The volume grid for transonic flow

simulations (159x129x65)

The original surface grid for the WB001 was obtained from NASA-LaRC/MS66. This single-block
grid contained 161x129 points. The volume grids were generated using HYPGEN. Since HYPGEN is
a hyperbolic grid generator, there was no need to define the far field surface. Also, in order to obtain
a smoothly stretched grid and sometimes to avoid negative volume grids, it was required to have a
viscous spacing off the body. Subsequently, some layers near the surface could be removed for
inviscid calculations.

The computational domain for each of the transonic and supersonic cases had to be properly
generated to fully capture the physical phenomena. The figure on the left shows the volume grid
generated for supersonic simulations. This grid was used for high supersonic simulation (Moo=5.72);
therefore, the far field considered was close to the body, about 1 body length. This helped reduce the
number of grid points used for the computation, thus less CPU time was required for the execution.
Likewise, for transonic simulations (Moo=l.l) the far field had to be extended as far as possible to
ensure free stream conditions. To be conservative, a far field of 10 body lengths was generated. The
figure on the right shows the volume grid generated for transonic simulations.

It is noticed that the number of grid points in the k-direction was increased for the transonic
simulations in order to retain a reasonable stretching ratio. Also, the number of grid points in the i-
direction was changed so that mesh sequencing could be performed during flow computations.

For more information, contact Bruce T. Vu.

119



Lifting Body with Aerospike Engines

The original surface geometry was provided as 18 coarse surfaces defining the body, wings,
aerospike engines and body flaps. These surfaces were manipulated using a NURBS surface tool.
The GENIE++ general purpose grid generation system was used to generate the volume grids. All the
important features, such as fins, body flaps, nozzles, and base regions, have been included in this
configuration. These grids were designed to aid in calculating plume aerodynamic interactions at
subsonic conditions. For supersonic simulations the grid lines at the base regions could be modified
to account for the plume angles. These structured grids contain 6 zones, totaling more than one-half
million grid points, to be used for inviscid calculations.

For more information, contact Bruce T. Vu.
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ABSTRACT

A new blocking technique for complex three-dimensional configurations is described. This new technique

is based upon the concept of an abstraction, or squared-up representation, of the configuration and the

associated grid. By allowing the user to describe blocking requirements in natural terms (such as "wrap a

grid around this leading edge" or "make all grid lines emanating from this wall orthogonal to it"), users

can quickly generate complex grids around complex configurations, while still maintaining a high level of

control where desired. An added advantage of the abstraction concept is that once a blocking is defined for

a class of configurations, it can be automatically applied to other configurations of the same class, making

the new technique particularly well suited for the parametric variations which typically occur during design

processes. Grids have been generated for a variety of real-world, two- and three-dimensional configurations.

In all cases, the time required to generate the grid, given just an electronic form of the configuration, was at

most a few days. Hence with this new technique, the generation of a block-structured grid is only slightly

more expensive than the generation of an unstructured grid for the same configuration.

BACKGROUND

One of the major impediments to the use of computational simulations for predicting the performance of

real-world configurations is the time needed to set up a suitable computational grid. It is not uncommon

for it to take well in excess of three months to generate a suitable grid for a new type of configuration.

Clearly, such a long lead time makes the use of simulations practical for only a small number of important

problems and for routine design work which involves relatively small changes from previous configurations

(wherein the grid generation work can be amortized over many thousands of computational simulations).

Computational grids for fluid flows are especially hard to generate because of the stringent requirements

imposed by the flow physics and subsequently the flow solvers (such as surface orthogonality and cell aspect-

ratios of about 106). It has proved to be very difficult to adapt the automatic techniques used within the

structures community to situations with such stringent requirements.

In order to understand why grid generation is such a bottleneck, it is useful to take a quick look back

at how block-structured grid generation software has evolved to its present state.

The first generation of block-structured grid generators were batch-oriented systems which extended,

in a rather straightforward way, the grid generation techniques which had previously been developed for

*Senior Research Engineer



two dimensions. They allowed highly-trained experts to generate grids over arbitrarily-complex three-

dimensional configurations through many thousands of lines of command-line control information. The

most widely known of the first generation systems was EAGLE[l].

The second generation systems (which represent the current state-of-the-art) are workstation-based

techniques which rely on high-speed graphics to allow users to interactively generate the same control

information. With these systems, the experts can generate grids in less time, and with fewer errors, than

they could with the batch-oriented systems. But the grids are still manually generated piece by piece, over

a period of many months. Example second-generation systems include NGP[2], ICEM-CFD[3], GRIDGEN[4],

RAMB0-4G[5], 3DGRAPE[6], PATRAN[7], and FIDAP[8]. All of these suffer the same important disadvantage,

namely that the grid generation process is very labor intensive.
In order to determine where all the labor is consumed, it is useful to break the process into its major

steps:

Prepare the configuration -- as expected, the first step in the grid generation process is the preparation

of the configuration to be analyzed. The first part of this step requires that the grid generation system

acquire the geometry, most preferably by a direct link to the CAD system on which the configuration

was designed. Unfortunately, the configuration which the CAD system describes is seldom that which

one wishes to analyze; for example, the actual configuration generally contains many geometric details

(such as a probe) which are not germane to the analysis being performed. In addition, one often
needs to create "artificial" surfaces to bound the domain, such as in the far-field or over an engine

inlet. This preparation step usually accounts for the largest expenditure of labor. (It should be noted

that this step is exactly the same, regardless of whether a block-structured or an unstructured grid

is to be generated.)

Design blocking plan -- the user has to decide upon a suitable grid topology for the given configuration,

keeping in mind both the expected flow physics as well as any restrictions which the flow solver may

impose. The user typically meets these requirements by choosing near-body topologies which are

locally consistent with each component of the configuration, and then connecting these blocks in a

way that ensures, or at least encourages, grid line smoothness in the field. At present, this step is an

art, requiring much intuition, practice, patience, and unfortunately trial-and-error. This step does

not in itself require much labor, but any changes made here can result in large labor expenditures in

the following steps.

Implement blocking plan -- the blocking plan just designed has to be described to the computer so

that the grid can be generated. Current approaches require that a user transform the design (which

the User's Manuals typically suggest that the user "sketch") into numbered or named points, lines,

and surfaces. In addition the user must prescribe how the primitive components are to be connected

in the final grid. The user is also required to set up the number of grid lines in each direction in each

block. This step can consume a large portion of the block-structured grid-generation effort.

Generate grid -- the grid point locations for all surface and field points are defined, either algebraically

and/or through a PDE-based grid generator. This is the part of the process at which most current

multi-block grid generators excel. In many systems, this step is a push-button operation which

requires very little human time (although it may require a rather large amount of CPU time).

Assess grid quality -- the final computational grid is examined for irregularities such as excessive skew

and stretch, cells which are too small or large, etc. If the analysis of the grid reveals any deficiencies,

then the user must go back to one of the steps listed above, fix errors or make different choices, and

repeat. Although tedious, this step is usually performed rather quickly; the major impact of this

step to the overall effort is the time incurred in iterating back to one of the steps above.
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Currently,the major bottleneckis in the designandimplementationof the blockingplan, steps2 and 3
above.For complex three-dimensional configurations, these two steps can consume several man-months of

effort. The objective of this work is to develop tools and techniques for efficiently performing these two

operations for arbitrary three-dimensional configurations.

TECHNICAL APPROACH

This paper presents a new method for designing, describing, and subsequently realizing, block-structured

grids around complex three-dimensional configurations. It is assumed that the Prepare the configura-
tion step described above has already been completed. Additionally, very little will be discussed about

the Generate grid and Assess grid quality steps; both are discussed in detail elsewhere[9, 10].

Description vs. Prescription

The basic idea behind the automatic generation of block structures is to change the user paradigm from

one which is prescriptive to one which is descriptive.

In a prescriptive process, the user has a set of low-level tools which prescribe exactly how the problem

is to be solved. Examples of these low-level tools include drawing a line in space to serve as an edge of

some block, generating an edge which is constrained to lie along a certain input surface, and connecting

four edges into a face. While control at this level is certainly very powerful (and sometimes indispensable),

the labor associated with such an approach grows very rapidly, especially in configurations with multiple
interacting components.

Alternatively, a descriptive process describes what the grid should look like. Example descriptions

include the fact that the grid should wrap around the wing leading edge, that the store grid should lie

within the wing grid, and that the grid should be orthogonal to all solid surfaces with a user-defined off-

body spacing to the first field point. Such descriptive statements are very powerful; in fact, they generally

correspond to between ten and a hundred low-level prescriptive commands. Additionally, since descriptive

commands represent high-level concepts, they provide a framework for divide-and-conquer approaches,

wherein the grid in the vicinity of each component is described separately and the automatic blocker

worries about interfacing them to achieve an overall block-structured grid.

It should be noted that there is an exact equivalence between the prescriptive and descriptive ap-

proaches; the only real differences between the two is the economy of the expression which the descriptive

approach provides.

Abstraction

The key to describing, rather than prescribing, a block-structured grid is the direct preparation (by the

user) of an abstract "sketch", herein called an abstraction. The abstraction can be thought of as a "squared-

up" representation of the given configuration and of the computational grid which is to be produced. As

will be seen below, typical configurations are generally abstracted by brick-shaped elements which represent

the various components of a configuration.

This idea was inspired by the earlier work of Allwright and his colleagues[ill, who showed the utility

of such an abstraction in describing arbitrarily-complex three-dimensional grid topologies. Related work

by Shaw and Weatherill[12] has also used the concept of abstraction. In both cases, the configurations of

interest were all airplane-like, consisting of components such as fuselages, wings, and nacelles.

Although there are many similarities between the present work and the works of Allwright and Shaw,

there are some major differences which make the present work more amenable to general configurations
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suchas are found in internal flows (for example,ductsand pumps)and traditionally non-aerodynamic
configurationssuchaselevatorhoistways.(Detailsof thesedifferenceswill bepublishedat a later date.)

The exact techniqueusedto specifythe abstractionof both the configurationand grid and their
propertiesin the current techniqueis throughthe drawingof blocking objects on an abstract background

grid. These blocking objects, which come in a variety of types (cubes, wraps, attaches, holds, rulers, and

spacers), closely correspond to the concepts which one "sketches" during the design of a block-structured

grid.
In the sections which follow, each type of blocking object, and the role it plays, is described. For

illustrative purposes, the configuration which is used is a two-dimensional airfoil in a wind tunnel. It

should be noted that the tools and techniques are equally applicable to more complex configurations in

two and three dimensions, as demonstrated in the Applications sections below.

The Background Grid

The space in which the abstraction is drawn is covered by an integer Cartesian grid called the background

grid, which can be thought of as a piece of graph paper (in either two or three dimensions). The resolution of

the background grid is chosen so as to be fine enough to describe the various components of the configuration
and block structure, yet coarse enough to allow background grid operations to be performed efficiently.

All blocking objects are placed on the background grid in such a way that their corners or endpoints lie

exactly on an integer coordinate of the background grid (that is, where the lines on the graph paper cross).
While this limits the number of locations and the sizes of the blocking objects which are possible, such a

restriction is warranted since it makes it possible to efficiently determine the relative locations of various

objects (such as object "A" is to the left of object "B" or that object "C" is contained within object

"D'). Besides the ability to specify relative positions, the actual background grid coordinates at which an

object is placed is arbitrary. That is to say, the absolute distance between points on the background grid

is insignificant.

Abstraction of Configuration: Bound Cubes

The first step in describing a grid is the creation of an abstraction of the configuration around, or inside,

which a grid is required. This abstraction, or "squared-up" representation, is built up with a series of

brick-shaped objects which are call bound cubes. In the current implementation, the user "draws" bound

cubes by selecting a pair of background grid locations to specify opposite corners of the bound cube; the

rectangular region between these points is automatically filled in with the bound cube which is rendered

as a solid-colored box.

As an example, consider the configuration made up of an airfoil and its wake in a wind tunnel; a suitable

abstraction is shown in Figure la. Notice that the airfoil, wake, and outer boundary are each represented

as a rectangle (even though the actual geometry is not rectangular). Of significance in this figure is the

fact that the airfoil is completely contained within the outer boundary, that the wake is attached to the

right of the airfoil, and that the wake is also connected to the downstream (right) portion of the outer

boundary. Recall that since the size of each increment on the background grid carries no significance, the

airfoil bound could have been placed anywhere within the outer boundary, yielding a completely equivalent

representation.
At this point, a slight digression is in order to describe the basic interpretation of the abstraction. The

default block-structured grid which is generated corresponds to an H-type grid. Blocks are generated to

fill the portions of the background grid which are outside the bound cubes. Specifically, block boundaries

will be generated to yield the minimum set of blocks which are both all rectangular (in the abstract space)

and which have one-to-one face matches with all other blocks; additionally, each face of each block can at
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mostbeassociatedwith one configuration surface.

As in all H-type grids, the grid lines basically run horizontally and vertically throughout the domain.

So for Figure la, there are some grid lines which begin at an upstream portion of the outer boundary

(in the region labeled "a") which run horizontally and which pass below the airfoil/wake and end at a

downstream portion of the outer boundary (labeled "g"). Similarly, grid lines which begin in the region

labeled "c" pass above the airfoil and end in the region labeled "h". Finally, there are grid lines which

begin upstream (to the left of) of the airfoil (in the region labeled "b") which end at the front of the airfoil
surface.

The other family of grid lines (those which run vertically on the background grid), has similar behaviors.

Some start at the lower portion of the outer boundary (in the region labeled "d"), pass in front of the

airfoil, and end at the upper portion of the outer boundary (labeled "i"). Others start in the regions

labeled "e" and "f" and end on the lower surface of the airfoil and wake, respectively. Still others begin

on the upper airfoil and wake surfaces and end on the upper boundary in the regions labeled "j" and "k",

respectively. The corresponding grid for this configuration is shown in Figure lb. Note that seven blocks

are created, with block boundaries emanating only from the "corners" of the airfoil.

In the above discussions, the terms "lower surface of the airfoil", "upstream portion of the outer

boundary", etc., should not be taken too literally; the terms simply serve to indicate approximate parts

of the configuration, with the exact locations determined automatically so as to make the grid as smooth

as possible. Note also that terms such as "some grid lines" were used in the above discussion; the exact

number of grid lines in each region is specified by another blocking object known as a ruler (which is

described below).

Abstraction of Grid: Field Cubes and Wraps

As stated above, once the configuration has been abstracted with bound cubes, a default H-type grid can

automatically be generated. In order to change the grid topology either locally or globally to another type,

such a C-type, other blocking objects must be added to the background grid. Field cubes and wraps are

those blocking objects.

A field cube is a rectangularly-shaped box which is placed on the background grid to force additional

block boundaries to be generated. As a general rule, all grid blocks will lie either within or outside of each

field cube. Notice that field cubes do not change the topology of the grid; they just give the user a means

of breaking the default blocks into smaller blocks.

When the background grid is first generated, a special field cube called the outer boundary is placed

around the periphery of the background grid. All other blocking objects must be placed on or within this

outer boundary -- a rule which is consistent with the notion of an outer boundary.

For example, consider again the airfoil/wake in a wind tunnel. If a field cube is added (as shown by the

unfilled rectangle in Figure 2a), then the grid which is generated is still H-type (see Figure 2b), but now

contains 18 blocks. In concept, breaking blocks in this way should not change the grid point locations;

in practice, the locations are slightly different due to the fact that the elliptic smoother is not run until

convergence.
So far, the bound and field cubes have been sufficient to describe "streamline-like" grids, but not

"wrap-around" grids, as are frequently required. To remedy this, wraps are added to the background grid.

Wraps are specified by selecting two cubes (either bound or field), and then automatically creating

"diagonal" lines to connect their respective corners. Shown in Figure 3 are the nine different wraps which

are possible in two dimensions; in three dimensions, the number grows to twenty-seven. The first wrap

shown in the Figure, in which the inner cube is fully within the outer cube, corresponds to an O-type grid:

one family of grid lines are bent by each of the diagonal corners such that they encircle the inner cube

while the other family are basically radial. The second row of wraps in the Figure, which correspond to
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C-type regions, result when one edge of the inner cube is coincident with an edge of the outer cube. The

last row corresponds to corner wraps.

Figure 4 shows the effect of wrapping the airfoil bound cube within the field cube which was added in

Figure 2. This results in a C-type grid around the airfoil, but within an outer H-type grid.

If one considers the trapezoidal regions generated by a wrap to be field cubes, then the concept of

wrapping can be nested to create an almost unlimited set of block topologies for a given configuration. For

example, one may want to create a wrapped grid around a fuselage. Then in the region next to the fuselage

which contains the wing, another wrap may be desired to create a C-type grid on the wing. Then, the region

below the wing can be further wrapped around a pylon to create a local C-grid there. Although it may

seem confusing, users have reported that thinking about the block structure in this manner is much less

confusing than the alternative of manually constructing complex block structures for such configurations.

Attachment between Abstraction and Configuration: Attaches

A new development of this work over that previously reported[13, 14] is the method by which the abstraction

and configuration are attached. Presently, a very simple blocking object called an attach is used by which

the user gives the correspondence between each corner of each bound cube (and the outer boundary)

with the appropriate location on the configuration. For example, the attaches needed for the airfoil/wake

configuration (discussed previously) are shown in Figure 5a. The easiest place to actually see the attaches
are those associated with the airfoil and wake; the attaches at the corners of the outer boundary are not as

obvious because the abstraction and configuration happen to be rendered at the same location, masking
the line which connects the two. The attaches associated with the airfoil are of two types: those drawn as

a star specify that the grid generator is required to put the grid point at the exact configuration point to

which it is attached; those drawn as a circle specify that the grid generator can "slide" the grid point along

the selected configuration surface so as to make the grid as smooth as possible. The latter is a particularly
nice feature since it eliminates the need for the user to exact specify a priori all block corners which are

on the interior of a surface.

This Figure also points out another feature of the abstraction. The mapping between the configuration
and the abstraction is a many-to-one relationship. That is to say, each point on the abstraction corresponds

to one point on the configuration, whereas each point on the configuration can correspond to many points

in the abstraction. This is evident at the airfoil trailing edge, where the trailing edge point maps to both

the top and bottom of the airfoil's abstraction.

Other Blocking Objects: Rulers, Holds, and Spacers

In the above descriptions, terms such as "some grid lines" were used to describe the number of grid lines

in each region of the grid. A blocking object called a ruler is the method for exactly specifying the number

of points in each region. Shown in Figure 5b are the rulers for the H-grid problem.
One of the useful features of the abstraction is that it is relatively easy to propagate sizes from one

region to another; grid regions (blocks) which abut are required to have the same number of grid lines.

Similarly, it is relatively easy to perform size arithmetic, that is to determine the number of grid lines in

various regions by simple arithmetic calculations. The only restriction on sizes is that they be consistent

(that is, all size arithmetic yield the same results) and that enough sizes be prescribed so that the number

of grid lines in all blocks can be calculated.

Another blocking object called a hold gives the user a way of easily specifying geometry such as sym-

metry planes and outer boundaries. A hold represents a plane in physical space in which one of the space
coordinates is held fixed; the value of the fixed coordinate is determined automatically by the attaches

which are associated with the hold. Unlike surface-surface intersections which must be explicitly generated,
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the intersectionbetweentwo holdsor betweena hold anda surfacedoesnot haveto bedirectly generated
by the user;this makesholdsan easywayof representingsymmetryplanesfor half-bodyconfigurations.
Becauseholdsact as a surrogatefor anactual configurationsurfacewithin the grid generationprocess,
they will not bediscussedfurther here.

Thefinal blockingobject,a spacer, is the method used to describe grid properties such as wall spacings

and orthogonality. Rather than requiring that the user specify these quantities along the edges which are

(logically) perpendicular to a surface, spacers allow the user to specify the surface directly. Spacers give

the user the ability of directly describing the grid requirement the "grid lines should be normal to the wing

surface and that the wall spacing should be x." Since spacers do not directly affect the blocking, but rather

are passed along to the grid generator in the form of required edge spacings, they will not be discussed
further here.

Transformation of Abstraction to Grid

Once the grid topology is specified by placing blocking objects on the background grid, a set of transfor-

mations, which are fully described in [13], are used to generate a suitable assembly of grid blocks. The key
steps include:

• transform the field cubes and wraps into grid blocks;

• fill the remaining portion of the background grid with (logically-)rectangular grid blocks

• break grid blocks so as to establish one-to-one face matches (partial face matches are not allowed --

see [15] for a method for overcoming this limitation);

• determine the sizes (number of grid points) in each block;

• eliminate degenerate blocks (that is, blocks which contain no grid points);

• associate the abstraction with the configuration surfaces and curves;

• allocate grid nodes for each block;

• use parametric transfinite interpolation to assign initial locations to all grid nodes which are con-
strained to lie on one (or more) of the configuration surfaces;

• use transfinite interpolation in space to assign initial locations to all other grid nodes; and

• apply a multi-block elliptic grid generation schemes to smooth the block boundaries (which were
arbitrarily placed above).

TWO-DIMENSIONAL APPLICATIONS

This section begins by showing the three different grids around an airfoil/wake in a wind tunnel which
were previously described in the Abstraction of Configuration: Bound Cubes and Abstraction of

Grid: Field Cubes and Wraps sections. Figures l, 2, and 4 show the abstractions and resulting grids

for two different H-type and one CH-type grid. In all cases, the same configuration abstraction (bound

cubes) and abstraction-to-configuration attachments (attaches) were used; the only differences were in the

grid abstractions (field cubes and wraps). In other words, once the time-consuming task of setting up

a configuration was done, the new technique allowed the user to quickly experiment with differing grid
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topologies.This collectionof gridsrequiredlessthan fiveminutesto specifyandgenerateonanengineering
workstation.

To showthe generalityof this abstractiontechnique,grids for two completelydifferentconfigurations
werealsogenerated.Figure6 showsthe abstractionandgrid for an internal-flow passage containing eight

circular posts and Figure 7 shows the abstraction and grid for a cross-sectional cut through a gas turbine

combustor. Both grids required less than 30 minutes to describe and generate.

THREE-DIMENSIONAL APPLICATIONS

The first demonstration presented here is the full three-dimensional model of a gas turbine combustor, as

shown in Figure 8. This configuration was abstracted in steps. First, an abstraction from an equivalent
two-dimensional configuration was generated and then extruded into the third dimension. Second, the

hole associated with the fuel injector was cut into the abstraction, with the grid blocks automatically

readjusting themselves. And third, the eight dilution holes (four each in the upper and lower liners), were

added with the grid blocks again responding. This multi-step process significantly reduces the number of

items which the user has to consider at any one time, and thereby helps limit the number of user errors.

The second three-dimensional configuration is for a generic elevator hoistway with a streamlined car

(Figure 9). This configuration, which is very different from the above, shows that the current set of blocking
objects is flexible enough to handle very diverse configurations. This grid was generated in less than a day.

The third configuration is a generic fighter with a side-mounted inlet (shown in Figure 10). This

configuration, which is more typical of those found in the aerospace industry, exhibits complications in
the area where the engine duct and the horizontal tail intersect. (This is the reason why the abstraction

of the horizontal tail is fatter than the wing.) In generating the configuration abstraction for this case,

the configuration was conceptually broken into a series of sub-problems, each of which were attacked

independently. The solutions to these sub-problems were stored as templates which were recalled and

combined to tackle this complex problem. The entire grid for this case, including the development of the

templates, took less than 3 days to complete, given just an electronic specification of the configuration.

Finally, a grid was generated for another fighter which was topologically similar to that shown in

Figure 10, but which had a wing with a different planform and airfoil section. This grid (not shown
because it essentially looks the same as that in Figure 10) was generated completely automatically with the

exact same blocking objects as were used above. This demonstrates another power of this technique --

parametric grids can be generated automatically for classes of configurations once the first grid has been

generated.

CONCLUSIONS

A new technique which enables a user to describe, rather than prescribe, block-structured grids in two and

three dimensions is presented. This new technique has many advantages over current techniques, namely:

• the blocking for a completely new configuration can be done in about an order-of-magnitude less

time than is typically required using more traditional techniques. This makes block-structured grid

generation again competitive with unstructured grid technology for a wide variety of problem types;

• since the configuration and/or grid topology can be easily modified, the user is encouraged to employ

a divide-and-conquer approach to complex configurations. That is, the current technique allows

users to build up configurations slowly, thereby reducing the complexity added at any step (and the

associated chance of making an error);
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• sinceagrid topologycanbemodifiedrathersimply,thetrial-and-errorprocesswhichisunfortunately
part of blockingdesign,is easilyaccommodated,with the endresultbeinghigherqualitygrids;

templatesof abstractions can be created for many frequently-occurring configuration components,

thereby reducing the blocking problem for multi-component configurations to the concatenation and

nesting of the appropriate templates. Ill fact, previous work in automatic grid generation[16] used

optimization techniques and expert system technology to automatically generate grids in two dimen-
sions; and

• the technique described herein is independent of the multi-block grid generator used, and thus is

immediately applicable as a front-end to many current systems.
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Figure 1: H-grid around airfoil in wind tunnel.
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Figure 2: H-grid (with field cube) around airfoil in wind tunnel.
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Figure 3: Tile nine t)ossiblt, wraps in two dimensions.
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b) abstraction with rulers

Figure 5: H-grid around airfoil in wind tunnel.
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b) grid

Figure6: Block-structuredgrid aroundpassagewith eightposts.
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b) grid

Figure7: Grid for combustorcross-section.
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b) grid

Figure8: Grid for three-dimensionalcombustor.
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b) grid

Figure9: Grid for elevatorhoistwayandstreamlinedcar.
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b) grid

Figure10: Grid for genericfighter.

142



MULTIBLOCK GRID GENERATION

WITH AUTOMATIC ZONING

Peter R. Eiseman

Program Development Corporation
300 Hamilton Avenue, Suite 409

White Plains, NY 10601

N95.28735

SUMMARY

An overview will be given for multiblock grid generation with automatic zoning. We
shall explore the many advantages and benefits of this exciting technology and will also see
how to apply it to a number of interesting cases. The technology is available in the form of
a commercial code, GridPro_/az3000. This code takes surface geometry definitions and
patterns of points as its primary input and produces high quality grids as its output. Before
we embark upon our exploration, we shall first give a brief background of the environment
in which this technology fits.

\

MULTIBLOCK GRID GENERATION

Multiblock grids provide the best data structure for a wide variety of analysis
programs. Because the local coordinate pattern of grid points is regular, the accounting
overhead for point to point linkages is low and is quite simple. This means that there are
more algorithms available for analysis, and moreover, that those algorithms are generally
more efficient. In addition, the local coordinate structure has been recognized to produce
generally more accurate results. These advantages from a single coordinate grid, carry over
into the more general setting where many blocks of coordinate grid are continuously glued
together to form a multiblock grid. Without a continuous glue between blocks of grid, one
has the problem of transferring data between either non-aligned or overset grids. This
involves many issues which relate to the management of data and the preservation of
accuracy. When the glue between blocks is continuous, then the data transfer problem is
vastly simplified and accuracy is greatly enhanced. The accuracy is even further enhanced
as the continuity level increases (e.g. continuous derivatives). Moreover, multiblock grids
are also well positioned to take advantage of parallel computing environments.

The muhiblock template provides zones for the various coordinate grid blocks to
reside. This is a general structure and, as such, is one which can be used for arbitrarily
complex configurations. It is, in fact, a coarse unstructured dissection of space into
chunks. In distinction from what is typically called an unstructured grid, the cells define
macro regions in space that are called zones and which generally have curved boundaries.

TRADITIONAL METHODS

In the traditional approach to multiblock grid generation, the creation of a grid is done
in a piece by piece fashion. The process starts with the geometric region boundaries,
continues by forming the zonal boundaries, proceeds by generating grids on each boundary
section, and concludes with volume grid generation. The main distinctions between the
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varioustraditionalmethodsis theorderin whichthepiecescanbeput together,the
numericalmethodsemployedto treateachpiece,thestyleof interactivegraphicsutilizedto
helptheuserdealwith all of thepieces,andtheability toreplayandedit partsof a session
by theuseof journal f'des.

In thecourseof applyinga traditionalmultiblockgenerator,theusermustnotonly
insertratherlargeamountsof databutalsomustmakejudgmentsaboutthatdata. Such
judgmentsoftenconcerntherelativespatiallocationof variousobjects.Thesecanvary
from somethingasbasicasplacingonezonalcornerin spaceto moredetailedmatterssuch
asdeterminingboththeshapeandlocationof zonaledges.Unfortunately,thedetailed
judgmentscontinuewith suchitemsastrying to appropriatelyadjustedgeor surfacegrids
oneithersideof azoneorregion. Altogether,thetraditionaluseris facedwith the
geometryandgrid generationfor corners,edges,andsurfacesbeforeheproceedsto
volumes. In theusualprogressionof events,manyjudgmentalerrorsaremadeandthese
translateinto repeatedoperations.Theresultis greathumaninefficiencyandlossof time.
By thetimevolumesareconsidered,therealhumanworkhasusuallybeendone.

THE AUTOMATIC METHOD

With the grid generation technology to be discussed here, there is a huge paradigm
shift. There is no longer the rather manual construction and assembly of multiblock grids
that is fraught with the error prone tendencies of human judgment. There is no longer the
massive amounts of detailed data required of the user. There is no longer the huge reliance

upon high end computer graphics to manage that manual activity. Instead, the amount of
input data is enormously reduced, the detailed human judgment is gone, and the
management of data is efficiently controlled with an appropriate language. Moreover, the
quality of grids is much, much higher. It is the same mathematical underpinnings that
reduce the user effort which also account for the substantial increase in quality. Basic grid

quality appears in the form of near orthogonality, smoothness, low warpage, and curvature
clustering for both concave and convex boundaries.

The discussion will focus upon the program called GridPro®/az3000 which is a
commercial product and which is the most automatic and powerful multiblock grid
generator available. Unfortunately, there are too many grid generators that are referred to
as "automatic" and, as a consequence, user's are quite naturally confused. After all, a good
number of the traditional multiblock grid generators are called automatic ones. To make
some sense out of this situation, the real question that should be asked is "when does it
become automatic? or "from what stage is it automatic?"

As the story is examined, it will be seen that GridPro®/az3000 is automatic from an

earlier stage than any other 3D multiblock generator and produces higher quality grids as
well. That stage, is def'med by the presence of region boundaries, the pattern of grid
points, and a small handful of scalar parameters. Surface grid generation, zone
construction, and the intersection between surfaces are examples of the tasks that are solved

as part of the automatic solution. Of the user inputs, the primary one is the pattern of
points which is referred to as the grid topology. The language that organizes the pattern of
points is called the "Topology Input Language" (TIL). TIL codes are extremely flexible
items and can be used to generate grids about various classes of configurations. In this
context, GridPro®/az3000 compiles and runs TIL codes. While future developments are

likely to include both interactive and automatic TIL code generation, our concentration shall
be on the TIL language, its benefits, and the grid generation capabilities. An overview of
GridPro®/az3000 is given in Eiseman, Cheng, and H_iuser [ 1] and a detailed account is

given in the user's manual [2].
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GridPro®/az3000

The practical industrial needs for engineering analysis are speed, accuracy, reliability,
and realistic configurations. The latter often leads to massive complexity. Such complexity
appears when configuration boundaries contain a very large number of geometric
components. A large number of grid points is also desired but is balanced against the
available computer resources. With massive complexity, comes the requirement to deal
with an arbitrarily large number of blocks. For the traditional multiblock grid generators,
this will require an enormous amount of human time, and thus, wall clock time to get the
grid.

Gridlh'o®/az3000 satisfies the practical needs of industry. Because of the high grid
quality, various analysis programs have produced results on the first try, are more accurate,
and are faster to convergence. Because of the automation, massive complexity is efficiently
handed with a large number of blocks. The count can go to a thousand, ten thousand, or
more depending upon the scope of the analysis.

THE TOPOLOGY INPUT LANGUAGE

The scope of analysis varies from small to large as various boundary components are
assembled into successively more comprehensive region configurations. In a parallel
sense, the topology input language (TIL) builds successively more complex grid point
patterns by assembling various topological components. With this natural building
process, the basic routine in TIL codes is called a "COMPONENT". These represent both
the main program and the various subprograms (e.g. like a SUBROUTINE in
FORTRAN). Like most other subprograms, variables can be imported and exported from
COMPONENTs. In TIL, these variables are labels for comers, vectors, and surfaces.

The actual comers, vectors, and surfaces can be specified within any component. While
they are common to all components, they cannot be referenced unless a correct label is

available in the calling component. The output labeling convention provides this. The call
of a component entitled "name" is given by the syntax of

INPUT n name(input and output labels);

where n is a positive integer tag which becomes part of the new label that is used inside the

component where this input appears. As the succession of components are called into
action, the labeling process continues with successive labels. Thus, a particular item may
be re labeled a number of times. The re labeling will stop once the main component is
reached and this will then provide a unique trace back to its point of origin. As these traces
can be valuable for finding topology errors, they are included in diagnostic output that is
automatically given when such errors occur.

While comers, vectors, and surfaces have been mentioned above, there was no

mention of their purpose. To consider the solution of some field analysis for some region,
the first item considered is its boundary. These are composed of surfaces of various sorts.
These may be defined by certain analytical or piece wise analytical formulas or by some
digitization. These may come from CAD systems or from other forms of construction. In
the case of digitization, the surface is defined by a data file. The analytic types provide
some built in types together with a location for user specification for the rest. In TIL, the
surface is "defined" by only one line. This may reference a data file, provide parameters
for a built-in analytical type, or may link to the location of a user specified analytic type.
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With the boundaries represented by the one line surface definitions, the next items are
the comers. The collection of comers defines a topology sketch. This sketch appears in

physical space (not an idealized abstract, space). Within the physical space sketch pad, the
task is to define a coarse hexahedralwire frame. Each wire frame cell defines the topology

element for a block of grid. The entire wire frame is defined by a sequence of comers and
should extend over most of the space. Certain of the comers must also be assigned to
surfaces in order to tell the system which parts of the topology are to be on which parts of

the physical region boundary. While each comer must be put somewhere in physical
space, there is no precise requirement to give a certain location. The only demand is the
fuzzy topological one that the placement be in "general position". In practical terms, the
comers assigned to a surface should roughly follow it to reflect major variations in surface

shape.

It has been seen that the basic part of a TIL program is the pattern of points as

represented by a coarse wire frame of comers with links and surface assignments. Along
with the organization imposed by the use of components, there are global settings that can
be made at the top of the program as well as the ability to add further TIL operatwes by an
include statement. The typical global parameters are the number of grid cells for each link
and the dimension. The default number of cells is 8 and the default dimension is 3. The

number of cells is then locally changed, as desired, within the components. Any change

there automatically propagates to any effected links. The include statement permits the user
to grow TIL code libraries to cover problem classes of interest. This happens naturally
because COMPONENTs are reusable and can be called any number of times. The result is

an efficient assembly process which can take advantage of recurrent structure. In addition,
there are an assortment of other commands and options that are helpful.

THE CORNER DEFINITION STATEMENT

The basic elements of a comer definition are its label, its position, its assignment to

surfaces, and its links to other comers. Its label is just a positive integer which appears
after the key letter "c _' that starts the comer definition line. The only rule to be obeyed is
that as comers are defined the labels must increase in size. Gaps in the labeling are

permitted and are sometimes desirable. The gaps can be useful when one wishes to
subsequently edit the component by inserting some new comers between two previous
ones. For cosmetic reasons, they may even help to add human clarity to a TIL component.

After the comer label is given, the next item in the comer definition is the position in

physical space. In a direct sense, this is given by a sequence of three numbers to reflect the
ordering for x, y, and then z. The delimiter between each item on the line of definition is
just a space: there are no comma's! While such a direct definition is often convenient, it is
not as flexible as the one which comes from vector operations. The "x y z" sequence is

replaced by "@ vector operations" where the symbol "@" is the flag to tell the system to
expect the operations with vectors. In practical terms, this allows one to create comers that
are automatically positioned relative to other comers, be they within the current component
or imported. Moreover, the positioning can be even more arbitrarily accomplished by the
use of vectors that are either defined in the current component or imported from the outside.

While all comers are vectors, the vectors are more arbitrary since they are not required to

convey the specific details associated with comers.

After the comer position is given, the next item in the comer definition is the surface
assignment. If there is to be a surface assignment, then the flag "-s" is given. After a
space delimiter, the desired surface labels are given with spaces between them as
delimiters. The order in the list of surface labels is unimportant. Each label points to a
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surfacedefinition statementwhichin turnprovidesadesiredsurfaceassociation.A rule
thatmustbeobeyedhereis thatthesurfacedefinitionmustalreadyexist. Thereis simply
nomeaningif oneshoulddesignateasurfacethatis not there! Theavailablesurfacesfor
assignmentsarethosewhichareeitherdefinedin thecurrentcomponentor whichare
definedbyanimport into thecurrentcomponent.Thelatteris slightlymoreabstractand
alsomoregeneral.To providefor animport, thesurfaceis definedin thecomponent
argumentlist. However,it will not reallyexistunlessanactualsurfacelabelis insertedin
thatspotwhenthecomponentis used.If thespotis givenasablackin thecomponent
application( i.e. in theINPUT statement),thentheassignmentto will alsobea blank.
This,however,offerstheopportunityto designcomponentswhichcanbeappliedin many
moresituations.

After thesurfaceassignmentsaregiven,thefinal itemis thespecificationof linkages
to othercomers. If thereareto bea,links to othercomers,thentheflag "-L" is givenandis
followed by alist of thecomerlabelswith spacesfor delimiters. Theorderin thelist is
againunimportant.Theonlyrequirementis thatthecomersmustalreadyexistbyeithera
localdefinitionwithin thesamecomponentor byadefinedinputto thesamecomponent.
As in thecasewith surfaces,thereis theopportunitytodesignmo/egeneralityinto the
componentsby usingblankswhenthereis nocomerlink at theINPUT stage.

Theendof line for anyTIL statementis givenby a";" andthecomerdefinitionis
sucha statement.To illustratethecomerdefinitionsyntax,anexampleisgiven. Consider
thestatement

c 5 1.2 3 4.5 -s 1 3 -L 3 4 2;

This definescomer5 to belocatedat theposition (1.2,3, 4.5),to beassignedto surfaces
1and3, andto belinked to corners3,4, and2. Noticethatthereis nodetailabouthow
thelinks to othercomersaremade.For simplicity,theycanbeconsideredasstraightlines.
This lackof detail iswhatdistills thewireframedownto thelevelof just a sequenceof
comers.Also,onemaynoticethatthereis nodetailgivenfor thesurfaceassignments.
Thesurfacelabelspointto thesurfacedefinitionswhicharesinglelines. A block facewill
beplaceduponaparticularsurfaceif thecorrespondingfour topologicalfacecomersare
assignedto thatsurface.Moreover,ablockedgewill beplacedupontheintersectionof
two surfacesif thetwo topologicalcomersfor theedgelink areassignedtothe two
surfaces.This is how theusergetsthe intersectionsbetweensurfaces.

SURFACE DEFINITION STATEMENTS

The basic parts of a surface definition statement are the label, the type, the parameters
or title name, the orientation, the cluster intensity, and transformations. Spaces are the
delimitors between the various parts and associated parameters. The surface definition line

starts with the key letter "s", has the delimitor of one or more spaces, and is followed by
the label. The surface labels are positive numbers given in an increasing order. Gaps in
the numbering are allowed and can be desireable for certain occasions. After the surface

number, the definition type is given and is followed by its parameters or the associated file
name, as is required of the specifed type. Beyond this are the other items. The orientation
is given by the direction of the unit normal vector to the surface. The rule is that the normal

vector must point into the region to be gridded. As there are two sides to any bounding
surface and as each such surface is given a natural normal direction, there is only the need
to reverse the orientation should the natural normal vector violate the rule. Orientation
reversal is given by the flag "-o"
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With theproperlyorientedboundingsurfaces,thenextitemsareto clusterto that
surfaceor to transformit. Theflag for clusteringiscurrentlygivenbyeither"-c" or "+c"
to denoteminusandplusclustergroups,respectively.Theactualclusteringfor either
groupis givenasarealnumberwhichfollows theflag aftera spaceor so. The
transformationflag is "-t" or "-R" for adirectly statedtranslationor lineartransformation,
respectively.Bothcanbeusedin thesamestatement.Thetranslationis givenby a
successionof threerealnumberswhile the linear'transformationis givenby asuccessionof
ninerealnumbers.However,whenVectors are used both are combined into one item

which is expressed as "-t @( )". Within ( ) a single vector is inserted if it is only a
translation and four vectors are inserted if it is a general transformation. In the general
case, the first vector is the translation while the remaining three are the respective rows of
the 3x3 linear transformation. Beck/use vectors can be defined elsewhere, this is a variable

assignment. Aside from these options attached to the surface definition, there are a few
remaining technical options which are not frequently used.

To illustrate the surface definition syntax, a few examples are given. First consider
the statement

s 2 -plane(0 0 1 -2):

This defines surface 2 as the plane z=2 with orientation in the positive z direction. The
type is "-plane". The first three numbers represent tl_e normal vector (0, 0, 1) while the last

gives the constant value of 2. The ";" gives the end of line. Because of the orientation, the
grid is assummed to be above the plane.. The plane is defined by the function

f(x,y,z) = ax+ by + cz + d

as the level surface f(x,y,z)--0. Level surfaces of f are those surfaces which are determined
by constant values of f. Since f=c is the same as (f-c)--0, it is always possible to replace
f with f-c ; and thus, there is no loss of generalj.'ty in considering only the constant values of
0. With the same constants (i.e. 0), the expression alone then carries the total definition of
the surface.

As a second example, consider the statement

s 5 -ellip(0.5 2 0.25 3.2) -o -t 0 0 4;

This defines surface 5 to be of (super-) ellipsoidal type. The first 3 parameters are the

recipricals of the semi-axis lengths while the fourth is the exponent which determines the
degree of squareness. Thus, the semi-axial lengths are 2 along the x-axis, 0.5 along the y-
axis, and 4 along the z-axis. The squareness of 3.2 is greater than that of 2 9¢hich would
define a pure ellipsoid. The natural orientation which Points to the outside of the super-
ellipsoid is reversed with "-o" in order to consider a grid on the inside. With the basic "-
ellip" type being defined about the origin, it is lifted up by 4 units in the z direction with the
translation vector (1, 0, 4). For surface 5, the parameters are a=0.5, b=2, c=0.25, and
n=3.2 in the function

f(x,y,z) = lax]n + Iby_ + Ic_ - 1

which defines the level surface. As n varies from 2 to infinity, the surface varies from a

pure ellipsoid to a brick. It is also easy to see that a natural normal direction is in the
outward convex direction since this is also the natural direction of the gradiant of f. It is
also worth noting that the multiplicative nature of a, b, and c is quite convienient since

cyclinders can also be readily specified by setting any of these parameters to zero.
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SURFACE GEOMETRY INPUT

The surface geometry can enter the process in a wide variety of forms and must be
distinguished from any particular form. This is especially true if the geometry is given by a
point data set. Often a misinterpretation can occur because the set appears in the format of a
surface grid. The necessary distinction is that this input grid is only used as a data set to
define geometry: there is no requirement to place points at any particular position for the
act of grid generation. The only requirement is to represent the geometry accurately enough
to permit a decent grid generation. This means that there must be an accurate enough
resolution of curvature.

In the current implementation, GridPro®/az3000 can take both implicit and explicit
surface data types. The implicit surfaces are the level surfaces. They are implicit since the
evaluation of points on such surfaces comes from the solution of an algebraic equation
f(x,y,z)--0. By contrast, points on explicitly defined surfaces are evaluated directly from
their parameters. That is, for a given (u,v), the surface point is just (x(u,v), y(u,v), z(u,v) ).
In many instances, there are a number of sections for an explicit surface. The evaluation of a
point then involves a search to find the desired section after which the direct evaluation
transpires.

The built-in implicit surfaces are

(1) planes
(2) super-ellipsoids, and
(3) cylinders

In the TIL syntax, the surface definition types are denoted by "-plane ', "-ellip", and
"cyclind" respectively. Examples of the fin'st two were given in the pr,'.vious section. The
third type is a cyclinder in the form of a periodic surface.

As already noted, the explicit surfaces have a parametric nature since surface points
are determined by local coordinates once the local surface segment is found. The current
ones are

(1) A single coordinate grid

This has bilinear coordinate parameters for each element and is brought into
action with the type flag "-linear".

(2) Multiple coordinate grids

This has bilinear coordinate parameters for each element and is brought into
action with the type flag "-compos".

(3) Unstructured quadrilateral elements
This has both a plain format and a MSC/NASTRAN format in the forms

CQUAD and CQUADR. It is brought into action with the type flag
"-quad".

(4) Unstmcau'ed triangular elements
This has both a plain format and a MSC/NASTRAN format in the forms of

GRID, CTRIA3, and CTRIAR. It is brought into action with the type flag
"-tria".

(5) Surface of revolution around an arbitrary center curve
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This is givenby adatafile whichlistsa sequenceof orderedquadruplets
(x,y,z,r)wheretheeach(x,y,z) is acenterlinepoint andr is theradiusof
thecirculardisknormalto thecenterlinepoint. Thefirst fine in thefile is the
totalnumberof quadrupletswhich isjust a positiveinteger. This typeis
broughtinto actionwith theflag "-tube".

Unlike theimplicit types,theexplicitones require data files for the surfaces. After the type
indicator, each data file .is given between quoteS. Without extra options, these appear in the
surface definition statements of TIL in the format

s n -type "name.dat";

for surface number n. Here -type'is any of -linear, -compos, -quad, -tria, or -tube as
described in the above fist. After the type designation flag, the user chooses "name" for the

corresponding data file"name.dat".

The built-in implicit types are very convenient to apply since surface definitions are

given by a small number of defining p.arameters. While additions to the fist of built-in
implicit types will add further convemence, there will always be cases that are not covered.
Thus, provision has been given to riser defined'implicit types. The window of opportunity
for non-built-in type appears in the form of a C-code that is supplied to the user. For a
fixed surface, the user simply writes but the equation for the level surface desired. This
writing is done in only one specific location. In the case where periodicity conditions are
necessary, more locations must be used to prescribe those conditions. All of this data is
inserted into a file called "name.h" where the user chooses "name" and inserts his data in

the right spots: After the type flag (-implic) in the surface definition fine, the user gives
"name.h" and continues with other items to complete the line.

In a slightly more abstract sense, a floating surface can also be defined. It is abstract
since there is no defined position or condition for this surface. This type of surface is used
to def'me clustering to any block face regardless of where it i_. This clustering can be
applied to either side of the surface or to both sides. To bring this into action, the flag
"-float" is used in the surface definition fine; next, there is a cluster group flag (either "-c"

or "+c"); and then there ig the desired spacing for the first grid point on either side. Once
the surface definition line exists, the clustering takes effect when the corners of a chosen

block face are assigned to this surface. If clustering is desired for only one side of a
floating surface, then the sides are selected by inserting a number 0 or 1 just after the type

flag "-float".

Altogether, we have 3 modes of surface prescription. The first is a surface that has a

fixed position in space. The second is the periodic surface which seeks.its own position in
space to optimize grid quality while accommodating periodic boundary conditions. The
third is the floating surface which has no conditions other than the clustering specifications
attached to its definition.

Unlike other schemes, there is no dependence upon the details of surface geometry
definition. The geometry is simply viewed for its trace of points in (x,y,z) space. There is
no concern for any specific surface parameterization and how it might abut another set of

surface parameters. However, there is a need for the geometry to be well defined. A well
defined geometry is one which gives an accurate specification of the solid objects. It must
be free of constructive irregularities such as unexpected holes which would make hollow

objects out of ones that should be solid. In additon, if two independently defined surfaces
are to intersect, then they must actually do so in the region of interest. Otherwise, one is
left with holes that ill define a solid object. A further desire is for the geometry definition
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to becompatiblewith thechosenpatternof grid points.Thissituationcanoccurif adjacent
grid sheetsarechosento wrapovera regionof sharpsurfacecurvature. In suchcases,it is
bestto haveasmoothsurfaceevenif thatsmoothnessis only seenonamicoscopiclevel.
An alternativeis, of course,to selectadifferenttopology.Altogether,becauseof the
freedomfrom detailedgeometrydescription,virtuallyanyform of surfacedefinition canbe
addressedandbuilt-in. Thisprovidesa healthygrowthpath.

THE SCHEDULE FOR RUNNING THE GRID GENERATION

Once the TIL code is finished and put into a file, the next task is to run it. This is

done by creating a schedule file for the run. The schedule can vary from a straight run to
one which is dynamically changed. The option to change the course of a run allows the

user to optimize the run.. For example, the run could be started with a fairly modest
number of grid points which are then increased in stages as the grid is relaxed towards its
equilibrium that progressively satisfies the underlying variational scheme. As one could

imagine, there are a number of parameters in the schedule that provide the user helpful
options. One of these provides the bounds for curvature clustering. This is in effect a
geometry adaptive process. Upon activation, the volumetric grid points distribute
themselves about the boundaries in. proportion to the boundary curvature.

FUTURE DIRECTIONS

With the component structure of TIL, there is the opportunity to make TIL

components in an object oriented sense. This can quite naturally feed into an interactive
environment where the topology set up can be done. Given the non-unique nature of grid
topology selection, some choices are clearly better than others. These can vary with the

physical problem or region geometry. This will lead to the application of expert systems to
help in the guidance. In addition, there is also the consideration for a turn key creation of
the coarse wire frame for topology definition. This would then automatically generate the
TIL code and thus the grid. The automatic generation of the coarse wire frame can
certainly be done with today's methods. Here, one simply does a coarse unstructured
tetrahedral grid generation (via advancing front, octtree, etc.) and then breaks up each
tetrahedron into 4 hexahedrons. While this approach will certainly define a topology
through a coarse wire frame, it will also yield too many severe singularities. Thus, there is
a need to do the unstructured generation with more quality. This means the automatic
generation of hexahedral grids with appropriate quality and desirable pattern for the targeted
applications. Examples of pertainent activity are paving (2D) and plastering (3D).
Altogether, these various directions for topology generation are in the realm of research and
development.

EXAMPLES

In this section, we will look at a selection of examples. These will cover a cross-
section of industries and show the type of grids that are Created. This will explicitly show
the quality level. Beyond these pictures, it is natural to ask for the amount of computer
resources that are needed as well as the length of the TIL code. These items will be given.
The next question may very well be to estimate the length of human time. This is more
difficult since the user must give a region geometry, create a topology and cast it into TIL.
In fact, geometry specification and topology creation are a part of any multiblock grid
generator. In GridPro®/az3000 the ease with which various topologies can be considered
also means that the user has a more plentiful supply of choices. While each choice can be
addressed with a Iraditional multiblock grid generator, it is so painful to do so that it is, for
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all practicalpurposes,nota real option. A typical case of this sort is the application of
compact enrichment. Here, coordinate surfaces are made to stay within the local region
requiring enrichment. In effect, certain surfaces are steered back to the same subregion.
the case of geometry specification, GridPro®/az3000 can accept exceedingly general
surfaces as input..This includes surfaces digitized in an unstructured format (e.g.
NASTRAN) as well as implicit surfaces. The use of implicit type surfaces is extremely
powerful and general. An examples of it is given in the companion paper by Cheng and
Eiseman [3].

In

The examples given here start with a blade row for turbomachinery. Then a grid is
generated inside a single turbomachinery blade. This illustrates the effect of clustering to
concave and convex curvature in the simple' 2D setting. Next, the same sort of curvature
clustering is witnessed in the 3D case of a automobile fuel tahk. The fuel _ank geometry
was given by an unstructured triangular mesh while the fuel surface level was glven by an
implicit form for a plane. After this, compact enrichment is'viewed with a case for an
airfoil over ground. Again the simplicity of 2D makes it easy to see the concept of compact
enrichment where coordinate curves are steered back to surfaces. This case also shows a

branch cut off of the trailing edge. In continuation, compact enrichment is examined in 3D
with a grid for the ONERA M6 wing. In distiction from the prior case, this shows the
enrichment in the setting.where coordinate surfaces wrap around the entire wing. TIae
enriched locations are around the entire perimeter of the wing planform. Shifting our focus
back to automotive engineering, we next examine the case of an air induction system and
then a two port cylinder, This is then followed by a manifold configuration which is a case
with four tubes emerging from a large chamber. Each of the tubes emerges from the
chamber with an abrupt intersection. Once again, we return to compact enrichment and
look at only one tube abruptly intersecting the chamber. The enrichment appears as a collar
about the curve of intersection and can be easily witnessed in the figure. While the last two
cases examine abrupt intersections, there are parallel case's with filletted intersections. Fillet
creation and its use is examined in Cheng and Eiseman [3].

CONCLUSION

The power of multiblock grid generation with automatic zoning has be explored along
with the associated program: GridPro_/az3000. The diverse nature of the options and

applications have been witnessed as has the flexibility of the program. Some future
directions have also be charted for the creation of still other programs the generate input for

Gridpro_/az3000. Altogether, the future for this technology is very bright.

.
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Figure 1: A row of turbomachinery blades. The choice of toplogy provides line of sight from

upstream and downstream directions. That is, coordinate curves go directly from these directions

onto the blade surface. The grid pattern appears as a polar like wrap for the blade which is smoothly

integrated into a streamwise type grid. Periodic bo_mdary conditions are employed around the axis.

Those boundaries come from the user specification for the number of blades. Grid orthogonality

and smoothness are maintained regardless of solidity: the blade spacing and angle of attack can

be made arbitrarly severe without deterioration in grid quality. The TIL code is one page and the

computation time is less than one hour on a medium grade workstation.
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Figure 2: Inside a 2D blade contour. The effect of curvature clustering can be readily witnessed.

The most intense clustering is at the blade trailing edge, the next most intense clustering is at

the leading edge, and is followed by lesser clustering on the top and bottom of the blade. In

contrast, the grid is thinnest at the location where the blade is nearly straight (i.e. flat). While

most of the curvature is concave the bottom of the blade is the only convex part. To see how

GridPro/az3000 deals with a small number of grid points, the second grid shows the same

attributes as the fine one. The TIL code is one half a page and the computation time is less than

one hour on a medium grade workstation.
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Figure 3: A half fuU fuel tank for an automobile. This grid is for a crash analysis application.(with

LSDYNA3D). The fuel surface is given by a plane as a built-in implicit type. The fuel tank geometry

is given by an unstructured triangular mesh (e.g MSC/NASTRAN type CTRIA3) and has both

concave and convex curvatures. Those curvatures appear at the tank corners and at the locations

of the drain and of the straps which hold it in place under the vehicle. Clustering to both concave

and convex curvature is easily seen as is the smoothness and near orthogonality. Because of the

application in the area of structural analysis, the multiblock output of GridPro/az3000 was

expressed in NASRTRAN format. The TIL code is less than a page and the run time is about one

half an hour on a medium grade workstation.
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Figure 4: An airfoil close to the ground. The grid is for a study of ground effects on the perfomance

of an airfoil. The airfoil contour is given by a digitized data set. This is an example of the use

of compact enrichment. In the global picture, it is clear that there are no undesireable clusters of

points on the boundaries either above or upstream of the airfoil. While a cluster appears for the fuU

length of wake branch cut, it too could have been limited to some distance before the downstream

boundary if desired. However, this option was not chosen. In the vicinity of both the leading and

tailing edge, the coordinate curve density is at its highest. One can readily see that the chosen

pattern of points (grid topology) sends curves looping from the bottom of the airfoil to the top

about both leading and trailing edges. It also can be seen that similar loops appear from the top

of the airfoil and end upon the ground surface. By contrast, the bottom of the airfoil was left to be

that of a simple block. We often call such loop structures "clamps" or as in the case of the trailing

edge structure "a collar." The TIL code for this case was a little over one page. The run time is

less than one hour on a medium grade workstation.
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Figure 5: The ONERA M6 wing. This is a standard test case for the study of a basic wing. The

basic grid topology is chosen to wrap around the whole wing. The pattern can easily be seen in

the symmetry plane. Within the wrap around structure, compact enrichment has been applied to

the entire perimeter of the wing planform. In the symmetry plane, it is easy to detect the compact

enrichment at the leading and trailing edges. That enrichment appears in the form of curves that

loop over a regular block and connect the wing surface with itself. We call this structure a "clamp."

It is this compact structure which is carried from the leading edge up to and around the wing tip

and then back to stop at the symmetry plane trailing edge. Altogher, the looping coordinate

curves look like the shells of a distorted half torus or, more figuratively, like the surface of a half

an automobile tire. The geometry of the M6 wing was given in a digitized form and the TIL code
was about two pages. The grid generation was less than one half an hour.
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Figure 6: An air induction system for an automobile. This is an example of one sort of plumbing
that is common in the automobile industry. The surface was given in by an unstructured quadri-

lateral mesh in MSC/NASTRAN format. The TIL code was 4 pages and the run time about 15

minutes.
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Figure 7: A twoport cylinderfor anautomotiveengine.This is a genericcasefor the classof two
port automobilecylinders.In aprior application,therewasaneedto generateagrid in apipebend
that had a rod insideit that started in a parallelmannerat the entrancebut continuedstraight
up andintersectedthe pipeasit went throughthe bend. The topologyfor that prior casewasa
singlepageof TIL codeand wasin a separatefile. Notingthat the prior casecouldbe alsoused
for theport in thepicturedapplication,thefirst line of the TIL codewasan INCLUDE statement
for this file. The remaining TIL code was just a few pages. The generation of the grid was about

10 to 15 rain of computer time.
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Figure 8: A generic manifold for an automobile engine. The geometry consists of four tubes

which abruptly intersect an elogated chamber from above. With the freedom to choose a generic

geometry, the chamber and the tubes were rapidly assembled by using implict functions of the type

"-ellip." The TIL code was 4 pages and the grid generation was about 15 min. on a modest

workstation.
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Figure 9: An abrupt intersection between a tube and a chamber. In the context of an abrupt tube

intersection, the element of compact enriclmmnt is shown. This is seen in the form of the "collar"

structure which wraps around the entire curve of intesection between distinct surfaces. In addition,

the associated TIL code was developed in an object oriented style. In so doing, the length of TIL

code was longer than the normal few pages. However, the "objects" are very flexible in their reuse

and adjustment. The main component in tlfis TIL code was then reduced to about on fifth of a

page. Major configuration changes could then be done with just a few in line alterations. In tiffs

case, such change are the addition of exta tubes into the chamber. It is this style wlfich is the seed

for a more complete object oriented library in TIL. With tiffs type of library in place, the role of

interactive graphical assembly can be empowered.
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Figure10:Thefield aboutcloth fibers.Thegrid isgeneratedin the regionaboutinterwovenfibers
that areboundedby planesaboveandbelow the cloth. This configurationhasapplicationsin
filtration, in moldingprocesses,and in the apparelindustry. Thegeometryof thefibersis given
by the type "-tube" with the actual tubegeometrygivenby a data file of centerlinecoordinates
alongwith cross-sectionalradius. While this casewasexecutedfor fibersof a constantradius,a
simplechangeof data file is all that is neededto do a variableradius. The grid is readily seento
be smoothand nearlyorthogonal. The TIL codeis two pageslong and the run time on a slow
workstationis about15rain.
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SUMMARY

The status of CFD methods based on the use of block-structured grids for analyzing viscous flows over complex

configurations is examined. The objective of the present study is to make a realistic assessment of the usability of

such grids for routine computations typically encountered in the aerospace industry. It is recognized at the very

outset that the total turnaround time, from the moment the configuration is identified until the computational results

have been obtained and postprocessed, is more important than just the computational time. Pertinent examples

will be cited to demonstrate the feasibility of solving flow over practical configurations of current interest on

block-structured grids.

INTRODUCTION

The field of computational fluid dynamics (CFD) is rapidly approaching the stage where simple configurations,

such as wing-body configurations, are routinely analyzed and designed at cruise conditions with CFD tools.

However, the situation is not as promising when one considers a more complete configuration, especially at

take-off and landing, where high-lift devices must be deployed. The difficulties arise mainly because the task of

generating the grids for modeling such complex geometries is tedious, and because the computing time associated

with obtaining flow solutions on associated grids containing millions of grid points is excessive. To a large degree,

the difficulty associated with generating structured grids for complex geometries has made the unstructured-grid

approach more attractive. During last few years, unstructured-grid-based methods have been shown to be very

flexible and powerful tools for analyzing inviscid flows by solving the Euler equations. For viscous flows, where

the solution of Navier-Stokes equations is needed to capture the flow physics, further research is required to make
the unstructured codes more efficient.

Structured-grid-based methods offer a viable approach for solving viscous flows over complex configurations,

but have not realized their full potential due to difficulties associated with grid generation. The principle advantage

of such methods lies in the efficiency of the associated algorithms in obtaining a solution once a grid has been

established. The arithmetic operation count to attain a solution with such algorithms has seen steady decline

since early days of CFD research. The advancements in raw speed of the computers have further decreased

the computational resources required to obtain converged solution to the governing equations. The difficulties

encountered in grid generation can be overcome to a large degree by employing the "divide and conquer" philosophy

in constructing block-structured grids for analyzing complex configurations, where each block (or set of blocks)

focuses on a given component or region of the domain. Recent work on overlapped, block-structured grids,

where structured grids are generated around individual components, has demonstrated the applicability of such an

approach for analyzing some of the most complex aerodynamic configurations (ref. 1). The principle drawback of

this approach is that conservation is not enforced in the overlapped regions in most codes. From the standpoint of

conservation and accuracy, it is desirable to enforce point-to-point match (Co continuity) across block interfaces.

However, such a requirement imposes severe constraints on the grid-generation process. A reasonable compromise

can be achieved by accommodating different grid densities at the block interfaces without the overlapping of

grid lines. Such an approach is commonly referred to as a patched-grid approach, and can alleviate many of the

difficulties associated with the grid-generation process. In the present paper, we will summarize our experience

with the use of block-structured grids for complex configurations.
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OVERVIEW OF CURRENT CAPABILITY

Thissectionisdividedintotwopartsthatdealwithgrid-generationandflow-solverrelatedissues,respectively.
Thefollowingdiscussionsarekeptbriefintentionally,becausemoredetailedinformationonthesetopicscaneasily
be foundin the openliterature.

Grid generation

Thereis nodearthof block-structured grid-generation schemes for complex configurations, as is evident by the

large number of participants in recent conferences on grid-generation (refs. 2-4). Almost all organizations involved

in CFD simulations have some type of in-house grid-generation capability. For example, AGPS at Boeing, MACGS

at McDonnell Douglas, UNISG at Rockwell/FIAT, and MBGRID at Canadair, are some of the better known grid-

generation systems currently in use at various industries. In addition, commercially available software packages,

such as GRIDGEN, ICEM/CFD, NGP, and GRIDPRO/AZ3000 are constantly upgraded to meet customer needs.

It is difficult to list all such activities, instead we briefly discuss the general features of some of these tools from

a CFD user's perspective.
As researchers associated with the CFD Laboratory at NASA Langley Research Center, we are required to

analyze flow over a variety of configurations that are of interest to our internal and external customers. Most of

the time, these customers provide us with only a coarse point definition of the individual components that comprise

the configuration being analyzed. On few occasions, a standard CAD definition ( e.g. in IGES format) may be

available. Our task as CFD engineers is to provide accurate flow solutions over such configurations in the shortest

possible time.
A suitable grid must be generated before the flow solutions can be computed for a given configuration. The

grid-generation task generally turns out to be the most time-consuming part of the process, particularly in terms of

man-hours. Given enough lead time, most of the commercial grid-generation systems cited earlier in this paper can

be used to create good quality grids, especially by their originators. However, these software packages are quite

complex to use and invariably require an expert user (who probably does grid generation for a living) to create

good quality grids in a timely manner. The fact that these tools are heavily interactive, with a large number of

steps and paths that are traveled via complicated menu-driven branches, keeps the novices at bay. This difficulty

can be overcome by creating a center of expertise in an organization, but then one has to face the consequences

of compartmentalizing one facet of the solution process from the rest. It is well known that the grid density is

determined by the particular algorithm and application, which in turn requires coordination between grid-generation

and flow-solution and analysis phases. Such arrangements may not be practical except in large, production-oriented

organizations. The point to be emphasized here is that until the grid-generation process is simplified enough to

be usable by an average engineer involved in flow simulation activities, CFD as a discipline will not achieve its

full potential.
The grid-generation process starts with surface modeling, after the initial geometric definitions become

available. These geometric definitions can take many forms, ranging from parametric surface definitions, such

as NURBS, to a collection of points measured directly from a physical model. If only a coarse point definition is

available, which is generally the case, smooth and accurate surface interpolations are required to create an enriched

surface with high fidelity. In general, CAD-based systems, such as ICEM/CFD, have a definite advantage at the

surface modeling stage. Usually the surface definition of only the individual components of the configuration

(e.g. wing, fuselage, tail ) is provided, and it is left up to the CFD engineer to determine the intersections of

the various components. Accurate description of the intersections is essential for maintaining the fidelity of the

underlying surfaces. Once again, CAD-based systems are generally more flexible and accurate for computing

surface intersections of geometrically complex components. Such flexibility comes at the added cost of acquiring

the expertise (through user training) required to navigate through a CAD system, which is generally too complex

for average CFD engineer to maintain proficiency. Since surface modeling is only a small part of the total
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grid-generationprocess,a morecosteffectiveway to accomplishsucha taskis throughmaintaininga centerof
expertise,suchasGEOLABat NASA LangleyResearchCenter.

Afterthesurfacemodelingiscompleted,thedetailedgrid-generationprocessbeginsbyselectinggridtopologies
for thesurfaceandfieldgrids.Formultiblockgrids,thisrequiressplittingthephysicaldomainintodifferentblocks
(zones),a processwhichiscommonlyknownasdomaindecomposition.Mostgrid-generationpackagesrelyvery
heavilyoninteractive,user-suppliedintuitionto arriveattheblockingstrategy(domaindecomposition),bothatthe
surfaceandfieldgridlevels.Theinteractiveapproachprovidesutmostflexibilityto theuserbecauseit allowsfull
controlof blockingstrategies.However,suchanapproachisverytedious,especiallyfor complexthree-dimensional
configurations,sinceaccuratevisualizationof theblockboundariesinphysicalspaceiscumbersome.Thisis mainly
dueto thelargenumberof blocksrequiredfor griddingcomplexconfigurationsanddueto limitationsof available
visualizationsoftware.To exacerbatematters,especiallyfor COcontinuousgrids,a changein block structure
intendedfor a givenzonecancascadeintoa seriesof changesaffectingseveralotherzones,increasingtheeffort
requiredto completethegrid-generationtask.

Basedonourexperience,a batch-orientedapproachis neededto maketheblock-structuredgrid-generation
processmoreattractiveto engineeringusers.Theinteractivemeans,especiallygraphicaluserinterfaces(GUI's)can
andshouldbeusedto helptheusersetuptheinputto thegrid-generationcodeandto helpmakedecisionsrelated
to topologyanddomaindecomposition.But,wheneveraninteractivemoduleis invoked,aneasilyunderstandable
andeditablescriptfile shouldbecreatedsothatit canbeaddedtothebatchinputfile lateron.Of course,theuser
mustbeableto specifygriddensityandgridspacingsin variouszonesandsubzones.Recently,a batch-oriented
grid-generationpackagewithsemi-automaticblockingcapabilitywasdevelopedby Eisemannandco-workers(ref.
5). Thedomaindecompositionin theirsoftwarepackage(knownasGRIDPRO/AZ3000)is accomplishedthrough
specificationof theblockstructurein aparametrictopologicalspace.Thezonalboundariesin thephysicalspace
movefreelyandevolvesimultaneouslywith thesolutionto thepartial-differentialequationsthatgovernthegrid
coordinates.Theresultinggridsarerelativelysmoothandnearlyorthogonal,exceptnearthesingularpointsformed
by cornersof the grid blocks.Althoughit is apromisingmethod,in ouropinion,severalshortcomingsof this
approach(addressedlaterin thepaper)needto berectifiedbeforethissoftwarepackagecanbeusedroutinelyby
CFDengineersworkingon aerodynamicflow problems.

Beforeclosingthediscussionongrid generation,it shouldbementionedthatthespecificationof boundary
conditions,especiallytheblock-interfaceconditions,shouldbeintegratedwiththegrid-generationprocess.Without
suchacoupling,toomuchusertimeisspentonpreparingtheinputtoflowsolvers,andthechanceof errorsincrease
rapidlywith the increasein thenumberof zones(blocks)andthecomplexityof thegrid topology.This typeof
capabilitywouldalsoreducetheneedfor humaninterventionin linkingthegridgenerationto flowsolvers,which
wouldform thecoreof a completeCFDanalysissoftwaresystem.

Flow Solvers

Duringlast fewyears,therehasbeena steadygrowthin thenumberof computercodescapableof solving
Reynolds-averagedNavier-Stokes(RANS)equationsfor steadyflowsovercomplexconfigurationson block-
structuredgrids. Severalmultiblockcodesdevelopedat NASA centers,mostnotablyOVERFLOW,NPARC,
CFL3D,INS3D,PAB3D,andTLNS3Dhavebeendistributedto variousindustries,universities,andotherfederal
laboratoriesthroughouttheUnitedStates.In addition,thelargeaerospacecompanies,suchasMcDonnellDouglas,
Boeing,Northrop,Grumman,Rockwell,GeneralElectric,andPratt& Whitney,havetheirowncustomizedcodes.
Researchersat theEuropeanSpaceAgency(ESA),DLR (Germany),andRAE (England)havealsodeveloped
similarcodesfor their own internaluse. Thecapabilitiesof the variouscodesdiffer somewhat,dependingon
theoriginalapplicationfor whicheachcodewasdeveloped.However,mostof thematurecodesarecapableof
handlingthecomplexaerodynamicconfigurationsof practicalinterestif suitablegridsareavailable.

Beforeproceedingfurtherwith thediscussionon flowsolvers,it is appropriateto classifydifferenttypesof
block-structuredgrids,basedon theconnectivitypresentat theblock(zonal)interfaces.In overlapped(overset)
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grids,thegridlinesfromadjoiningblocksformanoverlappedregioninstead of a clearly identifiable zonal interface.

In patched grids, the adjoining blocks form a common interface, but the point distribution on the block boundaries

that form the interface is different. In Co continuous grids, the adjoining blocks that form the interface have a

point-to-point match at the zonal interface. The overlapped grids, patched grids, and the C O continuous grids form

a hierarchy of structured grids requiring increased effort in grid generation; the CO continuous grids require the

most effort to generate. However, with regard to flow solvers, C O continuous grids are the simplest and most

convenient to deal with.

The overlapping grids are by far the easiest type of grids to generate; therefore such grids have been used for

computations on the most complex geometries to date, such as the flow over the complete space shuttle configuration

(ref. 1). However, conservation is not enforced in the overlapped regions of the grid; therefore this methodology

may not be appropriate for problems in which accurate capturing of shocks and shear discontinuities is crucial.

Furthermore, the actual process of using overlapped grids requires several nontrivial steps beyond the generation of

grids around individual components. For example, one must generate collar grids at wing/fuselage juncture regions

for adequate resolution of the boundary layers. In addition, a variety of preprocessors are needed to determine

the connectivity and interpolation coefficient matrix for the overlapped grids, which requires significant human

intervention before CFD analysis can be performed.
The next step in the block-structured grid hierarchy is the patched-grid approach, where the zonal boundaries

do not overlap but have different grid distribution in the adjacent zones. Considerable research has been done

on patched-grid algorithms to achieve conservation at zonal interfaces. Although a conservative algorithm can be

devised more easily for patched interfaces than for overlapped grids, this task is still not trivial, especially for

three-dimensional curved interfaces (refs. 6-9). Due to the difficulties encountered in maintaining conservation at

zonal interfaces, most general-purpose 3-D flow solvers employ non-conservative formulation at patched interfaces.

For reasons discussed previously, use of the COcontinuous meshes is preferable whenever possible to guarantee

conservation across zonal interfaces. Admittedly, this shifts the burden of CFD simulations to grid generation. We

realize that the generation of Co continuous grids for complex configurations is a difficult task; however, the

advantages of using such grids in terms of global conservation, free-stream preservation, and simplicity of zonal

interface boundary conditions can be significant. For example, devising a procedure to check the self-consistency of

zonal interfaces in such grids is fairly straightforward. Availability of such diagnostic tools that pinpoint user-input

and grid-related errors is extremely helpful to CFD engineers. However, depending on the level of complexity of

the geometric configuration, the Co constraint on grids may need to be relaxed, especially to make more efficient

use of grid points and to improve the overall grid quality (smoothness and orthogonality). By placing the patched-

grid interfaces away from strong discontinuities, the errors caused by the loss of conservation at such boundaries

can be minimized.

SELECTED APPLICATIONS

A central-difference, finite-volume, multiblock Navier-Stokes code TLNS3D-MB, developed at NASA Langley

Research Center, has been employed to obtain flow solutions on several configurations of practical interest. The

thin-layer form of the Navier-Stokes equations is used for modeling the mean flow. Unless stated otherwise, the

flow is assumed to be fully turbulent, and the effect of turbulence is modeled through the eddy-viscosity hypothesis.

A five-stage Runge-Kutta time-stepping scheme with three evaluations of the artificial dissipation terms computed

at the odd-numbered stages is used to advance the flow solution in pseudo time. Implicit residual smoothing is used

to increase the stability of the time-stepping scheme. Further enhancement in convergence of the time-stepping

scheme is achieved via a multigrid acceleration technique. The details of the numerical algorithm used in TLNS3D-

MB are available in references 10-11. This code has been calibrated through a wide variety of applications by

several independent researchers (refs. 12-15).
For a flow code to be accepted by the research community at large, it must be capable of providing accurate

solutions for problems of interest in a timely manner. To a large degree, the accuracy of a flow solver depends
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on the explicit and implicit levels of artificial dissipation inherent in the numerical scheme. Based on our earlier

research, it was concluded that the accuracy of the central-difference scheme is greatly enhanced by using a matrix

type of artificial dissipation model instead of a scalar dissipation model (ref. 16); hence, the matrix dissipation

model has been used for the computations presented here. Another key element that determines the overall accuracy

of a CFD code is the ability of the underlying turbulence model to capture the pertinent flow physics. If a flow

solver has a turbulence model that fails to accurately predict the important flow features, it will not meet the

requirements of CFD engineers involved in the design process. For aerodynamic applications, the ability to predict

separation zones, shock locations, and boundary-layer properties in the presence of strong pressure gradients is

extremely important. In addition, the turbulence model should be able to accommodate multiple surfaces that

intersect one another. Based on both a literature survey and our own experience, the one-equation turbulence

model of Spalart-Allmaras (ref. 17) can produce accurate solutions for a wide variety of aerodynamics problems,
and has been used in the current applications.

The multiblock structure in this code was constructed carefully to minimize the communication lag between

the blocks, thereby achieving convergence levels comparable to the single block implementation. Of course, some

penalty in the computational efficiency is inevitable because of the overhead associated with the added complexity

of coding required in a multiblock code. It is preferred to use the largest block size subject to the geometric

constraints to retain the vectorization efficiency. Such a strategy also enhances the implicitness of the numerical

scheme by increasing the domain over which the implicit operator of the residual smoothing is effective. These

issues are discussed in detail with specific examples by Vatsa, Sanetrik, and Parlette (ref. 10). In the next section,

several applications of this method to problems of general interest are discussed.

Multi-element airfoil

During landing and takeoff maneuvers, most aircraft deploy a wing configuration that consists of a multiple

number of airfoil sections. For structural and aerodynamic reasons, these components are placed extremely close

to one another. Such an arrangement creates special problems in the construction of suitable structured grids,

especially CO continuous grids. An excellent test case representative of realistic high-lift configuration is now

available as a result of a joint effort between NASA Langley Research Center and McDonnell Douglas Aircraft

Co. for a two-dimensional, 3-element high-lift configuration. The newly available GRIDPRO/AZ3000 software

has been used successfully to grid this configuration (ref. 18). A partial view of the resulting 97-block grid is

shown here in Fig. 1. The grid lines are smooth and nearly orthogonal, except near singular points formed by

the block boundaries. This grid clearly demonstrates the flexibility of GRIDPRO/AZ3000 to generate CFD-quality

grids for geometrically complex configurations, and in being able to concentrate grid points near solid surfaces.

However, this software package does not lend itself easily to clustering grid points in the field away from the solid
surfaces, e.g. along wake lines.

The computed pressure distributions for this configuration were compared with the experimental data by Vatsa

et. al in reference 18. In general, the computed pressures agreed well with the measured data, and the resulting

solutions indicated consistent treatment of the zonal interface boundary conditions. As expected, a large region of

low velocity fluid was observed in the cove regions of the slat and the main airfoil, and on the upper surface of

the flap. However, due to poor resolution in the wake regions, the computed velocity profiles did not correlate

well with the experimental data (ref. 18).

F/A-18 forebody/LEX

The next case that was considered for demonstrating the current multiblock code capability was the viscous

flow over the F/A-18 forebody leading-edge-extension (LEX) geometry. The test conditions were chosen as

Mo_ = 0.34, Ree = ll.5x106, and ct = 19o to correspond to flight data (ref. 19). In the actual geometry, the LEX

on the forebody merges with the wing leading edge. In the simpler model considered here, the grid at the end of

167



theLEX is extendeddownstreamasa shroudof constantcross-section,whichpermitsthe application of a simple

extrapolation condition at the downstream boundary. The effect of this simplification should be minimal on the

flow over the forebody and the LEX. A similar approach has also been employed by Ghaffari et. al (refs. 20-21).

A partial view of the 3-block grid used to model this configuration is shown in Fig. 2. A C-O type grid is used

on the forebody (block 1), whereas H-O type grids are employed in the remaining blocks. The block boundaries

are selected so that the configuration is subdivided into easily identifiable components.

The computational grid used in this study consists of approximately 750,000 mesh points. A 3.5 order-of-

magnitude decrease in the residual of the continuity equation was obtained in about 325 work units (250 fine-grid

iterations) in reference 10, which is considered quite good for such a fine mesh, and is significantly better than

the convergence rate associated with non-multigrid type of codes. The global force coefficients converged in

about half as many iterations. The computed surface-pressure compared favorably with the experimental data and

indicated correct trends on both the forebody and the LEX except at the last axial station, where the effect of wing

leading-edge missing in the computations becomes significant (ref. 10).

Subsonic transport aircraft

The next test case that was considered in this study is that of a generic wing/body/engine/pylon configuration.

The main reason for selecting this test case is to demonstrate the applicability of the current multiblock code for

engine and airframe integration problems, typically encountered in advanced subsonic transport (AST) configura-

tions. Current high-bypass-ratio engines have a very large frontal area and can have a significant effect on the

flow field on the wing due to interference effects, which can alter the performance characteristics. Under transonic

conditions, these interference effects cannot be predicted accurately with simple linear methods. The particular

configuration considered here is a DLR transport aircraft with a high-bypass-ratio engine mounted on a pylon. An

l 1-block grid consisting of approximately 550,000 mesh points generated by Rossow and Ronzheimer (ref. 22)

was used for computing the inviscid flow over this configuration. A partial view of this grid is shown in Fig. 3.

The test conditions selected for these computations are Moo -- 0.75 and _ -- 0.84 °, which are representative of

cruise condition for this type of aircraft. The solutions for this case were reported by Vatsa, Sanetrik, and Parlette

in reference 10. The computed surface-pressure contours were found to vary smoothly from one component to the

next (ref. 10), which indicates a consistent and accurate treatment across block boundaries, since each component
lies in a different block.

To assess the effect of the engine and pylon on the flow over the wing, the surface distributions on two cross
t

sections that lie inboard and outboard of the pylon were compared with the computed pressures on the clean wing

and body configuration in reference 10. Based on these comparisons, it was inferred that due to the interference

effects caused by the engine and the pylon, the pressure peak flattens in the acceleration region on the lower surface,

and the shock shifts forward on the upper surface of the wing, which results in reduced lift. The convergence

history for this case was found to be very similar to the F/A-18 case, and a 3.5 order-of-magnitude decrease in

the residual was achieved in 400 work units (ref. 10).

Supersonic transport

Currently there is an enormous interest in United States and elsewhere for developing technology for the next

generation of supersonic transports. Because of the high cost of testing a model at flight conditions, the designers

must rely heavily on CFD analysis during the developmental phase of such vehicles. A 19-block, C O continuous

structured grid consisting of approximately one million grid points was created to represent a proposed configuration

for demonstrating the current capability. A partial view of selected surfaces and zones for this configuration are

shown in Figs. 4--6, to indicate the structure and topology of the computational grid. Each component was enclosed

within a group of blocks, and the far field was filled with additional blocks. Singu!ar points were introduced at

block comers to facilitate an orderly matching of dissimilar topologies.

168



TheNavier-Stokessolutionswereobtainedfor a seriesof anglesof attackat a cruiseMachnumberof 2.4.
A typicalrun required3-4 hoursof cputimeonasingleprocessorof theNASCrayC-90to obtainaconverged
solutions.Thecomputedforcesandmomentshavebeencomparedwiththeexperimentaldata,resultinginexcellent
agreement.

STATUSOF EMERGING CAPABILITY

Theflow solverson structuredgridsarein a relativelymaturestageof developmentat this time,andare
undergoingmostlyincrementalchanges.On theotherhand,grid generationis a rapidlychangingfield that is
experiencingevolutionarychanges.In thissection,wetouchupontheactivitiesinbothof thesedisciplinesthatin
ouropinionwill havesignificantimpacton futureCFDresearch.

Grid generation

The biggestbottleneckin the grid-generationprocessoccursat thedomaindecompositionlevel,which is
generallya labor-intensiveinteractiveprocess.In theearlierstagesof grid-generationsoftwaredevelopment,such
anapproachservesa usefulpurposeby givingcompletecontrolto theuserregardingblockingstrategies,thereby
assistingin theassessmentof relativeadvantagesanddisadvantagesof differentstrategies.However,for routine
grid-generationwork,accessto batch-orientedgrid generationis preferable,in whichthedesiredblockstructure
canbeselectedvia inputfiles,andthegridgenerationcanbecompletedinanhands-offmanner.Twoindependent
developmentsoffer promise,regardingdomaindecomposition.The ICEM/CFDhasdevelopedanobject-based
semi-automatedhexahedralvolumemesherfor creatingmultiblockstructuredmeshes,knownasICEM/HEXA.
Theuserdefinestheinitial structureor letsHEXAinitializetheblockstructurearounda givengeometry.Input
to theICEM/HEXAcanbeeitherCAD geometry,NURBSsurfacesor trimmedNURBSsurfacesandNURBS
curves.Meshsizescanbedefinedonthefamilyof CADsurfacesor individuallyon theblockedgesusingedge
meshingoptions.Thegrid is projectedontotheunderlyingCADgeometrywith minimumuserinteraction.The
GRIDPRO/AZ3000softwarepackageof Eisemann(ref. 5),ontheotherhand,employsadifferentstrategy,inwhich
theuserspecifiestheblockstructurein a topologicalparametricspace.Theblockboundariesin physicalspace
evolvealongwith thesolutionto thegridcoordinates.However,a fewareasmustbe improvedfor thissoftware
to providegoodqualityCFDgrids.First,thesurfacedefinitionwithinAZ3000needsa betterrepresentationthan
thebilinearpatchingthat is cmxentlyimplemented.A moreflexiblecontrolof grid densityis alsorequiredin
predeterminedregionsin thefieldawayfromsolidsurfacesto allowclusteringin high-gradientregions,suchas
wakes.Finally,a user-friendlyinputstreamwouldgreatlyenhancetheusabilityof thispackage.

A novelgrid-generationmethodologyhasbeenrecentlydevelopedbyateamofresearchersfromNASALangley
ResearchCenterandtheUniversityof Leeds,England.In thismethod,knownasRapidAirplane Parametric Input

Design (RAPID), a small set of design parameters and grid parameters govern the grid-generation process. The

aircraft components (solid surfaces) are manifested through solution of a fourth-order partial-differential equation

subject to Dirichlet and Neumann conditions. Volume grids are obtained through an application of the Control

Point Method. This technique has been used to generate CFD-quality grids on airplane like configurations that

consist of wing, fuselage, horizontal and vertical tails, and canards (ref. 23). This technique provides a medium

level of fidelity in terms of surface representation; hence it is more suitable for preliminary conceptual design

studies rather than final, detailed analyses.

Although truly automatic hands-off grid-generation capability for complete airplane configurations is still a

dream, some recent developments could prove very helpful in parametric design studies. In many applications,

CFD engineers are required to study the effect of small geometric changes on the aerodynamic performance of a

configuration. The recently developed software package, known as the Coordinate and Sensitivity Calculator for

Multidisciplinary Design Optimization (CSCMDO), can be used to generate volumetric grids which reflect small

geometric changes in a configuration, given a baseline configuration and the grid associated with it (ref. 24).
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Thissoftwareis controlledviaanASCIIuserinputfile for executionin abatchenvironment.Oncethegrid on

the baseline configuration is available from an independent source, CSCMDO provides the user with a simple,

efficient tool for generating grids on perturbed configurations, that are encountered routinely in design optimization

of specific class of aircraft.

Flow solvers

Compared with grid-generation codes, the flow solvers for RANS are at a relatively mature stage in the

development cycle. The state-of-the-art flow solvers can provide the steady-state solution to many problems of

aerodynamic interest within a day on modem supercomputers. As discussed earlier, most of these flow codes can

use C o continuous grids, and many others can accommodate overlapped and patched grids. However, most of the

solvers currently in use are non-conservative on patched boundaries and overlapped zones. Recently, a procedure

has become available that can provide us with geometrically conservative interpolation coefficients for patched

interfaces on multiblock grids (ref. 25). Work is in progress at NASA Langley Research Center to utilize these

interpolation coefficients for developing conservative patched-grid flow solvers.

One of the major hurdles in delivering the latest flow-solver technology into the hands of industrial customers

comes from lack of common standards for flow codes. The problem is more acute for multiblock structured codes

(as opposed to single-block codes) due to the increased amount of zonal interface information required in such

codes. For example, the time required to transfer a NASA-developed code in Boeing's project groups has been

estimated by Boeing Engineers to be in years. In recognition of this difficulty, a NASA/Industry team consisting

of participants from Boeing, McDonnell Douglas, NASA Ames, Langley and Lewis has been formed to alleviate

this problem. The main objective of this team is to develop a Complex Geometry Navier-Stokes Analysis System

(CGNS), which would standardize the input/output interfaces for major CFD codes under development at NASA

and in the U.S. Aerospace industry. Currently, the team is finalizing the intellectual contents for the CGNS, and a

prototype of the system is expected to become available before the end of this year. After the CGNS is developed

and has been accepted by the CFD user community, the task of interchanging the flow solvers in a design system

will become seamless and straightforward.

CONCLUSIONS AND RECOMMENDATIONS

Block-structured-grid-based methods offer a viable choice for solving viscous flows over complex aerodynamic

configurations. Boundary-fitted structured grids are well suited for resolving the thin viscous layers developing in

the vicinity of solid surfaces at high Reynolds numbers typically encountered in flight. State-of-the-art structured

flow solvers are known to be very efficient in computing aerodynamic flows in the presence of such embedded

boundary layers.

The major stumbling block in routine application of structured-grid methodology to CFD applications is the grid-

generation process. Progress is being made to make the surface modeling, domain decomposition, and volumetric

grid-generation codes simpler to use. The block-boundaries that are kept fixed in physical space, can severely limit

the overall smoothness and orthogonality of the resulting grids. Grid quality can be further enhanced by relaxing

the requirement of CO continuity across block interfaces, i.e. by permitting patched grids at the interfaces. It is

much easier to control orthogonality and smoothness across blocks in patched grids. The effort and time required

to generate such grids is less compared with equivalent C O continuous grids.

The availability of different types of blocking strategies would be extremely helpful in the grid-generation

packages of future. Both CO continuous grids and patched grids should be available within the same package. Of

course, the use of parametric surface definitions for the underlying geometry will retain the surface fidelity, and

the resulting surfaces will correspond more closely with the parametric models from the original CAD definition.

Another desirable feature is the ability to accommodate singular points at block boundaries for smoother merging

of different topologies (e.g. H-H and C-O).
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Futurework shouldcontinuetowardthedevelopmentof batch-orientedgrid-generationcodesthat require
little or no humanintervention,afterthesurfacedefinitionhasbeenprovided.Sincedomaindecompositioncan
hinderthe automationof block-structuredgrid generation,effortshouldfocuson automatingor simplifyingthe
domaindecompositionprocess.A knowledge-basedsystem,whichmakesuseof grid topologiescommensurate
with thegeometricconfigurationswill beextremelyhelpfulin makingthis technologymoreattractiveto CFDuser
community.In addition,gridadaptationstrategiesshouldbeexploredto makemoreefficientuseof grid points.
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Figure l.--Partial view of grid for 97-block multielement airfoil configuration.

Figure 2.--Partial view of grid for 3-block F/A-18 forebody/LEX configuration.
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Figure 3.--Surface grid and streamwise cut for subsonic transport configuration.

174



Figure 4.--Grid topology for 19-block supersonic transport configuration.
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Figure5.--Surfacegridandstreamwisecutforwing/fuselage/nacellc/diverterconfiguration.
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GRID RELATED ISSUES FOR STATIC AND DYNAMIC GEOMETRY PROBLEMS

USING SYSTEMS OF OVERSET STRUCTURED GRIDS
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Moffett Field, CA 94035

SUMMARY

Grid related issues of the Chimera overset grid method are discussed in the context of a method of solution

and analysis of unsteady three-dimensional viscous flows. The state of maturity of the various pieces of support

software required to use the approach is considered. Current limitations of the approach are identified.

INTRODUCTION

Unsteady three-dimensional viscous flow represents an important class of problems for which accurate

methods of prediction are frequently required. Such applications are almost always complicated geometrically,

may also involve relative motion between component parts, and exist in virtually all engineering disciplines.

Experimental methods of analysis, including scale-model and full-scale prototype testing, are often not possible

due to excessive cost, model limitations, human safety factors, and time-constraints associated with a commer-

cially competitive environment. Mature computational methods are not always appropriate due to inherent method

limitations. Unsteady viscous flowfields involving vortical wakes, interference effects, moving shocks, and body
motion demand the most advanced computational means available.

Currently, the only viable high-order method of prediction for these problems is the so called Chimera (ref.

1) overset grid approach. The approach involves the decomposition of problem geometry into a number of geomet-

rically simple overlapping component grids. Multiple-body applications, such as aircraft store-separation (refs. 2-

7), are treated naturally in this way. Components of a particular configuration can be altered, or changed com-

pletely, without affecting the rest of the grid system (ref. 8). Grid components associated with moving bodies move

with the bodies without stretching or distorting the grid system. The approach is applicable to both internal and

external flow applications, though most of the Chimera-related algorithm development has thus far been motivated
by external flow applications.

The computational incentives for employing an overset grid approach for unsteady three-dimensional vis-

cous flows are multiple. The flow solution process is applied to topologically simple component grids. Body-fitted

component grids are ideally suited to regions of thin shear flows such as viscous boundary-layers, wakes, etc. All

the advantages associated with structured data are realizable in the approach, including highly efficient implicit

flow solvers, memory requirements, vectorization, and fine-grained parallelism. Grid components can be arbitrarily

split to optimize the use of available memory resources. Overset structured grid components provide a natural

coarse-grained level of parallelism that can easily be exploited to facilitate simulations within distributed comput-
ing environments (refs. 9-12).

The present paper considers the current status of the Chimera-style overset grid method as it applies to

unsteady three-dimensional viscous flow. Of course, much of what can be said of Chimera in this context is also

true for steady-state (viscous and inviscid) applications. The paper includes discussion on the state of maturity of
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the various pieces of support software required to use the approach, including grid, and flow-solver related issues.
Current limitations of the approach are identified and used to suggest needs for future developmental efforts.

THE CHIMERA OVERSET GRID APPROACH

Background

In a Chimera-style overset grid approach, domain connectivity is achieved through interpolation of neces-

sary intergrid boundary information from solutions in the overlap region of neighboring grid systems. Consider, for

example, the simple two grid discretization of the airfoil shown in figure 1.

The example problem domain is decomposed into a body-fitted grid system near the airfoil surface and a

background Cartesian grid system which extends out to the far-field boundaries. The Cartesian grid completely

overlaps the airfoil grid. Clearly, the airfoil grid outer boundary conditions can be interpolated from a solution in

the off-body Cartesian grid, thereby providing the needed off-body to near-body connection for solution informa-
tion transfer. It is also clear that a similar transfer of information from the near-body solution back to the off-body

solution is required. However, the off-body Cartesian grid has no natural boundaries (physical or numerical) that

overlap the near-body grid. The Chimera style of overset gridding makes it possible to create an artificial boundary

(hole boundary) within the off-body grid system, and thereby establish the required near-body to off-body connec-

tivity.

A hole boundary for this example is created by excluding the region of the off-body Cartesian grid that is

overlapped by the airfoil. The resulting hole region is excluded from the remaining off-body solution. Conditions

for the hole boundary are interpolated from the solution in the near-body airfoil grid. In general, one-way commu-
nication connections can be established between any set of component grids through hole and outer boundaries.

Generalized algorithms for carrying out this task automatically have been developed (refs. 13-19).

Grid Related Issues

Surface decomposition and surface grid generation represent the primary impediments to the maturation of

overset grid based methods. The amount of human resources, measured in time and expertise, currently required to

generate suitable systems of overset grids for complex configurations lends validity to the notion that the approach

is only an intermediate option, and that unstructured grid approaches will ultimately represent the method of choice

for this class of problems. Even if this scenario becomes real, it is currently based on the false assumption that grid

generation for structured overset grids is a mature discipline. It also greatly devalues the numerous computational

advantages realizable through the use of structured data.

The current difficulties associated with surface decomposition and surface grid generation for overset grid

systems exist for the simple reason that there has been virtually no research directed at this area. Available struc-

tured grid generation software has been developed almost exclusively for "patched," or "blocked" systems (refs.

20-23) which require neighboring grid components to share a common surface. Although differences between

overset and blocked methods may appear slight (i.e., one requires neighboring grids to overlap and the other

doesn't), the differences are in fact profound. An overset grid approach is really an unstructured collection of over-

lapping structured grid components. As such, the approach should enjoy most of the grid generation freedoms asso-

ciated with unstructured grids, and retain, on a component-wise basis, all of the computational advantages inherent
to structured data.

Surface Geometry Decomposition. A good philosophy for a surface geometry decomposition software
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packagemightbetousethefactthatall realobjectscanbeviewedascompositesof pointandlinediscontinuities,
andsimplesurfaces.Forexample,thesharptip of a nose-conewouldbea point.Likewise,sharpedgesalonga
fuselage,thetrailingedgeof awing,etc.arelines.All objectareasthatarenotassociatedwithpointsor linesare
simplesurfaces.Whetheranobjectareacorrespondsto apoint,line,orsimplesurfacedictatesthetypeof surface
grid,andhence,volumegridtopologythatshouldbeusedfor theoversetgriddiscretization.A pointsuggeststhe
needfor a"nipple" topologyfor theobjectareain thevicinityof thepoint,andanaxistopologyfor theresulting
volumegrid.A linesuggeststheneedforgridclusteringnearthelineto maintaintheintegrityof thelinedisconti-
nuityin theoversetgridcomponent.Surfacegridsassociatedwithlinediscontinuitieslendthemselvesdirectlyto
hyperbolicsurfacegridgenerationtechniques.Simplesurfacesareamenabletoeitheralgebraicorellipticsurface
gridgenerationmethods.In anoversetgridapproach,surfacegridsassociatedwithall objecttypes(i.e.,points,
lines,andsimplesurfaces),areamenableto volumegridgenerationviahyperbolicmethods.

Figure2aillustratesapaneldefinitionof atiitrotorsurfacegeometry.Objectpointandlinediscontinuities
areindicated.A pointdiscontinuityexistsatthetipof thenose-mountedpitottube.Linediscontinuitiesexistatthe
wing/fuselageintersection,wingtrailingedge,nacelleexhaustexit,andalongthefuselage/sponsoncrease.One
possiblesurfacedecompositionof thisgeometrydefinitionis shownin figure2b,wherenopointdiscontinuities
wereretained(pitot-tubeandmountwereneglectedat thediscretionof theanalyst),butlinediscontinuitieswere
resolvedaroundthewing/fuselageintersection,wingtrailingedge,andfuselage/sponsoncrease.Thelinedisconti-
nuityatthenacelleexhaustexitwassmoothedover(atthediscretionof theanalyst)andtreatedasasimplesurface.
Asillustratedby figure2b,thesurfacegridsthatresultfromthismethodof surfacegeometrydecompositionisa
quiltof overlappingsurfacecomponents.

Surface Grid Generation. Given a suitable surface geometry decomposition, generation of a corresponding

set of overset surface grid components should be realizable in a highly automated way. Most of the basic algo-
rithms needed to develop such software currently exist. Algebraic and elliptic surface grid generation techniques,

appropriate for simple surfaces, have long been available (ref. 24). The idea for hyperbolic surface grid generation
was first put forward more recently (ref. 25), and has since been generalized (ref. 26).

Volume Grid Generation. Generation of volume grids associated with body surfaces can easily be gener-

ated in an overset grid approach using hyperbolic grid generation techniques. Hyperbolic volume grid generators

exist that are robust, highly efficient, and very easy to use (ref. 27,28). In an overset grid approach, generation of
off-body volume grids is a trivial task. The near-body set of grid components must simply be overset onto a conve-

nient background system of grids. While few software packages are currently available to perform the task of off-

body grid generation automatically, the task is still trivial and some software is becoming available (ref. 29).

Domain Connectivity. A considerable amount of research and development in the area of domain connec-

tivity among systems of overset grids has been carried out. Several general purpose algorithms for performing this

task automatically are currently available. Although existing domain connectivity algorithms can still be improved

in terms of efficiency and automation, this area of overset grid technology is maturing rapidly. Active areas of

domain connectivity research include Chimera-style hole-cutting (refs. 17-19), donor search methods (including
quality optimization) (refs. 14,17,19), automation (refs. 14,17-19), and parallelization (ref. 10).

The first general purpose domain connectivity algorithms that became widely available are the PEGSUS

(ref. 13) and, later, CMPGRD (ref. 14) codes. Both codes enjoy substantial use among overset grid practitioners.

Likewise, algorithm development associated with both codes is ongoing. In 1989 the first simulations of unsteady

three dimensional viscous flow applications involving moving bodies (ref. 3) were carried out using a script con-

trolled application of PEGSUS and the F3D thin-layer Navier-Stokes solver (ref. 30). The need for greater compu-

tational efficiency to carry out such applications, which require domain connectivity every time-step, spawned

development of alternative domain connectivity algorithms. The DCF3D (ref. 15) and BEGGAR (ref. 17) codes

were designed to accommodate moving body applications and are currently the only domain connectivity algo-
rithms that are fully integrated with general purpose flow-solvers and body dynamics algorithms.
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Flow SolverRelatedIssues

A majoradvantageof anoversetgridapproachfor solvingunsteadythree-dimensionalviscousflowprob-
lemsis thefactthatexistingsinglegrid(structured)flowsolversof documentedaccuracyandknownefficiencycan
easilybeadaptedfor applicationwithinoversetgrids.Forexample,theimplicitapproximatelyfactoredalgorithm
(i.e.,blockBeam-Warming,ref.31)for thethin-layerNavier-Stokesequations

(1)

is easily modified for Chimera-style overset grids as

El + ibAtS_A_ El + ibAt_)nB_x (2)

E! + ihAt_);C n - ibAtRel_;J-'l lt4nJ_ A_)n=

-ihAt(8_E + +8¢G -R e 8_S )

The single and overset grid versions of the algorithm are identical except for the variable i h, which accom-
modates the possibility of having arbitrary holes in the grid. The array ib has values of either 0 (for hole points), or
1 (for conventional field points). Accordingly, points inside a hole are not updated (i.e., AQ = 0) and the intergrid

boundary points are supplied via interpolation from corresponding solutions in the overlap region of neighboring

grid systems. By using the ib array, it is not necessary to provide special branching logic to avoid hole points, and
all vector and parallel properties of the basic algorithm remain unchanged.

Solution Accuracy and Conservation. A common criticism of overset grid approaches relates to the fact

that simple interpolation is often used to establish needed domain connectivity. Of course, the use of simple inter-
polation implies that conservation is not strictly enforced. However, assuming the basic flow solver is conservative,

conservation is maintained at all points in the domain except at a few intergrid boundary points. The subject of con-

servation on overlapping systems of grids has been studied by a number of researchers, including (refs. 32-34). In

light of the significance typically placed on this subject, several points need to become generally recognized.

First, formal flow solver solution accuracy can be maintained using simple interpolation (refs. 33-35). For

example, in a grid refinement study, if the position of component grid outer boundaries remains fixed with increas-

ing resolution of the several grid components, the formal accuracy of a 2nd order flow solver will be maintained

with an interpolation scheme that is 2nd order accurate (i.e., tri-linear interpolation of the dependent flow vari-
ables).

Second, the primary issue with interpolation of intergrid boundary information is not necessarily one of

conservation, but one of grid resolution. If a flow solution is represented smoothly in both donor and recipient

grids, simple interpolation is sufficient to carry out simulations that are accurate in all respects. In practical applica-

tions, given a fixed number of grid points, it is not possible to provide grid resolution of sufficient density to guar-

antee that flow features will always be smoothly represented in the grids. If a conservative interpolation scheme is

used at intergrid boundaries, the speed and structure of flow features (i.e., shocks, vortices, etc.) may appear contin-

uous across grid interfaces. However, lacking sufficient grid resolution, the accuracy of the solution can not be

ensured in any case. Hence, grid resolution is the primary issue.

Third, the objective of adaptive grid techniques is to ensure smooth variation of flow variables throughout

the computational domain. Accordingly, an effective adaptive grid technique appropriate for systems of overset

grids should be viewed as the primary remedy for issues relating to conservation at grid interfaces.
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Finally,methodsare available for maintaining conservation at grid interfaces. Although complicated, spe-

cial interpolation schemes that maintain conservation at grid interfaces have been developed (ref. 36). Interpolation
of delta-quantities (0 n÷ _-0n), rather .than the dependent flow variables (_"÷_), at grid interfaces has also been

suggested as a means for ensuring space-time conservation over the entire domain (ref. 37). Perhaps the most gen-

eral approach is that of introducing an unstructured grid in the vicinity of the intergrid boundaries (ref. 38) and

employing an appropriate solver on the unstructured grid interface. Such a hybrid approach would still have all the

advantages of using structured data. Use of an unstructured solver would only be required for a small fraction of
the overall domain.

Somewhat less complicated schemes for ensuring conservation at grid interfaces are possible for incom-

pressible flows. Non-conservative interpolation of intergrid boundary conditions can be made conservative by local
redistribution of fluxes such that global conservation is ensured (refs. 39,40).

Adaptive Grid Techniques. The subject of adaptive grids has a very large literature. It is clearly not the aim

to review this subject here. However, some discussion on the various types of adaption and their respective

strengths and weaknesses for application within overset systems of structured grids is provided. The broad class of

adaption methods that redistribute a fixed number of points in response to evolving flow features (refs. 41-43) are

not considered here. Although such an approach could be implemented within an overset system of grids, there are
other methods of adaption that appear to be more general.

Currently, the most popular method of adaption appears to be unstructured cell subdivision. Indeed, the

approach is very powerful and general. The approach has been exploited within Cartesian systems, as well as more

traditional unstructured grid systems (see figure 3). In either case, the data is unstructured. In the approach, the geo-
metric components of the problem and volume of the domain are discretized with a base grid system. Then, in

response to evolving flow features, grid points are added to the base grid by local cell subdivision. Points added to

the base grid can be later removed when no longer needed (refs. 44-47). The strength of the approach is that it effi-

ciently allocates grid-points where they are required to maintain solution accuracy. There are several ways in which

the approach could be implemented within systems of overset structured grids. The principal drawbacks to the

approach are the memory and computational penalties associated with the requisite unstructured data. One possible

implementation of this type of solution adaption within an overset structured approach is illustrated in figure 4. The
implementation is a hybrid Chimera structured overset grid/unstructured solution adaption algorithm (ref. 49). In

the approach, high resolution body-fitted structured grids are used near the bodies (which may move) and are over-

set onto an unstructured background grid. The bodies cut Chimera holes in the background unstructured grid. All

off-body solution adaption is carried out in the unstructured grid using the approach described in (ref. 45).

Another class of solution adaption described in the literature utilizes systems of nested fine overset struc-

tured grids. The first such approach suggested the use of nested Cartesian grids (ref. 50) to align with flow features
and maintain solution accuracy. Variations of the original approach have continued in the literature and have found

application in Cartesian based solution procedures for geometrically complex applications (ref. 51). The basic

approach is not limited to Cartesian grids, but can be applied in computational space as well for structured curvilin-
ear grid systems (ref. 52).

A pure Chimera approach to solution adaption has also been explored (refs. 34,53,54). In this approach,
structured fine grids are used to resolve flow features with coarse-to-fine and fine-to-coarse grid communication

being accomplished via traditional Chimera domain connectivity methods (see figure 5).

Various alternatives to a pure Chimera approach to adaption have also been suggested (refs. 29,54). The

approach favored by the author is described in (ref. 29) and divides the solution domain into near-body and off-

body regions. Near-body regions of the domain are discretized with high-resolution body-fitted component grids

that extend a relatively short distance from body surfaces. The method of adaptive refinement is designed to pro-
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videresolutionof off-bodydynamicssubjecttothemotionof flowfeaturesand/orbodycomponents.The off-body

portion of the domain is defined to encompass the near-body domain and extend out to the far-field boundaries of

the problem. The off-body domain is filled with overlapping uniform Cartesian grids of variable levels of refine-

ment. All adaptive refinement takes place within the off-body component grids. Initially, regions of the off-body

field are marked for refinement level based on proximity to near-body boundaries. However, during the solution

process, the off-body field is marked for refinement level based on proximity to near-body boundaries and esti-

mates of solution error. Subsequent to refinement level marking, off-body regions of like resolution are coalesced

into rectilinear blocks of space, each block becoming a uniform Cartesian grid. Accordingly, at any time during the

simulation, the off-body field is discretized with a set of overlapping uniform Cartesian grid systems of varying

levels of refinement. The approach is illustrated in figure 6.

The obvious advantages of the overset structured methods of refinement noted above relate to the compu-

tational and memory incentives inherent with structured data. The Cartesian based methods noted in (refs. 29,51)

offer additional advantages derivable from multiple characteristics of Cartesian systems. For ex,ample, no memory

is required for grid related data for uniform Cartesian grid components except for the two points that define the

diagonal of a box which bounds the grid component and the grid spacing constant. Domain connectivity among

systems of uniform Cartesian grids is trivial. Also, highly efficient flow solvers for Navier-Stokes equations on uni-
form Cartesian grids can be employed.

CONCLUDING REMARKS

A review of even a small sample of recent applications of overset methods for unsteady three-dimensional

viscous flow situations will clearly demonstrate the power and generality of the overall approach. Highly complex

geometric configurations can be accurately simulated, including cases involving relative motion between compo-

nent parts.

All the advantages associated with structured data are realizable in the approach, including highly efficient

implicit flow solvers, memory requirements, vectorization, and fine-grained parallelism. Grid components can be

arbitrarily split to optimize the use of available memory resources. Decomposition of problem domains into a num-

ber of overlapping components creates a coarse-grained level of parallelism that can easily be exploited to facilitate

simulations within distributed computing environments.

The subject of surface geometry decomposition tor overlapping systems has been heretofore ignored and
currently represents the largest impediment to the maturation of Chimera-style overset grid methods. Existing sur-

face grid generation software for blocked, or patched, grid systems do not allow full exploitation of the inherent

advantages of overlapping grid systems. Research in this area is badly needed. Other aspects of the Chimera-style

overset grid approach are maturing more rapidly. These include algorithm development and generalization for

domain connectivity, volume grid generation, surface grid generation, parallel computing, and solution adaptive

grid techniques.
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Figure 3. -- Solution adaption via cell subdivision, a) Unstructured Cartesian cell subdivision (ref. 44). b) Conven-
tional unstructured cell subdivision (ref. 48).

a) b)

Figure 4. -- Hybrid structured Chimera overset/unstructured solution adaption, a) High-resolution body-fitted struc-
tured grid (viscous) for rotor blade, b) Unstructured background grid for solution adaption of off-blade vortex
dynamics (ref. 49).
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Figure 5. -- Solution adaption via overset structured fine grids. Base grid (medium resolution body-fitted airfoil grid
and background Cartesian grid) plus 5 overset fine grid components (ref. 34).

Figure 6. -- Solution adaption via off-body uni-
form Cartesian structured grids (high-resolu-
tion body-fitted grids are used to discretize
space near physical boundaries) (rcf. 29).

a) Store separation application (near-body viscous
grid components not shown).

i

L

b) Tiltrotor downloads application (near-body
viscous grid components not shown).
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SUMMARY

A discussion of the strengths and weaknesses of overset composite grid and solution technology is

given, along with a sampling of current work in the area. Major trends are identified, and the observation is

made that generalized and hybridized overset methods provide a natural framework for combining disparate

mesh types and physics models. Because of this, the author concludes that overset methods will be the

foundation for the general purpose computational fluid dynamics programs of the future.

INTRODUCTION

Overset grid methods have been used to great advantage in the solution of flow fields over geometrically

complex configurations, and for multiple bodies with relative motion. The usefulness of the overset approach

has been demonstrated for problems ranging from three-dimensional flow around a ship (see appendix,

Malmliden) to prediction of trajectories of aft ejected submunitions in supersonic flow (see appendix, Sahu and

Nietubicz) and hypersonic HEDI shroud separation (see appendix, Narain). Other approaches for modeling

complex geometry, such as the use of unstructured grids or block structured grids, do not offer the advantage of

no regridding when bodies move relative to one another.

Although proven useful, there are definitely areas that need improvement. Among these are the usability

of the codes that assemble systems of overset grids, the awkwardness of having multiple solutions in certain flow

regions, and concerns over conservation errors at internal boundaries. Fortunately, there is a great deal of current
interest in overset methods, and innovative solutions are being tested against these problems. Much of this work

was discussed at the "Second Overset Composite Grid and Solution Technology Symposium," held at Fort

Walton Beach, Florida in October 1994. The symposium was hosted by the Northwest Florida Section of the
American Institute of Aeronautics and Astronautics. At this symposium, both development and applications

related to overset grid methods were presented. (This paper will draw heavily on material presented at the

symposium. The procedure for obtaining copies of a particular presentation are given in the appendix.) A

review of accomplishments and current development in overset grid and solution technology has led the author

to the conclusion that overset methods will be widely used in the future. In fact, the assertion is made that

overset methods, in generalized and hybridized forms, will be the foundation for the general purpose

computational fluid dynamics programs of the future.

In the remainder of this paper, strengths and weaknesses of overset composite grid methods will briefly

be discussed, and representative work aimed at remedying the weaknesses will be referenced. Major trends in

development will be identified, and the conclusion about the future of overset methods will be stated.
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STATEOFTHE ART

Strengths

Thestrongpointsof theoversetgridmethodsarenumerous.Oneofthemostimportantitems,andalso
one of the original motivations for this approach, is the ability to model bodies undergoing relative motion. As

long as the bodies are rigid, the mesh system associated with the body can move with it and not require

regeneration. This is a significant simplification that makes possible the solution of some problems that

otherwise would be intractable. Another advantage is the flexibility afforded by the independent meshing of

components. This allows selection of grid topology to suit the local geometry, and reduces the global

ramifications of this selection. Flexibility also comes in the form of freedom to choose physics models and

computational algorithms differently in the different grids. If the physical problem admits localization of

viscous, chemical, or other effects, then a tailored grid and solution procedure can be placed in the locality
required.

Overset methods preserve the efficiency of structured grid solvers (also of other solution methods, as

will be discussed later). Solution algorithms typically require minimal modification to operate on an overset
grid. The logic required to determine holes and interpolation coefficients and other items associated with

assembling a system of overset grids is usually divorced from the solver. The solver only needs to accept an

array indicating cells which are not to be included in the solution. Canned routines are usually used to perform
intergrid communication, letting the solver be "ignorant" of most communication issues.

An alternative adaptive refinement is possible with overset grids. Adaptive refinement can be achieved
in overset grid systems by inserting fine grids in regions in need of resolution.

The next round of advances in high performance computing capability is generally expected to come in

the form of a shift from vector processing to massively parallel processing. Domain decomposition into overset

grids is a natural mapping of existing algorithms to parallel machines. This has been done at Arnold Engineering
and Development Center (see Benek, appendix), with quite high efficiency. Jesperson and Levit (see appendix)

showed that spreading each grid across processors on a CM5 is also an option. Their overhead for intergrid
communication was "noticeable but not insurmountable."

The mode of problem solution using overset grids is well suited to a production environment. The

required component grids of a complex geometry can be developed semi-independently by different engineers,
and assembled by yet another engineer. A high degree of reuse is possible with grids developed for use in an

overset environment, resulting in libraries of frequently used geometries that can be easily put together. For

example, if models of the F-16, the 370 gallon tank, the weapons pylon, and several different weapons are sitting
on the shelf, then it is a relatively simple procedure to investigate the aerodynamics of the aircraft and various

combinations of tank and weapons. If multiple copies of the same weapon are to be carried, then the engineer

simply inputs how many and where. If another aircraft model is available, the same weapons can be put on this
aircraft very quickly.

It is also relatively easy to add small appendages to previously developed models. Jolly, et al. (see

appendix) showed an example of a quick turnaround analysis of an external battery pack addition to a weapon.

The previously developed weapon grid was not modified, but served as the outer grid into which the battery pack
grid was inserted, as shown in Figure 1.
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Weaknesses

A frankdiscussionof oversetgridandsolutionmethodsrequiresthatconsiderationbegiventothevalid
criticismsofthesemethods.Theseareasofconcernfall intofamiliarcategoriesof accuracy,efficiency,
usability,andalgorithmiccomplexity.A synopsisoftheissuesisgivenbelow,andadiscussionof ongoing
researchtargetingtheseissueswill begiveninthenextsection.

Conservationatinternalboundariesisthemostoftenvoicedconcernabouttheaccuracy(oreventhe
validity)of overset method application to problems involving shocks and discontinuities. Communication
between domains via interpolation of boundary values is, in general, nonconservative. Meakin (ref. 1)

performed a careful study of spatial and temporal accuracy of overset grid methods through numerical

experimentation. He found that if a flow solution is represented smoothly in both donor and recipient grids,

simple interpolation is sufficient to maintain formal solution accuracy. Still, this issue continues to be

bothersome since practical situations arise where the flow solution is not represented smoothly on both grids. In

these cases, according to Meakin, a conservative interface scheme is preferable, but accuracy will be

compromised regardless.

The efficiency issue is one of wasted calculations on both regions with multiple overlapping grids and in

blanked regions. In overlapping regions, each grid can have a calculated solution, and each solution will be
different due to the different discretizations. Cells in blanked regions usually undergo the same set of

calculations as field cells in order to maintain vectorization of code. This can add up to a considerable number of

wasted calculations, and is particularly wasteful on cache-based (non-vector) machines.

Usability is not at the desired level as yet. Considerable user expertise and interaction is required to

determine where to cut holes, from which grids to interpolate values, how to generate the grids to achieve

resolution matching in interpolated regions, and how to prevent circular interpolations.

Finally, the computer code required to implement overset methods can become quite complex,

especially when an attempt has been made to address some of the previously mentioned issues. What begins as a

straightforward idea can quickly become unwieldy in its implementation.

DEVELOPMENT

The development work described below is aimed at alleviating the existing weaknesses of overset

methods. Much of the work described was presented at the 2nd Overset Composite Grid and Solution

Technology Symposium (see appendix).

Conservation and Solution Accuracy

Most of the techniques aimed at ensuring conservation have achieved this result by actually eliminating

overlap between the grids in the system. Wang's method (see appendix) in a region of two grid overlap is to

leave one grid whole and eliminate the other grid from the overlap region. The precise intersection of the outer

boundary of the whole grid with the cut grid is mapped out, and unique fluxes are calculated and distributed

appropriately along this boundary. Kao and Liou (ref. 2, also see appendix) use a method they have dubbed the

Direct Replacement of Arbitrary Grid-overlapping by Nonstructured (DRAGON) Grid technique. Here,

overlapping grids are pared back to eliminate overlap, and glued together with an unstructured mortar grid.

Another idea, not so directly motivated by conservation issues as by the advantage of unstructured grids in a
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particularregion,is tosimplytiean embedded unstructured grid to a structured grid. This has been promoted by
Wang (see appendix) and others. In this form, there is little conceptual distinction from hybrid schemes that

essentially embed a structured grid near no slip boundaries and use unstructured outer grids.

Multiple Competing Solutions

Wasted Calculations.-- For complex problems, mesh arrangements can easily occur that have multiple
layers of grids in some regions of space. Instead of allowing each grid to have its own different solution, and

communicating between meshes only on the grid boundaries and hole fringes, Johnson and Belk (ref. 3) use

these layers of grids as levels in a nonaligned multigrid scheme. Interpolation of residuals and dependent

variables from finer meshes to coarser meshes throughout the region of overlap is used to calculate a defect

correction driving the coarse grid solution. The coarse grid solution is then used to update the fine grid variables.

This procedure was shown to provide a means for improving accuracy by embedding grids aligned with flow

features, but without the need to cut holes. Also, the convergence rate of the resulting grid system was

significantly enhanced in comparison to the standard overset communication scheme of cutting holes and
interpolating at boundaries.

In a similar manner, Rogers and Pulliam (ref. 4) demonstrated the advantages of a defect correction

approach for communication between overset grids. In this work, the simplification of not actually calculating a

fine grid solution was used. Instead, the coarse grid solution is interpolated to the finer embedded grid and a
defect correction is calculated to drive the coarse grid solution to higher accuracy.

One way to minimize wasteful calculations is to blank out as many overlapping cells as possible. (Of

course, unless the code uses conditional execution to skip blanked cells, this has negligible influence on the

number of floating point operations required for a solution step.) The grid assembly algorithm of Chesshire and

Henshaw (ref. 5, also see appendix) has the property of minimizing overlap subject to certain criterion on

relative cell sizes. Several others, such as Wey (ref. 6, also appendix) and Chiu and Meakin (see appendix) have

techniques to minimize overlap. In these methods, the hole boundary expands until it can go no further and still
maintain valid overset communication.

Still another approach is to eliminate overlap entirely, such as the schemes discussed earlier under the
topic of conservation.

Force Integration. -- A practical problem that results from the existence of multiple overlapping
solutions is force integration on bodies. For example, a fin added to a missile using overset methods will result

in a region near the fin with both the fin grid and the body grid conforming to the missile body. There will also

be a region of invalid body cells, or holes, adjacent to the fin, as shown in Figure 2. Accurate integration of

predicted pressure and shear stress to obtain body forces and moments requires some scheme to prevent either
doubly counting some regions, or leaving holes.

One option is to ignore the problem. If the mesh is fine, and the hole in the body grid near the fin is

relatively small, then the body force contribution can be adequately represented by using the body grid alone.

While not the most satisfying solution, the results of Lijewski and Suhs (ref. 7) show that trajectories of
separating stores can be accurately predicted with this approximation.

Another approach is that of Dietz, who wrote the TESS code to handle this situation (see appendix).

The TESS code includes all points from overlapping grids on a surface, and triangulates the intermixed points to
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produceaunifiedsurfacemesh. The points carry their properties with them, and the resulting triangular mesh is

used to integrate forces and moments.

Chan's method (ref. 8, also see appendix), on the other hand, first eliminates overlap on the surface by

removing points belonging to the coarsest overlapping grid. The pared back surface meshes are then
reconnected with a triangular grid, and the forces are integrated on this mesh.

The author's approach (ref. 9, also see appendix) is to try to avoid this problem by representing static

assemblages of components with block structured grids called superblocks. Within a superblock, no grid

overlapping occurs, except implicitly at boundaries. The superblocks are allowed to be placed in arbitrary

overset arrangements. Figure 3 shows a wing, pylon, and finned store grid system with a blocked-grid

superblock around the store.

Usability

Significant improvements in usability of overset grids and solvers have come from attempts to automate

the grid assembly process. Interactive tools have also been developed to aid in the grid assembly process. One

of the most important developments from a user's standpoint, however, is the work ofChan et al. (ref. 8, 10, also

see appendix) to develop grid generation tools for overset systems. Most of the existing overset grid assembly
tools still require externally generated grids. If the grids are not compatible in terms of having comparable point

density and a sufficient number of cells to allow an interpolated fringe after hole cutting, then the meshes must
be modified. In addition, grids around intersecting surfaces must either be built to conform to both surfaces, or a

collar grid must be used to avoid a region where points from all grids have been blanked. Chan's SURGRD code

(ref. 8) is a surface grid generator tailored for overset grids, and the HYPGEN (ref. 10) code is a volume grid

generation code particularly useful for overset grids.

Interactive tools are available to set up the input for Meakin's DCF3D Code. These tools simplify the

specification of analytic hole cutting surfaces, and give immediate feedback on the relative location of the hole
boundaries and bodies. Search hierarchy, boundary information, and other information is set interactively.

Easy assembly of overset grids has always been a goal. However, different approaches have been taken

concerning the degree of user control desired or required in the process. The most mature code that has

attempted to minimize user control requirements is Chesshire and Henshaw's CMPGRD program (see

appendix). The code uses an algorithm that determines hole size and overset connections with little user
intervention, attempting to minimize resolution mismatch in interpolated regions. CMPGRD is also set up to

allow for multigrid within each component grid. Chiu and Meakin presented work towards automating domain

connectivity for overset grids (see appendix). Their methods use the inverse map data structure to allow

inexpensive determination of the curvilinear coordinates (i.e. interpolation coefficients) of a point. The

specification of hole cutting surfaces is greatly simplified by using cartesian approximations of the body surfaces
called hole maps. Dynamic hole expansion and shrinkage to allow minimization of overlap, or optimization of

interpolation locations in the future, is also available. Wey modified an advancing-front technique for generating

an unstructured mesh to efficiently and automatically assemble overset structured grids (ref. 6, also see

appendix). His method considers the boundaries as a collection of vertices, edges, and facets, and is in principle

quite flexible. Wey uses an implementation of the "enlarged orientation theorem" to efficiently solve the

important problem of whether a point lies in the interior, exterior, or on the boundary of a prescribed surface or
front. Other's have also attempted varying degrees of increased automation and decreased user input, including

the author.
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MapleandBelkhavedevelopedanintegratedflowsolverandoversetmesh system assembler called the

Beggar code (ref. 9, also see appendix). Blocked, patched, and overset grids are used by the Beggar code. A

hierarchical arrangement is used to improve efficiency, with collections of blocked and patched grids grouped

together in a superblock. Superblocks are allowed to overlap with other superblocks to form the overset grid
system. The idealistic goal for this computer program was the ability to accept input solely consisting of:

1. Good grids.

2. Physical boundary conditions other than farfield, e.g. tangent flow, no slip wall, or mass
flow at an inlet face, etc.

3. Flow solver and six degree of freedom integrator parameters, e.g. CFL number or time step
size, number of subiterations, etc.

4. Specification of required output.

The code should then assemble the grids, determine the physical and numerical boundary conditions on all

unspecified grid surfaces, and produce the solution. We have had fair success in meeting these goals, with the

primary difficulty being in the definition of good grids.

The data structure used in the Beggar code to facilitate determination of holes and interpolation

coefficients is a variant of the polygonal mapping (PM) tree (ref. 11, 12). Stencil jumping (Newton iteration) is

used to determine precise interpolation coefficients, but this process requires good starting guesses, and can be

very expensive to use to determine that a cartesian coordinate does not lie within a grid. The desired benefit

from the Beggar data structure is to unambiguously provide a list of grids containing a point, and then to give a

stencil jumping starting guesses for these grids guaranteed to converge. The PM tree satisfies these requirements

in nearly all cases. Basically, an octree data structure provides gross subdivision of the solution domain into

smaller regions that have the property of being entirely within a grid, entirely outside a grid, or on a grid

boundary. Those regions that are entirely within a grid satisfy the requirement that a single start point is

guaranteed to result in successful stencil jumping within the region. Those regions that are on the boundary

contain a small binary space partitioning (BSP) tree that provides accurate in/out determination for all points in

the region, as well as appropriate stencil jump starting points depending on the grid in which the point falls.

Complexity

As discussed in the previous section, many new methods are being developed to automate the process of

overset mesh assembly. This results in significantly less workload on the end user of these techniques, but this is

not without some cost. The codes themselves tend to become more complex, and less inviting for the engineer

or even the numerical algorithm specialist to delve into. The advanced algorithms having to do with overset

mesh assembly are often computer science algorithms, not numerical algorithms. Overture++ is a C++ class

library designed by Reider and Quinlan (see appendix) to lessen the difficulty of writing partial differential

equation solvers using overset grids. This class library will offer utility routines to perform tasks that are generic

to all overlapping grid operations, including memory management. Pao (see appendix) gave results for a

compressible low speed flow algorithm implemented using Overture++.

SUMMARY AND DISCUSSION

Reviewing the material that has been presented here, it is evident that the push for more accuracy,

efficiency, and usability of overset methods is slowly, but fundamentally, changing the overset community's

approach. Formerly pure overset methods are allowing combination with blocked, patched, and cartesian

structured grids. Even more revolutionary for this community is the use of unstructured and prismatic grids in

some regions. Communication between all these disparate grid types is usually done in one of two ways: 1. the
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traditionalholecutting,overlap,andinterpolation(Schwartzalternatingprocedure),or2. Eliminationofoverlap
anduseofunstructuredgridmortaracrossthegap.Theotherfundamentalchangeis inembracingmore
complexdatastructuresandadvancedalgorithms.Thisincludesuseof unstructuredgrids,octrees,BSPtrees,
inversemaps,alternatedigitaltrees,andC++classlibraries.

Theoriginalimpetusfortheuseof oversetgridswasthedesiretomodelcomplexgeometryusingbody
fittedcurvilinearcoordinates.Therationaleforthiswasaccuracy,efficiency,andcodereuse.Accuracy--
becausebodyfittedcoordinatesallowedaccurateboundaryconditionimposition,providedforviscouslayers,
etc.Efficiency-- sincethecomputationalrectangleassociatedwitheachstructuredcomponentgridallowed
vectorization.Codereuse-- becauseeachgridwasjustanothercomputationalrectangletothesolver.Another
historicalmotivationwasthatrelativerigidmotionof bodiescouldbemodeledwithnoregriddingrequired.

Theenvironmentisofcoursedifferentnowthanfifteenyearsago.Therearestill strongargumentsfor
theuseofoversetmethods,atleastforthegeneralizedoversetmethodsthathavecomeintouserecently.One
argumentthathasstayedthesameis theusefulnessof oversetmethodsinmodelingmovingbodieswithout
regridding.Oversetmethodsstill offeradvantagesinaccuracyandefficiency.Accuracyandefficiencycanno
longerbetakenasstrictlysynonymouswithstructuredgridsandvectorization,however.Insteadtheargumentis
thatoversetmethodsallowuseof themostappropriatemeshtypeandphysicsmodelineachdomainofthe
problem.Adaptiverefinementviaadditionalmeshesispossible.Also,parallelizationbydomaindecomposition
isnaturalanddoesnotrequireahomogeneousprocessorenvironment.Code reuse is still a real advantage of

overset methods. Here, too, the emphasis has changed. No longer does this imply that a single solver package

should be reused on all the different grids. Instead, when putting disparate mesh types and physics models

together, the solvers developed for structured, unstructured, cartesian meshes, and so on can be linked together

with relatively minor modifications to operate on a generalized overset grid system.

CONCLUSION

Overset methods are changing to meet the demands of current problems and to take advantage of

available technology. The overset techniques and computer codes can usually incorporate different mesh types

and physics models without major restructuring of either the overset code or the stand alone version of the new

solver or model. Because of this, the overset codes are ideally suited to growing into the "general purpose" CFD
codes of the future.
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APPENDIX

Thefollowingarethepresentationsgivenatthe2ridOversetCompositeGridandSolutionTechnology
Symposium,heldatFortWaltonBeach,FLonOctober25-28,1994.Copiesof particularabstractsand
presentationmaterialareavailableforanominalfeefromthesymposiumGeneralChair,Dr.LawrenceLijewski.
Hecanbereachedatphone(904)882-3124,ext3376,e-maillijewski@eglin.af.mil,or

WL,qMNMW
101W.EglinBlvd.Suite346A
EglinAFBFL32542

Presentations

IntroductoryRemarks- J.Benek
ResearchTopicsinComputationalMethodsforUnsteadyMultiple-BodyAerodynamics- R.L. Meakin_

OversetMethodsInc.
IssuesandAdvancesinOverlappingGridGeneration- G.S.ChesshireandW.D.Henshaw,LosAlamos

NationalLaboratory
A NewApproachtoDomainDecomposition:TheBeggarCode - D.BelkandR.Maple,WrightLaborato_'
Overture++:A C++ClassLibraryforOverlappingGridSolvers-M.Reider,LosAlamosNationalLaboratory.
TwoNewChimeraMethods:Applicationto3DStoreSeparation- J.P.Gillyboeuf,Aerospatiale-Missiles:P.

Mansuy,MatraDefense;andS.Pavsic,ONERA:France
A MethodforComputingthe3DFlowAroundaShipusingCompositeOverlappingGrids- J.F.Malmliden_

RoyalInstituteof Technology,Stockholm,Sweden
ChimeraGridApplicationforFighterConfigurations- M.Mani,McDonnell-Douglas
Verificationof aTransonicEulerSolutionof anF-16AircraftwithaGenericFinnedPressure-Instrumented

StoreUsingChimeraGridScheme- W.C.Riner,B.A.Jolly,N.C.Prewitt,SverdrupTechnologyInc.:
andJ.M.Brock,Jr.,TestWing,EglinAFB,Florida

OnAutomatingDomainConnectivityforOversetGrids- I.Y.ChiuandR.L.Meakin,OversetMethodsInc
Developmentof anAutomaticMeshInterfaceGeneratorforOverlappedStructuredGrids- T.C.Wey,NASA

JohnsonSpaceCenter
Tutorial:PEGSUS- N.E.Suhs

ComputationalFluidDynamicsfor MultipleProjectileConfigurations - J.SahuandC.J.Nietubicz,Army
ResearchLaboratory

NumericalSimulationof aPaperCoatingFlow- F.Olsson,RoyalInstituteof Technology,Stockholm,Sweden

ComputationalMethodologyforTime-AccurateMultipleBodyMotion -R.D.ThornsandJ.K.Jordan,
CalspanCorp

ThePredictionof UnsteadyHEDIShroudSeparationEvent- J.P.Narain,LockheedMissilesandSpaceCo.
Tutorial: BEGGAR- D.Belk
ConservationandLinearSystemIssuesonOversetCompositeGrids- J.S.Saltzman,LosAlamosNational

Laboratory
AnAdvanceinOversetGridSchemes:FromChimeratoDRAGONGrids,- K.H.KaoandMeng-SingLiou,

NASALewisResearchCenter
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Conservative Chimera for 3D Euler Equations on Structured/Structured, Structured/Unstructured Grids, - Z.J.

Wang, CFD Research Corp

Tutorial: DCF3D, R.L. Meakin

Comparisons of Overlapping Grid Communications with Beggar and Pegsus - N.C. Prewitt, Sverdrup

Technology, Inc

Navier-Stokes Analysis for Propulsion-Airframe Integration by Using OVERFLOW/Chimera Overset Grid

Approach - L.M. Gea, McDonnell- Douglas Corp.

Some Experiences with the NPARC Overset Grid Capability - H.J. Thomburg, B.K. Soni, M.H. Shih, B.K.

Kishore, Mississippi State University

General Approach to Calculating Forces and Moments on Overset Grid Configurations - W.E Dietz, Calspan

Corp

Recent Developments in Grid Generation and Force Integration Technology for Overset Grids - W.M. Chan,
NASA Ames Research Center

Adaptive Composite Overlapping Grids t'or Hyperbolic Conservation Laws - K.D. Brislawn, D.L. Brown, G.S.

Chesshire and J.S. Saltzman, Los Alamos National Laborato_'

Adaptive High-Order Godunov Projection Methods tbr the Incompressible Navier-Stokes Equations on

Overlapping Grids - D.L. Brown and W.J. Rider, Los Alamos National Laboratou'

A Structurecb_Unstructured Overset Grid Flow Solver for Helicopter Rotor Flows with Adaption - E.N. Duque,

Army ATCOM, NASA Ames Research Center

Parallel Adaptive Mesh Refinement for Overlapping Grids - D. Quinlan, Los Alamos National Laboratory

A Navier-Stokes Chimera Code on the Connection Machine CM-5: Design and Performance - D.C. Jespersen

and C. Levit, NASA Ames Research Center

Progress Report on High-Performance High-Resolution Simulations of Coastal and Basin-Scale Ocean

Circulation - D.W. Barnette, J.M. Swisshelm, R. Tuminaro and C.C. Ober, Sandia National Laboratory

Tutorial: CMPGRD - G. S. Chesshire

CGINS: A Solver for the Incompressible Navier-Stokes Equations on Overlapping Grids - W.D Henshaw, Los

Alamos National Laboratory

An Algorithm for All Speed Flows - K. Pao, Los Alamos National Laboratory

Analysis of the Space Shuttle Ascent Aerodynamic Environment - R.J. Gomez and F.W. Martin,Jr., NASA

Johnson Space Center

GBU-28 Pressure Port Analysis - B.A. Jolly, Sverdrup Technology Inc.; J.M. Brock,Jr., Test Wing, Eglin AFB;

and L. Coleman, Tybrin Corp.

Analysis of the Re-Designed Space Shuttle APU Control Value - C.H. Campbell and T.C. Wey, NASA Johnson
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Figure 1: Useof an oversetgrid to add an appendageto an existing configuration.

Figure 2: Example of problem areafor force integration on intersectingsurfaces.
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Figure 3: Beggargrid with blockedgrid for finned store.
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ABSTRACT

A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated

automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain.

Where the resulting cells intersect bodies, N-sided "cut" cells are created using polygon-clipping algo-

rithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-
to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes

equations are solved on the resulting grids using a finite-volume formulation. The convective terms are

upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing

input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The

more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces.

Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are

obtained and compared to theory, experiment and other accepted computational results for a series of low
and moderate Reynolds number flows.

I. INTRODUCTION

For complicated geometries, unstructured grids can be easier to generate than structured grids, which is

directly responsible for their increasing popularity. Traditionally unstructured grids, with volume grids

comprised of triangles in two-dimensions and tetrahedra in three-dimensions, are typically generated by
first discretizing the bounding surfaces and then filling the volume grid by, say, an advancing front method,

or, by triangulating a cloud of points. Both approaches are based upon a user specified surface discretiza-

tion which is closely coupled to the volume grid generation by requiring the specified faces on the bound-

ary surfaces to be faces of cells in the volume grid. In the approach considered here, the volume grid and

surface description are not strongly coupled in this manner. The computational boundaries are described

functionally, and are "cut" out of the automatically generated, Cartesian-cell based volume grid, yielding

N-sided cells near the boundaries. This yields a computational grid comprised mostly of square, unit aspect

ratio (Cartesian) conservation volumes with polygonal boundary cells. The ability to automatically create

the volume grid and the cut, boundary cells gives the Cartesian-cell approach its utility, but adds some

complexity to the numerics and resulting computer code. Since the cell geometry and hence the cell-to-cell
connectivity for all cells is not known apriori, a unique data structure is needed to describe the conserva-

tion volumes. Indeed, it is this complication that sets the Cartesian-cell based approach apart from most of

the traditional unstructured grid approaches that are becoming more and more prevalent today.

The Cartesian, cell-based approach has been used for solving a variety of problems, and variants of the

approach have proven to be quite useful for computing both unsteady [6,7,26,27,5,10,25] and steady
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** powell @engin.umich.edu

tmlmllmlpvi uxll ml
207



[11,8,9,16,15,19,22]adaptively-refinedsolutionsto theEulerequationsandfor solutionsto thetransonic
full potentialequation[33].Recently,theusefulnessof theautomatedgriddingandadaptivemeshrefine-
mentcapabilitiesof thesolverhavebeendemonstratedforadaptively-refinedsolutionsof theEulerequa-
tionsaboutlargeaircraftconfigurations[23].Theautomatedmeshgenerationcombinedwiththeadaptive-
meshrefinementcapabilityof thisapproachoffersthepotentialof obtainingaccuratesolutionswithmini-
maluserintervention.Theworkshownhereinvestigatestheextensionof thiscapabilityto solvingthe
compressibleNavier-Stokesequationsinanupwinded,finite-volumeframework.

II. GRID GENERATION PROCEDURE

The grid is generated by the recursive subdivision of a single cell, and during the creation of the grid, the
hierarchical relation between newly created cells and their parents are stored in a binary tree data structure.

The cut cells, which are the background Cartesian cells cut into polygons, are created automatically using

many concepts borrowed from computer graphics applications. Since they are hierarchically related to

their Cartesian parents, they are also stored in the tree. This procedure of cell cutting is a subject unto itself
and its robustness is absolutely crucial for the utility of this approach. The cell cutting methodology used

here is based upon a polygon clipping algorithm [31], where a subject polygon (the body of interest) is

"clipped" against a convex clipping polygon, which for this case is the Cartesian cell. The subject polygon
can be formulated to include arbitrary functional descriptions of the bounding faces (i.e.-geometric

description), which is used here. This particular clipping operation yields the logical and operation

between the clipping polygon and the subject polygon. This operation will yield the correct cells when the

subject polygon describes the outer boundary of a flow domain, but needs to be modified slightly when the

subject polygon describes an inner boundary. When this is the case, the region needed is recovered from

the clipping operation using a list directed vertex insertion procedure. Details behind the grid generation

are presented in more detail in [12]. Once a suitable geometric description of the computational boundaries
is made, the grid generation is automatic, and since the procedure is recursive and tree based, it is also effi-

cient. An example of the grid generation is shown in Figure 1, where a coarse, base grid in a flow passage

representative of the cooling passage within a turbine blade is shown. The geometry corresponds to that in

[29], and is a projection onto the x-y plane of the geometry located along a curved surface about the turbine
blade mean chord line. The grid contains 2640 cells and was generated in 218 seconds on an IBM RS6000

Model 560 workstation. The geometry definition is made using a linearly represented continuous outer

boundary and 14 cooling fins.

The use of this particular grid and data structure easily allows adaptive mesh refinement, and away from

bodies yields smooth grids. The binary tree data structure provides a logical means of finding cell-to-cell

connectivity by logic based tree traversals and allows a straightforward means to perform mesh refinement
and coarsening via tree branch growth and pruning. There are many niceties afforded by this data structure

and grid setup. The grid hierarchy is amenable to multi-grid [17] and provides a natural means of domain

decomposition that appears well suited for coarse grain parallel computations.
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Figure1Representative
TurbineCoolingPassageGrid

III. SOLUTION OF THE EULER EQUATIONS USING A CARTESIAN,CELL-BASED

APPROACH

The Euler equations are solved using a cell-centered, finite-volume, upwinding approach. A limited, linear

reconstruction of cell-averaged data is used to provide input to a numerical flux function, yielding the flux

through cell-to-cell interfaces. The numerical fluxes are computed in an upwind fashion using an appropri-

ate approximate Riemann solver. These fluxes are then used to perform a flux balance upon the conserva-
tion volume, which is then used to advance the conserved variables in time. The procedure follows

standard practice for a finite-volume scheme. The solution procedure can be broken up into 3 stages;

reconstruction, flux construction and then evolution to steady-state. A more detailed description of the pro-
cedures is shown in [12].

The variation of the cell primitive variables in each cell is reconstructed using a linear reconstruction pro-

cedure, in the spirit of MUSCL interpolation, based on the Minimum-Energy reconstruction presented by
Barth [3]. The Minimum-Energy reconstruction minimizes the Frobenius norm of the differences between

the cell averages of the reconstructing polynomial and the cell averages of the support set. This reconstruc-

tion procedure is K-exact, in the sense that if a linear function is cell averaged upon the mesh, the recon-

structed polynomial returns the same, exact, linear function. The Minimum-Energy reconstruction

procedure provides the framework of extending the order of reconstruction, but only a linear reconstruc-
tion is considered here.

This reconstruction of cell averaged data does not preclude the introduction of new extrema: There is no

means to ensure that the reconstructed solution is bounded by the data used to perform the reconstruction.

To enforce this, the reconstruction is limited by evaluating the cell averaged data of the support cells used,

reducing the reconstructed gradient to achieve monotonicity of the data. This will in turn guarantee mono-
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tonicity of the solution if the numerical flux function is a positivity preserving function (which for an

upwind scheme is sufficiently implied by positivity of the dissipation matrix), and provided that a proper
choice is made for the time step. The concept of restricting the local solution to be bounded by its immedi-

ate neighbors is based upon a discrete interpretation of a local maximum principle, and has been used to
evaluate the stencils obtained for a model equation of the viscous terms of the Navier-Stokes equations, in

[ 12]. The limiting procedure implemented here is based upon the procedure shown by Barth and Jespersen

[4]. To ensure monotonicity of the reconstruction at cell interfaces, the solution is required to be bounded

by the data used to perform the reconstruction. A single limiter, * = rain (Oj) is found for all the primitive

variables and applied to the reconstructions.

The inviscid numerical fluxes may be computed using a variety of approximate Riemann solvers: It is a

simple matter to supply a different numerical flux function by replacing the approximate Riemann solver in
the flow solver. For the work shown here, most of the computations have been performed using the AUSM

scheme of Liou and Steffen [21]. This novel flux function combines the efficiency of flux vector splitting

with the accuracy of flux difference splitting. The derivation and use of this flux function is available in

[211.

For simplicity, the semi-discrete form of the equations are advanced in time using a multi-stage scheme. A

spatially varying time step is used, and is indeed quite necessary, since there is typically a many order vari-
ation in cell size across the mesh due to cell refinement and cutting. A generic multi-stage scheme is used

to advance the solution from the n-th to the (n+ 1)-th time level.

lll.a SOLUTION ADAPTIVE MESH REFINEMENT

The Cartesian, cell-based approach gains its strength primarily from two features; the ability to compute

flows about complicated geometries where the initial grid is obtained automatically, and by the inherent

ease in which adaptive mesh refinement can be performed. Adaptive mesh refinement is an attempt to

improve the quality of a solution by adding cells locally where an increased resolution is desired, and by

possibly removing cells where the current resolution is unnecessarily too high. This feature, coupled with
the automated means of mesh generation, attempts to yield grid converged solutions about geometrically

complicated domains with minimal user intervention.

Each level of adaptive mesh refinement is comprised of two stages. In the first stage, refinement criteria are
constructed for all cells on the mesh, and then in the second stage, cells are tagged for refinement or coars-

ening based on this criteria. After the mesh is enriched, a new calculation is made, converging the solution

to a steady, and hopefully more accurate solution. This process of refining the grid and converging the
solution on the new grid is repeated in an automated fashion, a set number of times, until a given level of

refinement is achieved.

The refinement criteria and grading procedure used here are based upon that presented in [14,15]. Unless
otherwise noted, no changes to the form of the refinement criteria or the selection levels are made. The pro-

cedure of refinement and coarsening of the cells is based upon a statistical description of the cell size

weighted velocity divergence and curl. The local velocity divergence is used to detect compressive phe-

nomena, while the velocity curl is used to detect shear. Each of these is weighted by the local cell size so
that smaller cells contribute less to the overall weighting, as suggested in [32].

llI.b VALIDATION OF THE EULER SOLVER

The Cartesian, cell-based approach has been demonstrated extensively for a wide variety of inviscid flows

[11,8,9,16,15,19,22,23] and has been assessed for accuracy [13]. In [13] the approach was shown to com-

pute transonic flows with a global second-order accuracy and a local accuracy between first- and second-
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order.Theadaptivelyrefinedsolutionsaboutatransonicsingle-componentairfoilandasub-critical,multi-
componentairfoilareshownhere,demonstratingtheadaptive-meshandmeshgenerationcapability.

lll.c AGARD CASE 06: TRANSONIC FLOW PAST A RAE 2822 AIRFOIL

This case corresponds to the same geometry and free-stream conditions as Test Case 06 in the collection of

inviscid flow test cases[i]. Adaptive mesh refinement is performed for four levels beyond the base grid
level. Figure 2 shows the final, adapted grid and Figure 3 shows the Mach number contours at the final

refinement level.The solution compares well with the computed results, tabulated in [1]. Figure 4 shows
the computed surface Mach number and the computed results from [ 1].
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lll.d SUDDHOO-HALL MULTI-ELEMENT AIRFOIL

This four-element airfoil has been included in a series of test cases at the 1994, ICASE/NASA LaRC

Workshop on Adaptive Grid Methods. The geometry corresponds to that obtained by a conformal mapping

technique [30], which has also yielded surface pressure data. The airfoil geometry has been curve fit using

a cubic spline and made available on Mosaic (http://www.icase.edu/workshops/adapt) by the workshop

organizers. The free-stream conditions corresponding to this case are M** = 0.2 and ct = 0°. The mesh is

generated automatically and adaptive-mesh refinement performed for 3 levels beyond the base grid. The

computed solution on the final grid is compared to the potential flow solution in Figure 7 while the final

grid and pressure contours are shown in Figure 5 and Figure 6.
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IV. VISCOUS FLUX FORMULATION

The essence of the cell-centered viscous flux formulation is the reconstruction of the gradients of the veloc-

ity and temperature at the cell interfaces from the cell-averaged data of the cells around it. Once this has

been completed, a numerical quadrature is performed over the cell faces, yielding the desired viscous

fluxes through the interfaces. For cell-centered schemes, there are prevalently two separate classes of the

viscous gradient reconstructions, which have been analyzed in [ 12]. The first and most widely used class is

based upon an application of the divergence theorem to a co-volume surrounding the face where the flux is

desired. These types of reconstructions are classified as Green-Gauss type reconstructions. Four of these

types have been analyzed in [ 12], and are delineated amongst themselves by the reconstruction co-volumes

and the procedures used to obtain the data at the vertices of the co-volumes. A different class of gradient

reconstructions based upon expanding a polynomial about the face midpoint and then differentiating the
polynomial to obtain the gradients has been proposed by Mitchell [24]. Linear and quadratic reconstructing

polynomials are found using a Lagrangian type of interpolation, and are also examined in detail in [12].

There, the six schemes were analyzed for quality and positivity by local Taylor-series expansions of the

stencils created for Laplace's equation on grids representative of the Cartesian approach. It was shown the

importance of the K-exactness of the interface gradient reconstructions. The analysis showed that for arbi-

trarily distorted grids, the only means to obtain a conservative, first-order accurate discretization requires

that the gradients be found from quadratically-preserving functions. Importantly, it was shown that if the

gradient reconstruction procedure is not at least linearity-preserving, stencils can be obtained that preclude

grid convergence, and will actually have an error that increases with mesh refinement. This type of trunca-

tion error is termed here as being mesh divergent. Very importantly, robustness of all of the schemes upon

the distorted meshes caused by mesh refinement was gauged using a positivity analysis. Non-positivity of a
reconstruction scheme can inhibit convergence and violates the discrete interpretation of the continuous

maximum principle entertained by elliptic solutions.

To summarize the analytical results presented in [ 12], of the four Green-Gauss type reconstructions ana-

lyzed, three were shown to be either mesh divergent, produced either extremely non-positive stencils or

gave solutions that on certain topologies yielded stencils that were completely or partially decoupled from

the neighboring cells. The fourth reconstruction type is commonly known as a diamond-path reconstruc-

tion using a linearity-preserving weighting. This reconstruction is named so because it uses a diamond-

shaped polygon to perform the gradient reconstruction. The four vertices of this polygon are formed by the
two cell centroids that share the face to be reconstructed about, and the two vertices that are at the face end-

points. The data at the centroids is known exactly, but the data at the vertices must be arrived at by some

interpolating procedure. In [20] a linearity-preserving weighting is derived which finds data at a vertex

using the local cells about it. Since the Green-Gauss reconstruction procedure can only preserve linear

functions, and can only do this if the data supplied to it is linearity-preserving, this weighting procedure

guarantees the reconstruction of a gradient that is linearly K-exact. A means of obtaining higher-order pre-

serving weightings was shown in [12], but for the linearity-preserving reconstruction scheme using the

divergence integral, this higher-order weighting is unnecessary. Although the analysis showed that this

reconstruction procedure was not positive on general meshes and could yield inconsistent stencils, it was

seen to represent the better of the Green-Gauss class of reconstructions.

Of the polynomial reconstruction types, a Lagrangian type of interpolation procedure is used to reconstruct

a polynomial based at the face midpoint, which is then differentiated to obtain the gradients. The recon-

struction requires the selection of either three cells (for the linear reconstruction) or six cells (for the qua-

dratic), which then necessitates the inversion of a Vandermonde-type matrix. In [24] it is suggested to base

the selection of these support cells to provide a centroid of the resulting polygon to be closest to the face

midpoint. In [12] it was shown that this criterion does not always yield the best stencil, and for the linear

reconstruction scheme, yielded some extremely poor stencils on certain grid topologies. The analysis
showed that the quadratic reconstruction was the only procedure that gave first-order accurate stencils for
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Laplace'sequationon arbitrarily distorted meshes. The analysis also indicated that this procedure could

give the most non-positive stencils.

Since the analysis presented no clear choice as to the best procedure of the two classes of reconstructions,

Green-Gauss or polynomial based, the two schemes were both used to compute a series of low to moderate

Reynolds number, adaptively-refined solutions using the Cartesian approach. Although neither scheme

guaranteed positive stencils, the diamond-path scheme could be viewed as representing the more positive,

yet less accurate of the two. In [12], a discrete accuracy and positivity analysis on the grids showed that the

inconsistency incurred by the diamond-path schemes is low while the computed results from both schemes

were nearly identical. Globally this inconsistency incurred by the diamond-path scheme is small due in a

large part by the regularity of the Cartesian grids. The quadratic polynomial based scheme guaranteed con-

sistency, which was also shown computationally in the discrete accuracy analysis, but yielded the most

non-positive stencils, which also made the quadratic scheme the least robust. For arbitrarily cut cells, nei-
ther scheme was as robust as would be desired, but the diamond-path scheme was shown to be the more

positive. An important conclusion from this study is that the current viscous flux functions for cell centered
schemes rely heavily upon grid smoothness and orthogonality to obtain accuracy and positivity. For the

Cartesian grids, these properties do not hold at refinement boundaries, and are extremely violated near cut

cells. This has negative implications for the smoothness of aerodynamic parameters that rely upon deriva-

tive quantities at walls, such as skin friction and heat transfer, and can have a detrimental effect upon con

vergence. Regardless of these comparatively negative findings, the approach can still prove to be useful,
and can give accurate, automatically gridded and adaptively-refined solutions of the Navier-Stokes equa-

tions for low and moderate Reynolds number flows. The following computations illustrate adaptively

refined solutions using the Cartesian-cell approach with the diamond path, linearity-preserving viscous
flux function.

IV.a LAMINAR DRIVEN CAVITY FLOW

The laminar flow inside a square, driven cavity is computed and compared to the computed results of Ghia,

et. al. [18]. In [ 18], an incompressible formulation of the Navier-Stokes equations were solved using an

implicit multi-grid method, where tabulated u- and v-velocity data is supplied along the lines through the

geometric center of the cavity. To compare with these incompressible results, the Mach number used here

is taken to be Mli d = 0.1. Two Reynolds numbers were computed and compared to the tabulated results.

IVa.1 Re=lO0

A uniform base grid of 1024 cells (32 by 32) is generated, and three levels of adaptive mesh refinement

beyond the base grid are obtained. Adaptive mesh refinement improves the solution slightly, but the initial

solution is quite good. Figure 8 and Figure 9 show the computed u- and v-velocity profiles along vertical

and horizontal lines through the geometric center of the cavity for the diamond path scheme. Figure 10

shows the final adapted grid and Figure 11 shows contours of u-velocity. Particle paths, showing the pri-

mary and secondary vortices is shown in Figure 12.
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Figure 11 Refinement Level 3,
u-velocity Contours

As seen in the adapted grid, the refinement strategy has added points near the lid and has resolved the grid

near the upper corners, where there are singularities in the u-velocity. There are secondary vortices situated
in the lower comers of the cavity: These vortices are not isolated by the refinement strategy, which indi-

cates that a better strategy more suited for viscous flows might be needed. Overall, though, the solution is

predicted well.
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Figure 12 Particle Paths:

IVa.2 Re--4_

This case is similar to the previous, although the Reynolds number is now 400. A coarse base grid is gener-

ated, and three levels of adaptive mesh refinement are performed beyond the base level. A comparison to

the computational data of Ghia[ 18] is shown for the u- and v-velocities on lines through the geometric cen-

ter in Figure 13 to Figure 14.
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Here, the solution on the coarse, base grid is poor, although the solution is improved through the adaptive

mesh refinement. Figure 15, Figure 16 and Figure 17 show the adapted grid, u-velocity contours and par-

ticle paths in the cavity.
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Figure 15 Final Adapted Grid,
Re=400 Driven Cavity

Figure 16 u-velocity
Contours, Final Adapted

The solution obtained is good on the final grids, and the mesh refinement is shown to have improved the

solution, even though the refinement strategy has not been derived with viscous flows in mind.
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Figure 17 Particle Paths, Re=400
Driven Cavity

IV.b LAMINAR FLOW OVER A BACKWARD FACING STEP

The laminar flow over a backwards facing step at two Reynolds numbers is used to validate the solver. The

computed results are compared to the experimental data of [2] at the laminar Reynolds numbers. A para-

bolic velocity profile is specified at the inflow, and the exit pressure is specified. This ensures that the

proper pressure gradient and mass flow is imposed on the flow.
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IVb.1 Re=lO0

Adaptive mesh refinement is made for three levels of refinement beyond the coarse, base grid. Figure 18

shows the grid and Figure 19 shows the effect of adaptive mesh refinement at a location corresponding to
2.55 step heights downstream of the step. Comparisons are made at other locations of the flow in [12]: The

results compare equally well, and are not shown here. The agreement with the experimental data is good,
and the adaptive mesh refinement improves the solution quality with each refinement.
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Refinement Level 3: Close-up Near Step
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Figure 19 Comparison of
Adapted Solutions at x/S=2.55.
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IVb.2 Re=389

This case is identical to the previous case, but the Reynolds number is Re=389. The computed velocity

profiles through refinement at x/S=2.55 are shown in Figure 20. As before, the adaptive mesh refinement

automatically improves the solution quality, and the final refinement level solution compares well with
experiment.
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Figure 20 Comparison of Adapted
Solutions at X/S=2.55. Re=389
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IV.c DEVELOPING LAMINAR FLOW OVER A FLAT PLATE

The developing, laminar flow over a fiat plate which is aligned with the free-stream is computed and com-

pared to the theoretical solution. A uniform flow is imposed ahead of the plate, and the flow is allowed to

develop along the plate. Conditions are set so that the Reynolds number based on plate length is 10,000.

The Mach number is taken to be M = 0.2 which eliminates the need for any compressibility transforma-

tion to compare to theory. When a poorly refined base grid is specified, the coarser solutions are improved

successively by the adaptive mesh refinement. Figure 21 shows the close up of a base grid near the leading

edge where the initial resolution of the grid is made according to an estimated normal velocity scale varia-

tion deduced from theory. Figure 22 and Figure 23 show the effect of adaptive mesh refinement upon the

u- and v-velocity profiles while Figure 24 shows the skin friction through refinement.
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Figure 21 Close-up of Base Level Grid:
Length Scale Smoothing: Au = 0.2
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The smoothness of the skin friction in Figure 24 is due to the smoothness of the grid, since the root cell of

the grid system has been located so that no cut cells are introduced along the surface of the flat plate. In

[12], the plate is rotated 30° about the base axes and the identical flow is computed, bringing to light the

effect of introducing cut cells along the plate boundary. The mean flow quantities are predicted well, but

the skin friction is shown to be very oscillatory. This appears to be unavoidable with the current state of the

art of the viscous flux functions. There is no flux function that guarantees both positivity and accuracy for

cell centered schemes. Regardless of this finding, the mean flow quantities are predicted well, and the

approach can be used to compute adaptively-refined solutions of the Navier-Stokes equations about com-

plex geometries, as is indicated in the next case.

IV.d LAMINAR FLOW THROUGH A BRANCHED DUCT WITH COOLING FINS

To demonstrate the approach for complex geometries, the flow in a stylized duct is computed. This duct
geometry corresponds to an experiment conducted at NASA LeRC designed to simulate, in a simplified

manner, the flow in the cooling passages of a turbine blade [28]. The calculations shown here in no way try

to simulate the experiment: The experimental conditions correspond to a turbulent flow, while the calcula-
tions shown here are laminar. A schematic of the geometry and flow is shown in Figure 25.

"Back SteI_ Primary

o o o
o o

Inflow ° Secondaryo o

o o
°o
o o

14 Pin
Cooling Fins

Figure 25 Schematic of Branched
Duct Geometry

A fully developed profile is introduced at the inflow, and the flow is diverted into the primary passage by
the blockage introduced by the pin fins in the secondary passage. Two different Reynolds numbers based

on pin diameter and maximum velocity in the fully developed inflow profile were computed in [ 12]. The
lower Reynolds number results are only shown here for brevity, where the Reynolds number based on

maximum inflow velocity and pin fin diameter is Re=25. Only one level of adaptive-mesh refinement

beyond the base grid level was obtained, due to positivity problems in the rear stagnation region of one of

the pin fins. The final adapted grid and contours of total velocity are shown Figure 26 and Figure 27.

220



Figure26Closeupof Final Adapted Grid, Lower Reynolds Number Case
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Figure 27 Close up of Final Grid Level Total-velocity Contours.

The basic flow features predicted here correspond to those in the experiment, although some important fea-

tures are grossly under-resolved, such as the individual pin-fin wakes. The primary passage separation and

reattachment along the splitter plate and the separation anchored at the back step portion are both properly

predicted, as well as the upstream influence of the pin blockage upon the lower wall flow. Although many

levels of refinement were not achieved, the larger scale flow features were adequately predicted and were

improved by the mesh refinement procedure.

V. CONCLUSIONS

An adaptively-refined, finite-volume solution procedure for the Euler and Navier-Stokes equations using a

Cartesian, cell-based approach has been presented, demonstrated and validated. The Cartesian, cell-based

grid generation procedure is automated, and is able to generate grids about complicated geometries without

user intervention. The grid generation strategy is based upon the recursive, isotropic subdivision of a Car-
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domain,polygonalcellsare"cut"outof thebackgroundCartesianmeshusingahighlymodifiedpolygon
clippingalgorithm.Thehierarchyof thegridgenerationprocessisstoredinabinarytree,whichprovidesa
naturalmeansof findingcell-to-cellconnectivity(via logicaltreetraversals)andprovidesa straightfor-
wardmeansof adaptivelyrefiningthe grid (via treebranchgrowthandpruning).Extensionof this
approachto theNavier-Stokesequationsshowspromiseby providinga meansof obtainingautomated,
adaptively-refinedsolutionsupondomainswherethegridhasalsobeenautomaticallygenerated.
A finite-volume,upwind-basedschemehasbeenselectedfor treatmentof theconvectivetermsin the
Euler/Navier-Stokesequationsandhasbeenimplementedin theCartesian,cell-basedframework.Exten-
sionoftheCartesianapproachfor solvingtheNavier-Stokesequationshasnecessitatedacarefulinvestiga-
tion of candidateviscousflux formulations,whichhasbeensummarizedhere.Thetwo viscousflux
formulationsthatwereinvestigatedrepresent,respectively,a divergencetheorem(Green-Gauss)based
reconstructionprocedure,andaquadraticpolynomialbasedreconstructionprocedure.Analysisandprac-
ticeindicatedthattheGreen-Gaussbasedprocedure,wheredataatthefaceverticeswasfoundina linear-
ity-preservingmanner,wasadequateandwasalsothemorerobustof thetwo, althoughneithercould
guaranteepositivityon arbitrarilydistortedmeshes.This non-positivityreducedtherobustnessof the
solver,althoughusefulresultscanstill oftenbeobtained.TheGreen-Gaussbasedscheme,commonly
referredto asthediamond-pathreconstructionusingalinearity-preservingweighting,hasbeenusedhere
tocomputeadaptively-refinedsolutionstoavarietyoflowandmoderateReynoldsnumberflows.Compar-
isonsweremadetoacceptedcomputationalresults,to experimentaldataandtotheoryfor arangeof flows,
wheretheCartesian,cell-basedapproachisshowntoaccuratelypredicttheseflows.
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PREAMBLE

This paper documents the current state of development of our Cartesian non-body-fitted mesh algo-
rithms for computing Euler flows around complex configurations. We include our most recent AIAA

Aerospace Sciences Conference paper 95-0853 (ref. 1), which describes the geometric procedures used for

the Cartesian grid generation. Two new appendices extend the description of the algorithms. Appendix I

documents the flow solver used in all previous examples. Appendix II contains previously unpublished
calculations for a supersonic missile (ref. 2).

ABSTRACT

This report describes recent progress in the development and application of 3D Cartesian grid genera-

tion and Euler flow solution techniques. Improvements to flow field grid generation algorithms, geometry

representations, and geometry refinement criteria are presented, including details of a procedure for cor-

rectly identifying and resolving extremely thin surface features. An initial implementation of automatic flow

field refinement is also presented. Results for several 3D multi-component configurations are provided
and discussed.

INTRODUCTION

In this paper we discuss recent developments in our Cartesian grid approach to solving the Euler equa-
tions for flow around complex geometries. The Cartesian grid approach uses a non-body-titled grid of

rectangular cells to discretize the flow field about an object. After creating this surrounding mesh of rec-

tangular cells, the surface geometry is simply "cut out" from the underlying cells, leaving a border of ir-

regular cells surrounding the object. This approach has the potential to greatly simplify and automate the

difficult task of grid generation around complex configurations. It replaces the difficult and case-specific

problem of generating a body-fitted grid (structured, unstructured, multiblock etc.) with the more general
problem of computing and characterizing the geometric intersections between the Cartesian flow field cells

and the surface geometry. We present the algorithms used to automatically compute this required geomet-

ric information and describe some mcxlifications to our original approach (ref. 3) that assist in the represen-
tation of very thin pieces of geometry, such as a spoiler, fin, or thin trailing edge section. Our algorithms

have also been generalized so that the geometry of a complex configuration can be specified as a collection

of distinct, repositionable, and possibly overlapping components; a single geometry description explicitly
containing component intersections is no longer necessary.

* Aerospace Engineer, Applied Computational Aerodynamics Branch.

* Professor, Departrnent of Computer Science.

* Aerospace Engineer, Technical Liaison Ames Research Center.
Technical Staff.
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A Cartesiangridapproachcannotbecompetitiveunlessit hastheabilitytovarythelevelof resolution
accordingto thefeaturesof boththegeometryandflow field. This is accomplishedthroughtheuseof
adaptivemeshrefinement.A descriptionof thecriteriausedtodeterminethelevelof refinementnecessary
to resolvea solidobjectis presentedalongwithourapproachfor adaptivelyrefiningthemeshin response
to featuresin theflow field. Finally,wedemonstrateourapproachby showingsolutionsfor severalthree
dimensionalcomplexconfigurationsandcomparisonswithexperimentaldata.

AlthoughvariousCartesian-basedapproacheshavebeenaroundfor manyyears(cf. Ref.4), renewed
interestin theseapproacheshasoccurreddueto continueddifficultieswithbody-fittedgrid generation.
Somesuccessfulcalculationsin twoandthreedimensions,for boththepotentialandEulerequations,may
befoundinRefs.5-12.Theseworksdifferin theirapproachto thedatastructures,flowsolver,andadap-
tivity. ExtensionstotimedependentproblemshavebeenreportedinRefs.13-16.

OVERVIEW OFCARTESIANAPPROACHES

OurCartesiangridapproachto solvingtheEulerequationsis basedonthefinitevolumeformof the
conservationequations:

d 555wdxdydz = -_ f. ndS {1 }

dt Vol S

where w = (p, pu, pv, pw, pE) and

f.n _

rpV • n

puv. n + pnx

pvv- n + pny

pwv- n + pnz

(9E + p)v. n

{2}

For the regular (non-intersected) grid cells off of the surface, any reasonable finite volume scheme can

be used. In our case, this is a Jameson-Schmitt-Turkel scheme (ref. 17) using multi-stage Runge-Kutta
integration and central differencing with added second- and fourth-order artificial viscosity. The scheme

must however be modified to account for the details of the geometry at the irregular cells on the body sur-

face. As Eq. 1 shows, the volumes and face areas of the irregular cells must be provided along with the

normal vector for the piece of the surface within the Cartesian cell. For second-order schemes, the cen-

troids of the cut cell volumes and faces are also required.

In previous work, we attempted to compute the geometric information directly from the NURBS (Non-

Uniform Rational B-Spline) geometrical description of the object. This can be rather time-consuming,

since simultaneous nonlinear equations must be solved to compute the intersection of a cell face with the

surface geometry. Furthermore, the NURBS software package we chose was incapable of robustly per-

forming the large number of intersection calculations required to make a high-resolution Cartesian grid.

These experiences strongly influenced the development of our current grid generation approach.

Our current strategy separates the grid generation process into two distinct phases. In the first phase,

and prior to any flow solutions, all possible cell geometric quantities that might be needed at a later stage

(for example, during subsequent mesh refinement) are computed and saved in what is called the "database"

226



grid. This includesall thegeometricinformationfor theirregularcellsat thefinestpossiblelevelof re-
finement.

In thesecondphaseof ourgridgenerationprocess,the"actual"or "flow solution"grid is constructed
solelyfromthegeometricinformationstoredin thedatabasegrid. This"flow solution"grid canhavea
variablelevelof resolutionaroundtheobject;theappropriatelevelof refinementis determinedbythesur-
facecurvature.Theultimateresolutionof a flowsolutiongridis, however,limitedto thatof thedatabase
grid.

Thisseparationof thegridgenerationprocessinto two distinct phases and the creation of the database

grid eliminates the need to repeatedly interrogate the surface geometry during later flow solution refine-

ments. This guarantees that the flow solver will not abort midway to completion during a flow field re-

finement stage due to a failure in a geometric interrogation routine. However, because the database grid
covers the entire surface geometry with cells of the finest resolution, our grid generation process has the

disadvantages of requiring excessive storage and the calculation of possibly unnecessary geometric infor-
mation.

The steps of the full 3D Cartesian grid flow simulation procedure are as follows:

Step 1. Geometry Acquisition

- Generate surface wireframe or triangulation files.

Step 2. Cartesian Grid Generation

Database Grid Generation

- Determine vertices of database grid cells.

- Compute exposed face areas of database cells,

- Sort database cells by x-location.

Initial Flow Solution Grid Generation

-Generate Cartesian flow solution grid using curvature and neighbor rule base.

Step 3. Cartesian Flow Solutions

-Cycle through flow solver and mesh adaptation steps until solution converges on grid with adequate
resolution.

Step 4. Postprocessing

-Extract relevant flow field and surface data.

In the following sections we present the algorithmic details for the most important grid generation pro-
cedures, namely steps 2 and 3 above.

Geometry Acquisition

The LaWGS (Langley Wireframe Grid Standard) format for surface geometry description has been

adopted as the standard input format within the current method (ref. 18). Since all of the subsequent geo-
metrical operations take advantage of the planar nature of triangles, the LaWGS networks used to define

the individual components are decomposed into collections of triangles. A provision for reading surface

geometry stored in conventional triangular finite element vertex and connectivity list formats is also avail-
able.
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DatabaseGrid Generation

Thefollowingstepsoutlinethecreationof thesurface-intersectingdatabase grid cells.

1. Create coarse Cartesian background grid that encompasses the surface geometry.

2. Flag all cells that intersect the surface geometry.

3. Subdivide flagged cells, and eliminate those that are fully internal or fully external to the surface.

4. Recursively repeat Steps 2 and 3 until the maximum desired refinement level is reached.

Figure 1 depicts an extremely coarse database grid generated for a generic transport configuration.
Note that the database cells can intersect several geometric components in the juncture regions between

components.

Fig. 1. Database grid enveloping a generic advanced transport configuration. Grid shown is extremely
coarse for clarity. Actual database grids for practical configurations are generally divided 4-5 levels beyond
that shown.

Face Intersection Calculations.--In Step 2 of the database grid generation process, each face of every

cell must checked for intersection with the surface geometry components. For those components that pass

an initial bounding-box test, the triangles that form the component must be checked for intersection with the

face. In order for the face and triangle polygons to intersect, the intersection of one edge of one of the

polygons must exist within the interior of the other. Figure 2 illustrates typical three-dimensional intersec-
tions between a triangle (polygon 1) and two non-coplanar rectangles (polygons 2 and 3).

polygon 3

polygon 2

polygon 1

Fig. 2. Typical polygon intersections.
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First,wecomputetheintersectionsbetweenlinesextendingthrougheachedgeof polygon1 and the

plane that encompasses polygon 2. The polygons intersect along an edge of polygon 1 if the location of the

intersection point lies both between the edge endpoints of polygon 1 and within the interior of polygon 2.

B' A'

C I Y _iii iii i !"""""-'"_"'"

polygo n 2

ygon 1

C

B

Fig. 3. Computing intersections between polygon 1 and the plane containing polygon 2.

In the case shown in Fig. 3, only the edge line A-A' of polygon 1 intersects the plane containing poly-

gon 2 at point X within the interior of polygon 2. The B-B' and C-C' edge lines also intersect the plane of

polygon 2, but both of these intersections (at Y and Z) lie outside polygon 2. Although the A-A' intersection

lies within the interior of polygon 2, the intersection does not lie between the endpoints defining the edge of
polygon 1; no intersection between polygons 1 and 2 exists.

In Fig. 4, the edge intersection line B-B' from polygon 1 intersects polygon 2 at point X within polygon

2 and between the edge endpoints; an intersection between polygon 1 and polygon 2 therefore exists.

[3 _ A I

C'

A polygon I C
'V

B

Fig. 4. An intersection between polygon 1 and polygon 2 at X.

Once the existence of intersections between the triangles that form a component and a cell face is de-

termined, each intersection point must be characterized as occurring either interior to another component or
on a flow field-exposed region of the surface. This is done using the two-step ray-casting algorithm illus-

trated in two dimensions in Fig. 5. First, a ray emanating from the point in question is cast in an arbitrary

direction. Second, the number of intersections that occur between the ray and all other polyhedra is deter-

mined. If the ray intersects a polyhedron an even (or zero) number of times, then the point must lie outside

of that polyhedron. If the number of intersections is odd, then the point lies within the polyhedron. Note

that this procedure works for both concave and convex polyhedra. The polyhedra may also intersect and/or

overlap, as long as each polyhedron is watertight (completely closed), with each edge of a polyhedral face
shared by exactly one other facet of the same polyhedron.
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po/yI

Fig. 5. Inside/outside determination.

In the above figure, the ray from point A makes one intersection with polygon I, four intersections with

polygon 2, and two intersections with polygon 3. Point A is therefore inside of polygon 1. A ray cast from

point B makes zero intersections with polygon 1, one intersection with polygon 2, and one intersection with

polygon 3. Point B is therefore inside of both polygon 2 and polygon 3. If no intersections with a surface

component are found for a face, the ray-casting procedure is used to characterize the face as either fully

intemal or fully extemal to the surface geometry.

Face Area Calculations.--After the vertices of the database grid cells have been established, the areas of

the exposed cell faces are computed. For each cell face, the cross section polygon is extracted from the

surface component triangulation at the location coplanar with the cell face. The portion of this polygon

that overlaps the cell face is then computed using the Sutherland-Hodgman polygon clipping algorithm (ref.

19). In Fig. 6, polygon 3 is the result of clipping the cross-section polygon 1 against the cell face polygon
2.

$5.':_-:i::::k-':

/),9on2

_:_i--'i'-':.-'--':'.::...'--'__3_::--

::_:_.:__::::_:.,:,,:_<$:'....::_j_

Polygon I

--ii
Polygon 3

Fig. 6. Polygon clipping.

The amount of 'exposed' or 'flow-through' area for each face is then computed by subtracting the clipped

cross-sectional area from the rectangular cell face area.

The procedure for computing the exposed database cell face areas becomes more complex when the

surface geometry is composed of multiple (and possibly overlapping) components. Figure 7 illustrates the

polygons resulting from a cross section slice at a location where the components do not intersect. The col-
lection of polygons A, B, and C form the borders of polygon group i, and polygons D and E form the bor-

ders of polygon group j. Polygons A and D enclose 'solid' or 'non-flow' area, while polygons B, C, and E

surround the 'flow-through' area within A and D.

230



A

Gr

Group J

Fig. 7. Polygon groups.

For bodies composed of multiple intersecting components, the cross-section polygon groups arising

from multiple components may overlap, as in Fig. 8.

Group I

Fig. 8. Overlapping polygon groups.

To compute the net amount of each database cell face that is exposed or 'flow-through', an algorithm for

computing the net amount of 'solid' area that overlaps the face rectangle is required. The equation for the

solid area, Atota I , can be expressed as

_. " _JATnAj]
- 1(_' JA+nA++_'_ ,3}ni_ j A+__ Jn n a++_ _ aZn=_.a/-_. , . J . .

At°tal i=l i:l i J ki j t j

In Eq. 3, the indices i and j refer to individual component 'polygon groups', where A is the area of the

polygon group contained within the rectangular boundaries of the face. The '+' and '-' superscripts denote

the external (flow-through) and intemal (to a component) areas enclosed by each group, respectively. The

input to the overlap algorithm requires a listing of all the polygons associated with each group and that all

polygons within every group be initially designated as enclosing either intemal or extemal area. Finally,

the Sutherland-Hodgrnan algorithm is used to compute the net amount of overlapping area contributed by

the polygon groups. The use of the Sutherland-Hodgman algorithm is complicated by the fact that the tar-

get clipping polygon must be convex, so the Boolean intersection of two possibly non-convex polygons

must be computed by first decomposing each polygon into two sets of triangles, and then keeping track of

the sum of the areas resulting from clipping all triangles in each polygon against those of the other polygon.

This adoption of a component-based approach to Cartesian grid generation is somewhat analogous to

the use of Chimera procedures for conventional body-fitted structured grids (ref. 20). Both techniques are

intended to eliminate the need to recreate new surface definitions reflecting updated intersection information
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whenever individual components are translated or rotated. Since the database grid cells used in our proce-

dure are restricted to the exterior surface of intersecting components, the intersection regions between oth-

erwise smooth components are automatically detected. The geometric intersection information computed

and saved for each cell in the database grid consists of the cell vertex coordinates and the flow field-

exposed area of each cell face.

Flow Solution Grid Generation

The second phase of the grid generation process uses information extracted from the database grid to

build an initial flow field mesh. Starting from a coarse background grid, the Cartesian cells are automati-

cally refmed, based only on the curvature of the geometry, until the appropriate resolution is reached. This
initial mesh is then used to begin the flow solutions. Further mesh refinements, based on the flow solution

itself, occur during later flow field refinement stages.

The automatic refinement of the initial mesh is based on the surface curvature, which in turn is derived

from the local variation of the surface normal vectors. Although the surface normal vector within each da-

tabase grid cell is not explicitly included in the database, its components can be computed by taking the

difference in the exposed areas of opposing faces. This procedure is illustrated in two dimensions in Fig. 9.

x2

yl

y2-y_

xl y2

by summing the face areas of encompassed database cells.

compassed database ceils.

Fig. 9. Representative surface normal computed using difference in opposing exposed face areas.

For irregular flow field cells, the necessary surface normal vector and face areas are also easily obtained

Figure 10 shows a flow field cell and its en-

",?':'k.I
q/NI

Fig. 10. Flow cell with encompassed database cells.
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Weusetwocurvaturerulesto refinecellsin theinitial flow field mesh. The first rule is based on the

maximum difference in the surface normal direction between neighboring flow field cells. If the difference

exceeds a user-specified tolerance, the cell is marked for additional refinement. The second rule uses the

finer information in the database grid itself. If the maximum angular difference in the surface normals of

the encompassed database cells exceeds a second user-specified tolerance, the flow field cell is marked for

refinement, even if it passed the first test. Using these rules for the automatic refinement of the initial flow

field mesh has two benefits. First, the magnitude of the surface curvature and the appropriate level of grid
refinement are not inferred solely from the size of the elements used to discretize the surface. Second, the

intersection regions between overlapping components are automatically detected and appropriately refined.

After the cells have been tested and marked for refinement, a buffer layer of neighboring cells is added.

This creates smooth transition regions between refinement levels. Under no circumstances are neighboring

cells allowed to differ by more than one level of refinement. Typical values for our grid generation control

parameters are provided in Table 1.

Database angle difference 40 °

Flow field angle difference 40 °

Number of neighbor buffer layers 3

Total number of refinement passes 7-12

Table 1. Typical values used to create initial flow field grids.

Multiple Region Algorithms

One major disadvantage of the Cartesian approach and its reliance on a non-body-fitted grid is the dif-

ficulty in providing sufficient resolution for extremely thin components. To accurately represent the sur-

face geometry of thin components (such as wing leading and trailing edges, fins, and engine cowlings), an

excessive number of highly-refined cells are often required. Once a cell that has been split by the geometry

into multiple independent regions has been identified, it should instead be replaced by multiple, non-

isotropic new cells having the correct face areas and connectivity. A method of detecting cells that have

been split into two or more distinct regions is therefore highly desirable, and an overview of our approach
follows.

Figure 11 illustrates the split-cell situation in two dimensions:

Segment I A

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i!i!!!!: :@i iiiiiiii!iiiiiiiiiii '          
/ e

Segment 2

Cefli Ceflj Cellk Cefll

Fig. 11. Cells split into distinct regions.

Cell j is obviously split into three distinct polygonal regions (labeled A, B, and C). Polygons A and B

are external to the geometry, while polygon C is completely intemal. These polygons are identified and

created in a procedure that examines the two segments that form the outline of the portion of the airfoil

within cell j and categorizes their intersections with the cell edges (in the above figure, the segments are

labeled Segment 1 and 2). Once the edges of each polygon region have been established, the area within
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eachpolygonis denotedaseitherfully intemalor fully externalto thegeometry.Thethree-dimensional
procedurefor determiningthenumberof independentregionsintowhichacellhasbeensplitbeginsby ap-
plyingthistwo-dimensionalprocedureto eachfaceandthesegmentsresultingfromtheintersectionof the
surfacegeometrywith thatface.

Figure12depictstwoadjoiningcells(separatedfor clarity)intersectedbythetrailingedgeof a wing.
Theportionsof thewingsurfacewithinthecellsareshaded.

7" e

Cell B

Fig. 12. Two cells near wing trailing edge.

Figure 13 shows an exploded view of the individual polygons that compose the faces of the cells.

Cell A

Cell B

Fig. 13. Exploded view of face polygons.

After the independent polygons that compose each face are determined, matches between polygon edge
segments that lie along the edges of the parent Cartesian cell are used to group adjoining polygons into the

face collections that will compose the new independent regions. These links are shown with symbolic
shading in Fig. 14
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C#II A %

Cell B

Fig. 14. Symbolic links between matching edges.

The portions of the surface that lie within the cell are then similarly matched and included into the face

collections to form the complete face description of the independent regions. The exploded view of the in-

dependent regions is presented in Fig. 15, which shows that Cell A was split inlo three distinct regions,
while Cell B was split into two.

_11 B

Fig. 15. Exploded view of distinct cell regions.

Using the faces that compose each polygon, the face and volume centroids of the resultant new indi-

vidual regions can be computed, and the combined volumes and centroids summed and checked for consis-

tency with the parent cell.

Volume and Centroid Calculations

The cell volumes and centroids are calculated using the Gauss divergence theorem, which transforms

the required volume integrations into surface integrationg over the exposed and intercepted faces of each
cell. After decomposing each face polygon into triangles, a third-order three-point quadrature rule is used
for the integrations.
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SOLUTIONADAPTIVE CELL DIVISION

Withthecelldivisionandsurfaceinterrogationalgorithmsalreadydevelopedfor thegeometricbased
cellrefinement,theadditionof solutionadaptationis relativelystraightforward.Theapproachadoptedin
thecurrentworkfollowsthatpresentedby Aftosmis(ref. 21),appropriatelymodifiedfor usewithinthe
Cartesianframework.

Approach

Theunderlyingmethodologymaybecharacterizedasa "featuredetection"algorithm,sinceit operates
directlyoncomputedflow fielddifferences,ratherthanstrictdiscretizationerrorestimateswithinthedis-
cretesolutions.Theadaptationschemeusesatwopassapproachinscanningtheflowfieldforcelldivision
candidates.Thefirst pathsearchesfor shocksor sharpexpansions,whilethesecondtagscellscontaining
smoothinviscidfeatures.

Thisapproachis basedupontheobservationthatin a generalflow field,shocksof varyingstrength
maycausemanyparameterstojumpbyordersof magnitude(e.g.staticpressurethrougha strongshock).
Thus,thereexistsadangerof overlookinglessprominentfeatureswithacrudedetectionalgorithm.Fail-
ureto adaptthemeshto capturesuch"smoothfeatures"mayactuallyleadto anadaptiveprocedurewhich
convergestothewrongsolution(ref.22).

ShockandSmoothFeatureDetection

A normalized,undividedseconddifferenceof pressureprovidesaparameterwhichisquitesensitiveto
bothstrongandweakshocks.Thisquantityrecognizescurvature(incomputationalspace)in thepressure
profileacrossa differencestencilspanningthreecells.TheCartesiancomponentsof a directionalrefme-
mentparameterIL maybedefinedusingastencilthatextendsintothesixnearestneighborsof eachcell:

RS = RSxi + RSyj + RSzk

2 2_5 p 2 {4}
=SxPi+__Y" j+8_zP k

-fi(x) P(y) P(z)

where _i2
xP=Pi-l,j,k -2Pi, j,k +Pi+l,j,k

and -fi(x) =Pi-l,j,k +2Pi, j,k +Pi+l,j,k

Cells are tagged for division when the vector magnitude of IL exceeds a preset absolute threshold Ts

(usually set to 0.05).

[Rsl>r s {51

With the cells spanning strong nonlinearities identified, only the remaining cells are re-scanned for
smoother features. Since the extrema have been removed, the remaining discrete data may be considered

smoothly varying, and the refinement proceeds on a statistical basis as described in Ref. 23.

The parameter chosen to identify smooth, inviscid features in this preliminary work uses undivided first

differences of density, and is computed directionally as:
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R I = _)Sg i + SYg j + 5_Zg k

P(x) 9(y) P(z)
{6}

Cells are tagged for division if the magnitude of Rr exceeds the flow field mean by a pre-specified frac-
tion, 7'1,of the standard deviation, _.

if R I > R I +(_T I then tag cell for division

T/ was set to 0.1 for the adaptation example in the next section. Ellipsoidal and hexahedral selection

tools permit the user to restrict adaptation to certain regions of the flow field. This ability further focuses

computational resources on specific regions of an evolving discrete solution.

CARTESIAN APPLICATIONS

Selected results for three different configurations are presented in the following sections. All of the

applications were performed on the CRAY C-90 at the Numerical Aerodynamic Simulation (NAS) facility
at NASA Ames Research Center.

Advanced High Wing Transport

Aircraft Figure 16 displays a front view of an advanced, high wing, transport configuration. The

model is a four engine aircraft and includes the fuselage, wing, engine pylons, nacelles and mass-flow plugs

within each nacelle. Symmetry permitted use of a half model in the simulations. The surface description of
this model consisted of twelve LaWGS networks, each of which was triangulated to form a closed, water-

tight polyhedron. Intersection regions between overlapping polyhedra were successfully identified and
automatically discretized within the database grid generation process. The aircraft was simulated in tran-

sonic cruise at a low angle of attack.

Fig. 16. Front view of an advanced, high-wing transport configuration with fuselage, wing, engine pylons,
engine nacelles, and mass flow plugs defined by 12 intersecting and overlapping surface triangulations.

Starting from an initial 32x32x16 background grid, the solution process began with the generation of a
five-level, geometry-adapted mesh. This coarse initial grid contained approximately 70,000 cells, and is
shown in Fig. 17.
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Fig. 17. Geometry-adapted starting mesh.

Note that since this mesh was created solely through the geometric cell refinement procedure described

in section II.C, it actually constitutes the "starting mesh" for the adaptive flow solution. Using this grid as a

starting point, the methodology generated a final solution by cycling the discrete solution through five suc-

cessive flow solver - adaptive mesh refinement stages. The final mesh contained approximately 2.9 million
nodes, ten levels of refinement, and extended 20 fuselage lengths fore and aft, above and below, and 10

fuselage lengths spanwise from the geometry. Figure 18 provides a view of the final, solution adapted

mesh. The multiple region technology was not used in the calculations.

Figure 19 displays two views of the isobars in the discrete solution. The figure shows the presence of

the main wing shock as it extends up and over the fuselage. The solution is mapped onto cutting planes at

two wing stations aligned with the center of each engine nacelle. The resolution of the shock can be seen
both on the main wing and inside the flow-through nacelles. Figure 20 shows a close-up of the wing shock

and the mesh adaptation pattem between the inboard pylon and the fuselage. This figure also shows some

irregularities in the mesh adaptation which will be removed through improvements in the rule base govern-

ing the adaptation. Surface isobars and selected spanwise Cp cuts for this case were also computed and

compared well with experimental data.

High Speed Civil Transport

Figure 21 shows the surface pressure distribution for an advanced supersonic transport configuration

computed with the Cartesian method. Two grids consisting of 260,000 and 490,000 cells were also gener-

ated for the configuration without nacelles and diverters. Extensive calculations and comparisons with ex-

perimental data for the wing-body configuration were made at Mach numbers from 1.65 through 2.4. In
Fig. 22, the predictions at Mach 1.8 of the lift, drag, and pitching moment coefficients computed using the

two grids are compared with wind tunnel data. Experimental comparisons of lift, drag and pitching mo-

ment coefficient versus angle of attack were in similar agreement for all other Mach numbers. The multiple

region technology was not used in the calculations.

Wing C

An initial demonstration of the multiple-region cell technology was performed using the Wing C con-

figuration (ref. 24). This wing has a leading edge sweep of 45 degrees, an aspect ratio of 2.6, and a thin,

non-planar trailing edge due to its use of twisted, supercritical airfoil sections. Two grids of approxi-

mately 203,000 and 610,000 cells were used to compute transonic flow solutions. The 610,000 cell grid

was created by performing one additional refinement of the coarse grid. Both coarse grid and fine grids

were generated in a total of 30 C-90 CPU minutes. The dimension of the smallest ceUs in the finest grid is
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approximately2.8timeslargerthanthewingtrailingedgethickness,and0.0063of themeanaerodynamic
chord.After computingsolutionsata Machnumberof 0.85andanangleof attackof 5 degreesfor both

the coarse and fine grids, the coarse grid was examined for cells that could be split into multiple distinct

regions. Using the multiple-region algorithms, new cells were then added, yielding a corrected version of

the coarse grid with approximately 204,000 cells. The flow solver executed at a rate of 6.5 g-

seconds/cell/iteration, and all solutions were converged at least 4 orders of magnitude in the density resid-

ual. Solutions for all three grids are compared to wind tunnel data at selected span stations in Fig. 23.

Most of the disagreement between the computed and experimental distributions at the outboard station can

be attributed to viscous effects and the separation cell observed in the wind tunnel tests, but these differ-

ences were not quantified. The advantages of the multiple-region technology are, however, clearly evident.

Without the multiple-region technology, the distinction between upper and lower surface cells at the trailing

edge is lost, and the effective local chord for the coarse uncorrected grid is shortened by approximately ten

percent. Although the fine grid results show that this effect can be reduced by doubling the cell resolution,

the application of the multiple-region algorithms is clearly a significantly more efficient means of capturing

extremely thin geometric details. Figure 24 shows the upper surface of the Wing C configuration colored

by the computed surface pressure distributions for the coarse grids. The effect of the uncorrected multiple-

regions cells along the trailing edge is clearly evident in the left half of the figure. The right half of the fig-

ure indicates the benefits of the application of the multi-region technology and the associated reduction in

the surface pressure errors.

CONCLUSIONS

The current grid generation approach has been used to develop and successfully demonstrate four im-

portant features necessary for future Cartesian grid approaches. The first is the capability to identify and

refine flow field cells in regions of large surface curvature before a single flow solution is performed. The

second feature is a "component-based" capability for handling surface geometry. This feature allows sim-

ple translations and rotations to be applied to individual component definitions to create new configuration

variations, eliminating the need to return to the CAD system to create new surface discretizations that ex-

plicitly reflect the intersections between components. Third, a means for correctly distinguishing the upper

and lower surface of extremely thin (less than a cell dimension) geometrical features improves the fidelity

of the simulations without excessive refinement. The fourth feature is the full incorporation of automatic

and adaptive flow field mesh refinement. Current work focuses on improving the accuracy of the surface

boundary conditions and restructuring the grid generation procedures for increased efficiency.

This research has targeted the development and integration of many of the important technologies re-

quired for a future automated Euler Cartesian CFD procedure. Demonstrations of their application to arbi-

trary, three-dimensional configurations indicate the method's ability to dramatically reduce the time and

effort required to produce useful inviscid CFD simulations for complex vehicles.
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APPENDIXI

Thisappendixcontainsadditionaldetailsabouttheflowsolverusedto computetheexamplesin this
paper.Theflowsolveriscurrentlyundergoingvigorousdevelopment,withspecialattentionfocusedonthe
proceduresat thesolidwallboundary. We include here a description of our current algorithm for docu-

mentation purposes. The flow solver uses a multistage Jameson-Schmitt-Turkel (ref. 17) Runge-Kutta time

integration procedure with local time-stepping to reach steady state (a multigrid acceleration scheme has

not yet been implemented). For all interior points in the domain (e.g., those whose stencil does not contain

a cut cell next to the solid wall), the usual central difference scheme augmented with pressure-switched

second- and fourth-order dissipation terms is applied. Typical values of the user-specified second- and

fourth-order dissipation coefficients are 1.2 and 0.5, respectively. At the edge of the computational do-

main, these discretizations are applied on cells that are no longer regular. Currently, the location of the

volume centroid and the area centroids of the exposed portions of cut faces are not used when computing

the fluxes. Along the boundaries, the order of accuracy of the basic central difference scheme therefore

drops to first order. For cells with cut faces or faces completely intemal to the geometry, the second and

fourth derivative dissipation terms are contaminated by first and third difference contributions. Numerical

experiments have shown that the errors introduced by these dissipation terms appear, however, to be much
smaller than those associated with our current simple flux calculation strategy and our first-order solid wall

boundary condition, in which the pressure at the wall is extrapolated from the interior using piecewise con-

stant extrapolation. These cut cell discretizations have been improved in research versions of the code, but

are not yet incorporated into the production version. In careful numerical studies of these methods (which

will be reported elsewhere), improved strategies for the flux calculations at intersected faces and along the
solid wall boundaries lead to a considerable reduction in the boundary error.

APPENDIX II

Static aerodynamic coefficients for a supersonic missile configuration (Ref. 2) were computed at Mach
numbers between 2.30 and 4.63. The missile has an ogive nose cone and four cruciform fins mounted at

the aft end of a cylindrical fuselage (side and front views are provided in Fig. 25, which is taken from Ref.

2). Three grids of 290,000, 470,000, and 624,000 cells were used. The lift, drag, and pitching moment

coefficients for all three grids are compared with experimental data for Mach 2.30 in Figure 26. Additional

comparisons with the 290,000 cell grid for Mach numbers 2.96, 3.95, and 4.63 are presented in Figures 27,
28, and 29. The trends with increasing Mach number are seen to be accurately predicted, and the effects of

changes in angle of attack are in good agreement up to approximately 15 degrees. No corrections for skin
friction were made to the computed drag values.
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Figure 19. Pressure contours for the advanced high.wing transport. Contours are displayed in the symmetry plane
and on cutting planes aligned with the inboard and outboard nacelles.
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Figure 20. Close-up of wing station near inboard nacelle showing final adapted mesh and flow field pressure

contours for advanced high-wing transport.

Figure 21. Surface pressure distribution for advanced supersonic transport, Mach 2.4.
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Figure 23. Cpdistributions for Wing C, Mach 0.85, cl = 5°.
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Figure 25. Wingless missile configuration (from Ref. 2). Dimensions are in centimeters (inches).
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Figure 26. Lift, drag, and pitching moment coefficients for supersonic missile, Mach 2.3.

3:2.5

2

,v _, I I

0 -0.5 C -1M -1.5 -2

248



3

2.5

2

Cl 1.5

1

0.5

0

3

2.5

2

CL 1.5

1

0.5

0

3

2.5

2

CL 1.5

1

0.5

0

3

2.5 ÷

2

1.5

1

0.5

0 ,

0 5 (7. 10 15 0 0.5 L;'D 1

÷

).5 +

+
O I I I

o -o.5C-1M -1.5

Figure 27. Lift, drag, and pitching moment coefficients for supersonic missile, Mach 2.96.
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Figure 28. Lift, drag, and pitching moment coefficients for supersonic missile, Mach 3.95.
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UNSTRUCTURED CARTESIAN/PRISMATIC GRID

GENERATION FOR COMPLEX GEOMETRIES
Steve L. Karman Jr.*

Lockheed Fort Worth Company
Fort Worth, Texas 76101

SUMMARY

The generation of a hybrid grid system for discretizing complex three dimensional (3D)

geometries is described. The primary grid system is an unstructured Cartesian grid automatically
generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions
about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements,
may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies.

This paper describes the grid generation processes used to generate each grid type. Several example
grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little
pre-processing required by the user.

INTRODUCTION

The CFD analysis of complex geometries is becoming more prevalent in the early phases of
advanced tactical aircraft development. Unstructured grid methods are gaining popularity with the design
engineers because of the reduced amount of pre-processing effort required by the CFD
practitioner(i,2,3). Cartesian unstructured methods have recently been developed in which essentially all
the grid is automatically generated (4,5,7). The flowfield around three-dimensional configurations as

complex as a fully loaded fighter aircraft have been analyzed using these new Cartesian unstructured
methods (1°,11). These analyses generally assume inviscid flow and capture extremely detailed features
in the flowfield by using solution adaptive grid refinement. Viscous analyses, on the other hand, are

prohibitive due to the large number of Cartesian cells required to resolve viscous regions, such as
boundary layers.

Prismatic grid generation methods can generate meshes clustered near body surfaces 6.

Typically, these grids are generated using a method which marches the grid away from the surface in the
normal direction. The resulting prismatic grid interfaces with another type of grid used to discretize the
global computational domain or is converted to an unstructured grid format and combined with the
external unstructured grid 8.

This paper will describe the hybrid grid approach of combining the automatic grid generation
versatility of a Cartesian mesh with the efficient clustering capability of a prismatic grid. The combination
enables the flow solver to compute solutions about complex geometries without the limitation of

assuming inviscid flow. The methods used to generate each part of the hybrid mesh will be described in
this paper. The interfacing strategy, used by the flow solver to connect the inner and outer CFD
solutions, will also be discussed. Example grids will be shown which demonstrate the use of the

techniques on realistic fighter aircraft configurations. No flowfield solutions are presented in this paper,
although flowfield features are discernible in the final adapted grids.

*Engineering Group Specialist
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SYMBOLS

A, a, b, c

Al, Au

a x, ay, az

h

Vol

x,y,z

Ax, Az, Az

o_

0

_g

Subscripts

1

2

c

f

i

J

grid adaption parameters

adaption function lower and upper thresholds

cell face areas in x-, y-, and z-directions

unit normal at grid node

unit normal at facet

cell volume

Cartesian coordinates

grid spacings in x-, y-, and z-directions

included angle

angle between node normal and facet normal

normal smoothing parameter

normal influence coefficient

relaxation parameter

minimum x-, y-, or z-coordinate of Cartesian cell

maximum x-, y-, or z-coordinate of Cartesian cell

cell centroid index

facet index

iteration counter

neighboring node index

SURFACE REPRESENTATION

Surface geometry is input to the Cartesian grid method and the prismatic grid method as a

triangulated surface mesh. The surface mesh is typically provided by the engineering computer aided
design (CAD) package used to define the configuration. By interfacing with the CAD package used by
the designers directly, the time required to convert between the designers drawings and CFD surface
modeling is virtually eliminated.

The surface in the CAD file is defined as a list of X, Y and Z coordinates and a connectivity in the
form of three node numbers corresponding to the global indices of the forming points of each triangle.

Geometry facets are oriented such that the surface normals point into the computational domain.
Subsets of the facets are grouped together and are associated with a common boundary condition type,
such as symmetry, characteristic far-field, surface tangent flow, etc.

The surface triangulation is assumed to be an accurate representation of the surface shape, as
opposed to representing the surface using splines or surface polynomials. Therefore, smaller triangles
are required to resolve high curvature regions of the geometry. The surface triangles also control the
size of the local Cartesian cells in the initial grid generation process.
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CARTESIAN GRID GENERATION

The Cartesian grid is generated using recursive cell subdivision. Cell subdivision is initially based
on the user supplied geometry. As the CFD solution evolves, cell subdivision is based on gradients of
selected adaption functions. The major elements of the Cartesian grid generation process are described
in this section.

Octree Data Structure

An octree data structure is used to store information for each Cartesian cell during the recursive

grid generation process. A subdivided cell produces eight new offspring cells, as shown in Figure 1. The
parent cell is retained in the grid after the subdivision. The information stored for each cell consists of the
global index of the parent cell, the global indices of the eight children that may exist and the grid level of
the cell. The position of each offspring cell, in relation to the parent, is predetermined in the subdivision
process. With this information, the neighboring cell indices can quickly be determined. In addition, many
of the search procedures are made efficient using the octree data structure. For instance, the cell cutting

process, described later, makes extensive use of the parent-child information to quickly traverse the data
tree and determine which cells each geometry facet cuts.

Initial Grid Refinement Based on Geometry

The initial Cartesian grid is generated based on the resolution of the surface triangulation. The
process begins with the generation of a cube-shaped root cell that encompasses the entire
computational domain. The root cell is at grid level 1 and is subdivided in the X, Y and Z directions,
resulting in eight offspring cells at grid level 2, as shown in Figure 1. The process continues with each
offspring cell being recursively subdivided according to a length scale criterion.

In the length scale criterion, if the Cartesian cell length scale is larger than the length scale of any
facet contained within the cell or touched by the cell, the Cartesian cell is subdivided. A Cartesian cell's
length scale is defined as the length of one side of the cell. A geometry facet's length scale can be
defined in a number of ways. The most common method is the average length of the three sides of the
facet. Other possible definitions include the minimum length of the sides of the facet, the average length
of the medians of the facet or the minimum length of the medians of the facet. The user can supply a
scale factor associated with each body of the geometry that is used to multiply the facet length scale.

The initial cell subdivision process continues down each branch of the octree data structure until
all cells without offspring satisfy the length scale criterion. Recursively, the new offspring cells are tested
using the same criterion. The resulting grid contains cells near the boundaries that are proportional in
size to the geometry facets near the cell, see Figure 2.

Grid Smoothing

During the subdivision process several grid quality constraints are enforced. The first constraint

limits the number of neighbors a cell can have to no more than four neighbors on any side. This
corresponds to limiting the difference in the grid levels between neighbors to one. This constraint is

enforced so the octree data structure can be used to rapidly determine the neighbor information of the
cells on all grid levels and to simplify the flux calculation performed by the flow solver at each face. Any
refinement resulting from this constraint quickly propagates through the grid. The resulting grid varies
smoothly from fine resolution cells near the bodies or high gradient regions of the flowfield to coarse
resolution cells in the far field.

The second constraint improves the quality of the grid, and ultimately the numerical solution on
the grid, by prohibiting rapid changes in grid levels in the mesh. Any cell with finer mesh on opposite
sides in any direction is refined, as shown in Figure 3. This constraint eliminates the tendency to
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generate coarse-fine-coarse grid regions in the mesh. Numerical accuracy in the flow solver is directly
related to the local grid size and is adversely affected by this type of rapid change in mesh size.

Boundary Cell Cutting

Boundary conditions in the flow solver are imposed on the actual surface shape, as opposed to
the stair-stepped surface resulting from the collection of Cartesian cells touching the geometry. Cells at
the boundary must therefore be clipped to conform to the surface shape. This cutting process is a critical

part of the Cartesian grid generation process. It must be capable of handling totally arbitrary geometries.
The cutting process must also be fast, since it is performed after each grid refinement and derefinement

process.

The cutting process consists of generating a list of triangular boundary facets resulting from the
intersection of the geometry facets with the Cartesian cells. A brute-force approach to generating this

boundary facet list would be to test each Cartesian cell for possible intersections with each geometry
facet. This approach is extremely slow. A faster approach is to use the octree data structure to test each

geometry facet for possible intersections with Cartesian cells. Only cells down the branches of the octree
data structure in the vicinity of the geometry facet need be tested. The search procedure consists of

testing the limits of a bounding box surrounding a geometry facet for possible intersections with each
child of the root cell. If the bounding box intersects with or is contained by the child cell, the offspring of
the child cell are then tested for possible intersections with the bounding box. The process continues,

recursively, down the branch of the tree to the finest level. Cells at the finest level are then checked for
true intersections with the geometry facet.

Once it has been determined that a Cartesian cell without offspring intersects a geometry facet, a

list of intersection points is generated. Vertices of the geometry facet contained within the cell are also
stored. The intersection points are ordered such that traversing the list of points generates a right-hand

rule normal pointing into the computational domain. A centroid of the intersection points is determine by
simple averaging of the collected points. The centroid will lie on the geometry facet because the facet is
planar and only one facet at a time is processed in this manner. Smaller triangular boundary facets are
then generated from the list of ordered intersection points and the computed centroid, see Figure 4.
These boundary facets comprise a sub-region of the original geometry facet.

Each Cartesian cell may intersect an arbitrary number of geometry facets. Therefore. the

resulting list of boundary facets is generally much larger than the list of geometry facets. A typical ratio of
boundary facets to geometry facets for a complex configuration is on the order of 20 or greater.

The actual boundary conditions are applied on these boundary facets. Each boundary facet is
associated with only one geometry facet and only one Cartesian cell. Since each geometry facet is a

particular type of boundary condition, each Cartesian cell may also contain an arbitrary number of

boundary condition types.

Grid Validity

The Cartesian grid generation process may result in cells that are divided into multiple distinct
volumes, such as the cell near the sharp trailing edge region shown in Figure 5. A distinct volume exists
above the surface and another exists below the surface. Both of the volumes reside in one Cartesian

cell. Cells divided by the geometry in this way are invalid cells, since storage for only one set of
conservative variables exists for each cell. Recursive subdivision of invalid cells can correct the

situation; however, detecting invalid cells can be difficult and computationally expensive.

Several methods have been devised for detecting invalid cells. The most general method, and

the most expensive method, involves sorting the distinct segments of the boundary facets that exist on
the six faces of a boundary cell. If the segments occurring on the faces of the Cartesian cell can be
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sorted into one curve, then the cell is a valid cell. If the sorting produces more the one curve, then the

cell is an invalid cell. This method involves generating a list of segments for each cell, deleting duplicate
segments that occur from common edges of boundary facets, and attempting to sort the remaining
segments into one distinct curve. Throughout the process, an accurate grid tolerance must be used

when comparing endpoints of the segments. A tolerance too small or too large could easily result in
multiple closed curves and an incorrect determination of an invalid cell. Another drawback is that the

method cannot distinguish between the valid case and the invalid case shown in Figure 6. This may
result in excessive grid refinement. However, it may be argued from a numerical accuracy standpoint,
that each of these cases should be refined. Each boundary cell can have an arbitrary number of
boundary facets. But at what point is the number of boundary facets excessive? It may be wise to refine
the ambiguous cases and improve the quality of the mesh in the process.

A much simpler method to detect invalid cells is to sum the X, Y and Z area components of the

boundary facets in each cell. If any of the area components sum to zero when the maximum magnitude
of the area components in the same direction is non-zero, then the cell may be an invalid cell. This is
less precise than the first method and also cannot distinguish between the valid and invalid cases shown

in Figure 6. This method will also not detect an invalid cell when the geometry cuts the cell at an angle to
the Cartesian grid.

A third cell validity checking approach is a modification of the previous method. Sum the negative
and positive contributions to the area components in each direction. If both negative and positive
summations of significant magnitude occur in any of the three directions, then the cell may be an invalid
cell. Significant magnitude may be defined as a percentage of the face area of an uncut cell. This
approach will not distinguish between the valid and invalid cases in Figure 6, but it will detect invalid cells

cause by the geometry cutting the cell at an angle to the Cartesian grid, as in Figure 7. This method will
also force grid refinement in regions where there is a change in the orientation of surface normal for
smooth geometries, such as the wing leading edge shown in Figure 7.

Solution Adaptive Refinement & Derefinement

Periodically, the grid resolution may be enhanced to capture pertinent flowfield features and to
improve the solution accuracy. Adaption of the grid is based on gradients of user selected functions.

There are currently ten adaption functions available to users. A few of the more commonly used
adaption functions are velocity magnitude, Mach number, pressure, and helicity. Directional adaption
parameters are computed for each cell for each selected function, f, as

Of (,ax) l+g Of l+_ c=bf (_Xz)l+g
": _x ' _' = ay (Z_y) a:

/-_ _-.
A = ,,,_a'+b'+c °

The variable in the exponent of the length scale multiplier is used to decrease the effect of discontinuities

in the flowfield on the grid adaption 9. Generally, g is set to a value of 1.0. A value of 0.0 corresponds to
computing the gradients of the function in computational space. Thus, a shock would produce a constant
valued adaption function as the grid was refined and could inhibit refinement from taking place in
smoother regions of the flow where large cells exist. Values of g greater than 1.0 would lessen the effect
of discontinuities even further and have been used successfully in fully supersonic flowfields to force
more rapid grid refinement of the entire flowfield.

The magnitude, A, of the adaption parameters is statistically averaged. Then, during the
derefinement process, a lower threshold value of the adaption function is computed as
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A l = m-de ,

where m is the mean, o is the standard deviation and d is a user defined constant, typically set to 1.0.

Any cell, without children, with all three directional adaption parameters less than A_ is marked for
deletion. If all eight children of a parent cell are marked for deletion, then the children are deleted from
the cell list. The parent cell would reclaim the collective volume of the computational domain previously

occupied by the children.

During the refinement process, an upper threshold value of the adaption function is computed as

A u = m+e_3.

The variable e is another user defined constant typically set to 1.0. Any cell, without children, with any
one of the directional adaption parameters greater than ,% is marked for refinement.

Additional Considerations

The refinement process could, conceivably, continue to add cells to the grid indefinitely.
Therefore, some limits must be imposed. The first limit is on the minimum and maximum cell size

allowed in the grid. No cell can be refined with a length scale less than the minimum cell size specified

by the user and no cell can exist without children with a length scale greater than the maximum cell size
specified by the user. These cell size limits are usually unnecessary because of the next limiting process
imposed on the refinement process.

The user specifies a "target" number of cells desired in the final grid. This target must be slightly
less than the maximum dimension of the code in order to allow the code to enforce the smoothness
criteria mentioned earlier. The user can also specify a maximum number of new cells added per

adaption function during each grid refinement process. Limiting the number of cells added per
refinement allows the solution to evolve slowly between refinements. This prohibits the grid from

reaching the maximum number of cells prematurely, before the flowfield can adequately develop.
Additionally, the user may specify a refinement box which delineates a region in the computational

domain where adaptive grid refinement takes place.

Dudng the refinement process the cells are ranked from highest to lowest, according to adaption

parameter A. The marking of the cells for refinement proceeds from the top of the list down until the
estimated total number of cells exceeds the target maximum number of cells or the estimated number of
new cells added exceeds the specified maximum number added per adaption function. Thus, if

insufficient deletion took place to reduce the current number of cells below the target maximum, no
refinement would take place. In this case, the multiplier on the standard deviation in the lower threshold
value could be reduced or the target number of cells could be increased. The effect of these limiting

processes is to produce a near optimum grid for the target number of cells and the selected adaption
functions.

Cell Face Areas, Volumes and Centroids

The flow solver for the CFD code that uses this Cartesian mesh requires accurate computation of

the face areas and volumes of all cells. The higher order extrapolation procedure also requires the
location of the centroid of each face and the centroid of the cell. For uncut cells the face areas, volumes

and centroids are easily computed.

a x = AyAz, ay = AxAz, a z = AxAy
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(xl +x2) (Yl +Y2) ('7,1 +g2)

X c = Vc = v =
2 '" 2 ''_c 2

Vol = AxAyAz

For cube shaped cells, the spacing in each direction, Ax, Ay, Az, are equal. The centroids of the faces
are the appropriate components of the cell centroid, (x c, Yc, Zc).

The boundary facets contain the necessary information for computing the face areas, centroids
and volumes of the cut cells. Edges of boundary facets that exist on each face of a cut cell are used to

compute the exposed area and centroid of the face. The face areas and the boundary facets are then
used to compute the cell volume and cell centroid.

An example of the exposed area computation of a face of a cut Cartesian cell is shown in
Figure 8. The shaded area in the top figure represents the portion of the face contained inside the

geometry. The unshaded region is the exposed area or the portion of the face existing in the
computational domain. An elaborate procedure has been developed to compute the exposed area of the
face. The procedure involves summing areas swept out by the edges of the boundary facets that exist
on the face.

A summation point is selected, such as the lower left corner of the face shown. The areas swept
out by the two vertices of each edge and the summation point are summed. The ordering of the edge
points determines whether the computed area is positive or negative. The positive area that results from
this process is shown as the initial area of the face.

The two vertices of each edge are then projected to the top and right boundaries of the face. The

"anti-areas" swept out by the projected vertices and the summation point are summed. The ordering of
the projected points determines whether the computed area is positive or negative. The negative area
that results from this process is shown as the anti-area of the face.

The area and anti-area of the face are combined to produce the actual exposed area of the face.

In this case the combination produces the negative area shown as the combined area. Adding this
negative area to the area of the uncut face produces the area of the exposed region shown as the
resulting area. The same procedure is applied on each of the faces of cut cells that are intersected by
boundary facets.

The centroids of the faces are computed by summing the area weighted centroids of the swept
out regions during the previously described steps and dividing the result by the actual face area. The
individual swept out regions are triangles, so the centroids are simply the average of the three forming
nodes of the triangle.

Volumes of cut cells are then computed by summing volume of sub-components of the cell. A cell
summation point is selected, such as the centroid of the uncut Cartesian cell. Tetrahedra are formed

from the summation point and the forming nodes of the boundary facets. The volume of each tetrahedra
contributes to the total volume of the cell. The orientation of the facet forming nodes in relation to the

summation point determines whether the computed tetrahedral volume is positive or negative.
Prismatoids are formed from the summation point and the area of each face of the cell. The volume of

each prismatoid is positive and contributes to the total volume of the cell. An example of the sub-
components of a cut cell are shown in Figure 9.

Cell centroids are computed from a volume weighted average of the centroids of the sub-

components of the cell just described. The centroids of the tetrahedra are simply the average of the four
forming nodes. The centroid of the prismatoid is assumed to be the point one fourth the distance from
the face centroid to the cell summation point.
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PRISMATIC GRID GENERATION

The prismatic grid is generated by marching a triangulated surface mesh outward. The major
elements of the process are the surface triangulation, the computation of the surface normals at each

grid point, the marching step size, and the prevention of grid crossing in concave and convex regions of
the surface.

Surface Triangulation

The surface triangulation produced by the CAD program described earlier is used in the

development of the prismatic grid. In this case, however, the resolution of the surface mesh is more than
a description of the geometry. It is the starting layer of the prismatic grid. Therefore, facet resolution in
critical regions other than high curvature regions is important. The prismatic grid is currently not refined
by the CFD code during the solution process, so adequate resolution of the surface in critical regions

must be supplied by the surface triangulation.

Surface Normals

The triangular surface facets are marched outward along carefully computed normal vectors from
each node point, see Figure 10. The normal vector at each node must be constructed such that it is
visible to each facet containing that node 8. This ensures that the developing grid layers in convex

regions do not cross and produce negative prismatic cell volumes.

The initial normal vector at each node is computed as the weighted average of the normals of the

common faces

,,f

^0 .f
n z • my

.f

where hI is the unit normal of common faces, and _ is the included angle of the face as shown in
Figure 10. The variable mfis the number of faces surrounding the node.

An iterative procedure is then used to improve the normal vector at each node using a linear
combination of a weighted average of the normal vectors of the common faces and a weighted average

of the position vectors of the neighboring nodes projected to the next layer.

^i+1
n ....

_)= 1+0.

The weighted average of the face normals is once again based on the included angle of each common
face. The common face normal vector, hf, is multiplied by _, which is a function of the angle between
the current node normal vector and the-face normal vector, 0. The position vector of the neighboring
nodes projected to the next level is given by /'i and is weighted by the distance to the node, dj. The
variable 0 varies from 0.0 to 0.5 and controls the amount of smoothing of the normal vector. With no
smoothing, the scheme tends to minimize the angle between the resulting node normal and common
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face normals. With smoothing, the grid expands as it grows outward, approaching a mesh where the
tangential spacing between the nodes is equidistant. A typical value for the smoothing parameter is 0.25.
An under-relaxation factor, (o, is used to update the new normal vectors. The iterative procedure
continues until the changes in the normal vectors are negligible or a maximum iteration limit is reached.

The use of the included angle in the averaging procedure eliminates the tendency to get skewed
vectors for cases where a node has many small included angle facets on one side. This situation may
occur at sharp trailing edges. This normal calculation procedure has been tested on many complex
shapes and has produced valid surface vectors.

Additional control is added in extreme convex and concave regions of a geometry. The
smoothing portion of the equation is turned off for the nodes where the angle between the face normals
common to any given facet edge exceeds a user specified amount, such as 60 degrees. The normals at
such nodes are then improved using only the face normal portion of the iterative procedure.

Marching Step Size

The grid is advanced to the next layer by a specified spacing increment. The spacing increment
can be equally spaced, generated from a prescribed normal distribution or based on the minimum radius

of an inscribed circle for the facets on each layer. The marching step size at extremely concave nodes is
slightly increased. The marching step size at extremely convex nodes is slightly decreased. These
adjustments help to improve the quality of the grid at the next layer. The effect of the adjustments is to

reduce the maximum angle between face normals on each subsequent grid layer, i.e. smoothing out the
wavi ness.

The total thickness of the prismatic grid in the normal direction is usually just large enough to
resolve the estimated boundary layer thickness for viscous analyses or large enough to improve the
invalid cell situation at sharp edges for inviscid analyses. At each new layer the normals at each node
are recomputed using the above scheme and the process continues until the desired number of

prismatic layers is completed. Any portion of the boundary layer in viscous analyses not resolved by the
prismatic grid will be resolved by the refined Cartesian grid using the grid adaption scheme.

Prevention of Grid Crossing

Grid crossing in convex regions of the surface is prevented by carefully computing the surface
normals, as described earlier. Grid crossing in concave regions of the surface is controlled by reducing
the marching step size. As each layer is marched outward, the current grid layer is checked for grid
crossing. When grid crossing is detected, the local marching step size is reduced. The marching step
sizes across the current layer are then smoothed using a Laplacian type smoothing. The nodes are

projected outward once again and rechecked for grid crossing. This process continues until the crossing
is eliminated.

CARTESIAN/PRISMATIC GRID INTERFACE

The Cartesian grid treats the outer layer of the prismatic grid as another boundary. The Cartesian
grid generation, cell cutting and so forth are performed in the usual manner, since the outer layer of the
prismatic grid is made up of triangular elements like all other defined geometries. During the solution
process, the prismatic grid and the Cartesian grid interact through the flux calculations at the interface
boundary. Fluxes are computed at the interface boundary facets using data from the interior of the

prismatic grid and the local Cartesian grid cells. Fluxes are computed at the interface boundary using the
same upwind or central differencing schemes as used with the Cartesian grid faces and the interior

prismatic grid faces. The computed fluxes are distributed to each side of the interface in a fully
conservative manner.
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EXAMPLE GRIDS

Several example cases are included to demonstrate the capability of the grid generation

procedures to discretize complex geometries and complex flowfields. Some of the cases use only the
Cartesian grid, while one case uses the hybrid grid system. The final case includes only the prismatic
grid for a complex store configuration. Flowfield solutions were obtained for all of the Cartesian grid-only
examples and the single hybrid grid example. Grid refinement of the Cartesian grid was used to resolve
pertinent flowfield features in these cases. Since this paper pertains to the grid generation aspect of the

problems, no flowfield solution data will be shown.

F 16 Forebody

An inviscid supersonic flowfield for a F16 forebody/inlet geometry was computed using the

Cartesian grid system. The surface model included extensive geometric detail, including the inlet duct
back to the compressor face, the diverter section between the inlet and the underside of the fuselage,
and the CD band antenna on the underside of the nose. Grid refinement was based on two adaption
functions, Mach number and total pressure. The purpose of the analysis was to gain an understanding of
the shock structure and total pressure field entering the inlet. Qualitative results from this analysis

helped guide engineers in grid generation for a structured grid Navier-Stokes solution. A symmetry plane
cut through the mesh is shown in Figure 11. Adaption to Mach number is evident in the increased grid
resolution at the shocks, while the adaption to total pressure is responsible for the refinement aft of the

CD band antenna. The final grid contained 601,513 Cartesian cells.

F16 With Various Store Loadings

Several solutions were computed for a full F16 configuration with various types of weapons

Ioadings. The F16 aircraft geometry included accurate modelling of the inlet duct back to the compressor
face, the nozzle duct forward to the turbine face, the ventral fin, the wing with tip missile rail, and the
horizontal and vertical tails. The Cartesian grids for three different weapons Ioadings are shown in

Figure 12, Figure 13, and Figure 14. An inviscid transonic flow was computed in each case and the
adaption functions were velocity magnitude and static pressure.

The weapons shown in Figure 12 include a 600 gallon fuel tank and 3 CBU58s mounted on a

triple ejector rack. The constant-X cutting plane located aft of the wing trailing edge reveals the improved
resolution of the three-dimensional shock structure on the wing upper surface. The final grid contained

953,385 Cartesian cells.

Figure 13 shows a AIM 9 missile along with the fuel tank and the CBU58s. The constant-X
cutting plane is located at the mid-point of the wing leading edge and shows the increased resolution of
the region about the CBU58s. A total of 865,993 Cartesian cell are contained in the final grid.

The additional components shown in Figure 14 include the AIM 9, a 370 gallon fuel tank, an

ALQ119 ecm pod and a MK84 with pylon. Increased grid resolution about the MK84 store is evident in

the figure. This analysis was part of a quasi-steady trajectory analysis of the MK84 store separation.
Steady-state solutions were computed for several instances along the trajectory path. The computed
forces and moments were used, in conjunction with a six degree of freedom package, to compute the

new store locations. The process is analogous to the wind tunnel testing technique known as Captive

Trajectory Simulation.

Wing/Pylon/Store

A hybrid grid was used to discretize the computational domain surrounding a wing/pylon/store

configuration. The geometry was a clipped 45 degree swept delta wing with a pylon located at mid-span
and a generic store (1°'11J2). This analysis used a prismatic grid about the store combined with a
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Cartesian grid for the wing, pylon and the remainder of the domain. The extent of the prismatic grid was
limited because of the close proximity of the store to the base of the pylon. The prismatic grid consisted
of 8,838 cells per layer in 5 cell layers for a total of 44,190 cells. The final Cartesian grid consisted of
307,361 cells in 17 grid layers. Periodic grid refinement on the Cartesian grid was performed based on

the gradients of Mach number and pressure. A side view of the Cartesian grid is shown in Figure 15. A
refinement box that extended just above the wing geometry was used to limit the Cartesian grid
refinement to the region in the vicinity of the store. The prismatic grid about the store is shown in

Figure 16. Less than half of the gap between the store and the pylon is discretized by the prismatic grid.
The remaining gap was discretized with the Cartesian grid. The use of the prismatic grid about the store
resulted in approximately half as many Cartesian cells as required for a Cartesian-only solution.

MK84 Store

A prismatic grid was generated for an isolated MK84 store geometry, see Figure 17. The MK84

geometry is very similar to the generic store shown in the previous case, e.g. a cylindrical body of
revolution with four tail fins. A five layer prismatic grid was generated for demonstration purposes only.
No solution has been obtained for this geometry. The thickness of the layers was restricted to

approximately 0.5 inches, due to the 90 degree corners at the fin/body juncture. The grid was equally
spaced in the direction normal to the surface. Grid smoothing is necessary to ensure the prismatic
elements march out of the corner regions properly. The marching step size for each layer also has to be

limited to prevent grid crossing in the corners. A thicker prismatic grid is possible with additional layers,
but would make viewing the grid more difficult than it currently is. Had this been an actual prismatic grid
for a viscous analysis, the number of layers would be larger, and the normal grid spacing would be

clustered toward the surface, as can be seen in the 21 layer grid shown in Figure 18 and Figure 19.

CONCLUSIONS

The methods for generating unstructured Cartesian meshes and triangular-element prismatic
meshes have been described. Example grids for various configurations have been shown for Cartesian-

only grids, hybrid grids, and prismatic-only grids. Grid adaption for the Cartesian grid has been
demonstrated in several of the examples where a flowfield solution was generated using the CFD solver
developed by the author. Highly three-dimensional flowfield features are apparent in the meshes, as the

refinement scheme detected gradients in the selected adaption functions. The flexibility of the prismatic
grid was demonstrated in an actual hybrid grid solution for a wing/pylon/store geometry where a
prismatic grid was employed around the store. The resulting inviscid solution made more efficient use of
fewer Cartesian cells to resolve the remainder of the domain. A prismatic grid suitable for viscous
solutions was shown for a complex store geometry. The ability to control the thickness and normal
distribution of the prismatic layers was demonstrated.
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Figure 1. Each cell subdivision results in eight new cells at the next grid level
using an octree data structure.
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Figure 2. The Cartesian cells near the nose of
a fighter configuration are proportional in size
to the local geometry facets.

iiiii!ilili!iI!i!!!iiii!iiii!iiiiiiii!i
::::::::::::::::::::::::::::::::::::::::::::

Figure 3. Cells with finer mesh on opposite
sides are refined.
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Figure 4. The cutting process for any given "geometry" facet
may produce multiple "boundary" facets.
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Figure 5. An invalid Cartesian cell
caused by the cutting ,of a sharp trailing

edge.

Valid Case

Invalid Case

Figure 6. Two possible cell cutting cases.

A B

Figure 7. The third approach for determining invalid cells will A)
correctly detect the cutting of cells at an angle to the Cartesian grid and

B) detect changes in surface orientation.
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Figure 8. Depiction of face area computation process.

Figure 9. Exploded view of sub-components of a cut cell
containing a single boundary facet.
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Figure 11. Side view of symmetry plane cut through F16 forebody mesh.
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Figure 12. Front-quarter view of axial station cut aft of wing trailing edge.

Figure 13. Front view of axial cut though mid-point of wing leading edge.
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Figure -4. View of span station cut through MK84 c.g. from trajectory analysis solution.
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Figure 16. Prismatic grid about store displayed with pylon span station cutting plane through
Cartesian grid.

\

Figure 17. A five layer prismatic grid about MK84 store geometry.
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'Figure 18. A prismatic grid column near tail fin for the MK84 store geometry.

FigtJre 19. A prismatic grid column near nose for the MK84 store geometry.
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SUMMARY

The last decade has witnessed a vigorous and sustained research effort on unstructured methods for

computational fluid dynamics. Unstructured mesh generators and flow solvers have evolved to the point

where they are now in use for design purposes throughout the aerospace industry. In this paper we survey

the various mesh types, structured as well as unstructured, and examine their relative strengths and

weaknesses. We argue that unstructured methodology does offer the best prospect for the next generation

of computational fluid dynamics algorithms.

INTRODUCTION

Mesh generation has long been recognized as a major pacing item in computational fluid dynamics.

But over the last decade, it has rapidly evolved into a broadly based area of research. Early meshes were

almost exclusively quadrilateral or hexahedral, and were typically created by defining a suitable coordinate

transformation from a unit square, or unit cube, into the physical domain. In this manner, one can create

the familiar O, H and C-meshes around airfoils, wings and wing/fuselage combinations. These meshes

inevitably possess a high degree of structure or regularity on account of their well defined set of coordinate

directions. Regularity that is inherent in a structured mesh can, however, be a serious drawback when

generating a mesh to conform with all boundaries of the domain. By the end of the seventies, it had

become quite clear that this approach would not, by itself, suffice to handle complex configurations.

The formidable challenge presented by complex geometry has been met in various ways. The use of non-

aligned meshes (ref. 31) circumvents the problem of conforming with boundaries at the cost of requiring

interpolation formulae to impose the boundary conditions. A series of separate overlayed meshes, each of

which conforms to the surface, represents an alternative approach that lifts the burden of interpolation

from the boundaries to the flow domain (refs. 5 and 27).

To avoid interpolation issues, it is necessary to create a mesh that conforms with all boundaries and

also maintains contiguity of meshlines. In the case of hexahedral meshes, this is best achieved by a multi-

block technique which splits the flowfield into a number of blocks or subdomains (refs. 11, 17, 35 and 36).

The splitting is chosen so that each subdomain can be covered by a structured hexahedral mesh with an

associated set of coordinate directions. In general, the orientation of neighboring blocks will differ and the
associated coordinate lines cannot be extended across block boundaries. A multi-block mesh can thus be

thought of as structured at the level of an individual block, but unstructured when viewed globally as a

collection of blocks. The introduction of paving techniques (refs. 6 and 39) takes this process one step

further and generates a hexahedral mesh that can be thought of as entirely unstructured. In fact, one can

interpret such a mesh as a multi-block mesh whose blocks are the individual hexahedra.

Triangular or tetrahedral meshes were for a long time the preserve of those in the finite element

community. They were of little more than passing interest to developers of the finite difference and finite

volume methods that were the main staple of research into computational fluid dynamics. The recent

intense interest in tetrahedral meshes (refs. 1, 12, 18, 28, 37 and 38) and flow solvers is, however, an
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acknowlegmentof their utility and the relativeeasewith whichtetrahedralmeshescanbegeneratedfor
complexshapes.Theexampleshownin figure1,of theflowsolutionovera supersonictransport,is typical
of the type of problemthat is nowroutinelyhandledby tetrahedralbasedmethods(refs.8 and 14).

In this paperwe reviewthe strengthsand weaknessesof differentmeshtypesin termsof easemesh
generationandthe implicationsfor flowalgorithms.In particular,weconsiderthe issuesof flowadaption
andviscouscalculations.Both of theseconcernsmustaddressedto ensureaccurateand reliablesolutions
for almostany fluid dynamicsproblem.On the basisof theseconsiderations,wearguethat unstructured
meshes,usingtetrahedraor a mixtureof tetrahedraand prisms,do offerthe bestprospectfor the next
generationof computationalfluid dynamicssoftware.

A TAXONOMY OF MESHES

Thechallengeof generatingmeshesfor complexconfigurationshasencouragedseveralinnovativeideas
for meshesbasedonhexahedra,tetrahedraaswellashybridmeshtypes.Traditionally,theterm structured
hasbeenassociatedwith hexahedralmeshesonaccountof theregularitythat is inherentin anyhexahedral
meshwith a well definedsetof coordinatedirections.Sincenoglobalcoordinatescanbeassociatedwith
a tetrahedralmesh,it wasthereforenatural to referto theseasunstructuredmeshes.

It is certainlyapparentthat a multi-blockmeshis usuallyonly structuredat the blocklevel.Onecan
imagineincreasingthe numberof blocksuntil eachblock degeneratesinto a singlehexahedronand one
hasa fully unstructuredhexahedralmesh.Examplesof unstructuredhexahedralmeshesare thosethat
aretypically producedby pavingtechniques(refs.6 and39). Likewise,ahexahedralmeshthat undergoes
meshenrichment(ref. 10), with the consequentadditionof extra pointson cell facesand edges,canno
longerbe thought of asstructured. Indeed,flow solversfor suchmeshesrely on pointersand indirect
addressing,andmustthusmaintaina datastructuresimiliarto that of atetrahedralflowsolver.Themore
natural subdivisionof meshtypesis thereforeinto hexahedral,tetrahedraland hybrid (i.e. thoseusing
a mixture of elementtypes). The adjectives"structured" and "unstructured"moreproperly referto the
degreeof regularitywhosepresencecanbediscernedby a locallywelldefinedsetof coordinatedirections.

Amonghexahedralmeshesthereis a widerangefrom singleblock, structuredto completelyunstruc-
tured. In betweentheseextremesare (i) the multi-blockmesheswhichcanbe further subdividedinto
thosewith contiguousblocksand thosewhoseblocksareoverlayed(refs. 5 and 27),and (ii) non-aligned
(i.e. non-boundaryconforming)meshes(ref. 31). Contiguousmulti-blockmeshescanbe further subdi-
videdinto compositeor patched,accordingto whetheror not the meshlinesarecontinuousacrossblock
boundaries.Finally, the hybrid meshesincludeboth mixedtetrahedral/hexahedral(refs. 26and33)and
tetrahedral/prismatic(refs. 16and25),aswellasthe Cartesianmeshes(refs.9, 15,23and32)whosecells
aremostlyhexahedra,but with somecellsconsistingof variouslyshapedpolyhedrain regionsadjacentto
the domainboundaries.An attempt to catalogthesemeshtypesis shownin figure2.

TRIANGULATION TECHNIQUES

Thereare threemainapproachesto tetrahedralmeshgeneration,(i) octreedecomposition,(ii) Delau-
nay basedmethods,and (iii) movingfront techniques.A brief outline of the differencesbetweenthese
approachesfollows.

Octree Decomposition

In two dimensionsthis procedurecan be viewedas a division of the flowfieldinto a collectionof
rectanglesfollowedby a divisionof rectanglesinto triangles. Rectanglescanbe further subdividedinto
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four newrectangles,correspondingto the additionof an extravertexat the mid-pointof eachsideof the
original rectangle.For rectangleswhich intersectthe boundary,this subdivisioncanbe repeateduntil a
sufficientlyfine resolutionhasbeenachieved.The first divisionof the flowfield into rectanglesmay be
regardedas levelzero, the subsequentdivisionas level1 and so on. Thus the final meshwill contain
rectanglesat levelzeroin the flowfieldand highly refinedrectanglesin the vicinity of solidboundaries.
Somedegreeof graduationin the meshrefinementisobtainedby requiringadjacentrectanglesto differby
no morethan onelevelof subdivision.

The next stageconsistsof examiningthoserectangleswhich intersectthe boundariesand replacing
eachsuchrectangleby a polygonconsistingof that part of the rectanglelying in the flowfield together
with the part of the solid boundarythat liesinsidethe rectangle.After this cutting procedurehasbeen
applied,the meshconsistsof a combinationof rectanglesin the flowfieldtogetherwith polygonsadjacent
to theboundaries.Thismeshcouldserveasa Cartesianmesh.Alternatively,the rectanglesandboundary
polygonscouldbe further subdividedinto trianglesto providea triangulationof the flowfield.

The conceptgeneralizesin an obviousway to threedimensions,althoughthe cutting procedureat
the boundariesbecomesmuchmorecomplicated(refs.34and38). Themain drawbackof this approach,
however,is the inability to matchaprescribedsurfacetriangulation.In addition,sinceeachsurfacetriangle
arisesfrom the intersectionof a hexahedronwith the boundary,it is not clearhow onecancontrol the
variation in trianglesizeandshape.

DelaunayMethods

The Delaunaytriangulationprovidesa soundframeworkfor tetrahedralmeshgenerationand several
Delaunaybasedmethodshavebeendeveloped.Manyof thesemethods(refs. 1, 12,21,29and 37)exploit
an incrementalalgorithm that starts with an initial triangulationof just a few points. The complete
triangulationis generatedby introducinga point and locally reconstructingthe triangulationafter each
point insertion. Incrementalalgorithmscanbeusedequallywell for both the initial meshalgorithmand
for anyfurtherenrichmentthat mayberequiredby solutionadaptiverefinement.A particularlyattractive
featureof this approachis the opportunity to placenewpointsat specifiedlocationswith the object of
retaining,and in manycasesimproving,the quality of the mesh.Recentwork in this areahasproduced
encouragingresults(refs.3, 4, 29and37)showingthat meshqualitycanbecontrolledandmeshescreated
to achievea guaranteedlevelof quality accordingto a suitablesetof criteria. Figure3ashowsan initial
triangulationof acomplexplanardomain;figure3bshowsthe resultafter selectiverefinementof this mesh
by the socalledVoronoisegmentmethod(refs.4 and29).

The main difficulty, for anyDelaunaymethod,is the needto ensuresurfaceintegrity. This usually
requiresthe triangulationnearthesurfaceto bealteredin somewaybyoverridingtheDelaunayalgorithm.
Mostmethodstriangulatetheentiredomain,extractingthesurfacetriangulationafterward.Onepossibility
is to insertthe surfacepointsfirst, identify thetetrahedrawhichmakeup the object and then insert the
flowfieldpointssothat no flaggedtetrahedraare removed(refs. 1 and 2). Other methods(refs. 12and
37)allowthe volumetriangulationto proceeduncheckedandthen re-establishthe surfaceedgesandfaces
by a seriesof edge/faceswapsandthe occasionalintroductionof anextra point.

Moving Front Methods

The main virtue of this approach(refs. 18 and 28) is that it starts from a prescribedboundary
triangulationwhichremainsintact throughoutthe meshgenerationprocess.Theboundarytriangulation
is regardedasa front on whicha newlayerof tetrahedrais built. As a result, the original front triangles



becomeinterior facesof themeshanda newsetof front facesis created.The algorithmcontinuesto build
tetrahedraon the newfront, growingmoretetrahedrauntil theentiredomainhasbeenfilled. A particular
difficultyof this methodoccursin theclosingstagesof the procedurewhenthefront is foldingin on itself
andthe final vestigesof emptyspacearereplacedby tetrahedra.It isclearlynecessary,in the finalstages,
to maintaingoodcontroloverthe sizeof thefront facesaswellasthe shapeof the unfilleddomainthat is
left.

MESH IMPLICATIONS FOR FLOW ALGORITHMS

Singleblockstructuredmeshes,whichdominatedtheearlydevelopmentof computationalfluid dynam-
ics,arewell suitedto exploitationby implicit algorithms(e.g.AlternatingDirectionImplicit methods)as
well asmappingeasilyontovectorcomputerarchitectires.Thelaterdevelopmentof unstructuredmeshes
forcesa reappraisalof this situation and there is a consequentneedfor algorithmswhichwork well on
unstructuredmeshes.In fact, anexplicit methodappearsto be the natural choicefor solvingthe flow
equationson an unstructuredmeshand theavailabilityof veryefficientmultigrid techniquesremovesthe
otherwiseseriousrestrictionof anexplicit time stepstability limit.

Evenso, there is an overheadfor the computationalwork associatedwith tetrahedralmethods. A
tetrahedralmeshof N pointshasroughly6Ncells,12Nfacesand7Nedges.Thefluxescanbeaccumulated
either acrossfaces,or alternatively,alongedges.For tetrahedralmeshesthereis anobviousadvantagein
operationcountto exploitedgebaseddatastructures.A meshof hexahedrahasroughlyN cells,3N faces
and 3Nedges,sothat the operationcountis comparablewhetherfluxesareaccumulatedacrossfacesor
alongedges.Either way there is still a clear2:1advantagein computationalefficiencyfor a hexahedral
flow solverovera tetrahedralflow solverusinganedgebaseddatastructureon mesheswith the same
numberof points. This leavesopenthe questionof whethercomparableaccuracycanbe achievedon a
tetrahedralmeshwith fewerpoints.For a simpleshape(e.g.a wing) with anoptimal meshdistribution,
onewouldexpectcomparableaccuracyfrom both meshtypesfor a similar numberof meshpoints. For
a morecomplexshape,the regularity inherentin a structuredmeshcan often leadto an unnecessary
refinementin areasfar removedfrom the boundary.In suchcases,thereis an inefficientdistribution in
the structuredmeshwith the possibilitythat comparableaccuracycouldbeachievedon anunstructured
meshwith fewerpoints.The relativeadvantagein computationalefficiencythat is enjoyedby structured
methodsis thereforenot excessive.

In order to attain an optimal use of computer resources, some rearrangement and pre-sorting of a

tetrahedral mesh is necessary. For any given tetrahedral cell, the addresses of its forming points may

occupy widely separated positions in memory. This feature will cause a severe degradation on computers

that depend on a small high speed memory cache. In addition, it is necessary to employ indirect addressing,

with the result that each point will be referenced every time it appears as the vertex of a cell. Since many

cells are incident at a given mesh point, each point will be referenced several times, and the possibility of

vector dependency will inhibit vectorization by the compiler. It is possible to overcome this problem by

first sorting the cells into groups so that no point is referenced more than once in each group. On can then

override the compiler and force vectorization.

A recursive bi-section procedure can efficiently decompose a mesh into any number of sub-domains with

almost identical numbers of cells and edges. This provides a particularly convenient decomposition of the

mesh for parallel computer architectures (refs. 7 and 14). Further re-addressing and sorting within each

subdomain leads to efficient vectorization and cache use on each of the individual processors.
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For a structuredmulti-blockmesh,it is usuallynecessaryto assignwholeblocksto an individual
processors.Sinceindividualblocksmayvarygreatlyin size,this meansthat oneprocessormaybeassigned
to oneblockwhileanotherprocessoris assignedto severalsmallblocks.It is difficult in this situationto
achievevery goodload balancingand somecompromisein parallel performancecan be expected. In
contrast, the subdivisionof an unstructuredmeshmapsvery readilyonto a parallel architecturewith
nearlyperfectloadbalancing.

An exampleof the parallelefficiencythat canbe achievedis shownin figure4. The figurepresents
resultsof runninganunstructuredflowsolverwith atetrahedralmeshonan IBM SP2parallelsystem(ref.
14). Thereis almostperfectscalabilityfor up to 64processors.

ADAPTIVE REFINEMENT

The useof p-refinementwhich increasesthe accuracyof the discreteapproximationis particularly
effectivefor elliptic problemswherea highdegreeof smoothnessis expected.For problemsinvolvingdis-
continuitiesand sharplydefinedfeatures,the useof meshmovement(r-refinement)or meshenrichment
(h-refinement)appearsto bemoresuitable.Meshmovementhasthevirtueofleavingthemeshsizeandcon-
nectivity intact. Thus,a partition of the meshinto subdomainsremainswellbalancedand re-partitioning
of themeshisnot required.However,themovementor repositioningof meshpointsinevitablyreducesthe
definitionin somepartsof thedomainin orderto increasethe resolutionelsewhere.Furthermore,moving
meshlinesisan inherentlyperilousprocedureandspecialcaremustbe takento avoidoverlappingof mesh
linesand the appearanceof cellswith negativevolume.

The remainingalternative,meshenrichment,is particularly attractivesincethe meshis alteredonly
in the regionwheregreaterresolutionis needed.For a parallel implementationof the flow algorithm,
this requiresa newpartitioningof themeshto maintaingoodloadbalancing.The computationalcostof
re-partitioningandsortingwill thereforeinfluencehowoftenthemeshshouldberefinedoverthe courseof
a calculation.

For a hexahedralmesh,the applicationof meshenrichment(refs.9, 10and 15)introducesnewpoints
on the edgesand facesas well as the centerof a hexahedron.At the interfacebetweena refinedcell
and a non-refinedcell, four refinedfaceswill abut a non-refinedcell face. This upsetsthe regularityof
a structuredmeshandimposesalterations(e.g. the useof pointersandindirect addressing)on the flow
solver,causingtheflowalgorithmdatastructureto closelyresemblethat of a tetrahedralbasedflowsolver.

For a triangular or tetrahedralmesh,the triangulationthat resultsfrom meshenrichment(refs. 19,
21and 24)will consistof a newcollectionof trianglesor tetrahedra.In this case,no modificationof the
flowsolveris neededand a tetrahedralmeshthus providesa natural setting for meshenrichment.This
characteristicisoneof the keyadvantagesof an unstructured,andmoreparticularly,a tetrahedralbased
method.

Thereare two mainapproachesto meshenrichment.Edgebisection(ref. 19) (i.e. addingnewmesh
points at the mid-pointsof the edgesof candidatetetrahedra)leadsto refinedcellsof the sameaspect
ratio as the original cell. This methodis simpleto implementand canbeappliedto any triangular or
tetrahedralmesh.However,althoughit preservescell aspectratio, additionof newpointsin this manner
will not improvethe meshquality if the originalmeshis extremelycoarsewith severalbad aspectratio
cells.An alternativeapproach,asmentionedabove,is availablewith a Delaunaybasedmethod(refs. 4, 21
and24). The insertionof newpointsat specifiedlocationsandre-triangulationby a Delaunayalgorithm
providesa greatdealof flexibility andcontrolovermeshquality.
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NAVIER STOKES MESHES

There is ample empirical evidence to show that solutions of the Euler equations for inviscid flow can

be carried out to a high degree of accuracy on a tetrahedral mesh. However, there is still considerable

debate as to whether high aspect ratio triangular, or tetrahedral, cells can properly resolve a shear layer.

In other words, can the Reynolds averaged Navier Stokes equations be solved with sufficient accuracy on

a tetrahedral mesh?

It is known that the truncation error of a finite volume discretization depends on the shape of the

control volume. In particular, a trapezoidal approximation for a cell vertex method though nominally

second order, becomes only first order accurate unless the control volume possesses central symmetry (ref.

30). The effect is localized and it appears that the global solution error remains second order (ref. 13). For

the Euler equations, the possible loss of second order accuracy in truncation error does not appear to be

a serious problem. However, it is most likely that this will pose a serious problem when trying to resolve

a boundary layer flow.

The control volume associated with a given point P corresponds to the boundary of the collection of

cells incident at point P. In the planar case, the cells are triangles and the control volume is the polygon

formed by the edges opposite P (figure 5). In three dimensions, the cells are tetrahedra and the control

volume is the polyhedron formed by the faces opposite P. Although it is very difficult to ensure central

symmetry, a good quality mesh should be close enough to this ideal for there to be little degradation in
truncation error. In particular, this should be the case for an isotropic distribution of mesh points with

low aspect ratio cells.

In the case of a highly stretched mesh, it is much more difficult to maintain a control volume that

has nearly central symmetry. It seems plausible that one way to come close to this ideal, is to use a high

degree of structure in the mesh. Thus, in a boundary layer, one could insert points normal to the surface,

just as one does for a structured mesh. In two dimensions these points could be connected to form right

triangles (see figures 5 and 6). The surface curvature would cause the "right angles" to be slightly greater
or less than 90 °, but for a continuously turning surface these deviations would be small. When the surface

tangent is discontinuous, however, special treatment is needed. At a trailing edge, for example, a wake

region of similarly constructed cells should be inserted. At a re-entrant corner, the thin layer Navier Stokes

assumption breaks down and an isotropic mesh distribution is then appropriate.

The requirement of central symmetry imposes rigid constraints on the triangle connectivity. Figure 5
shows that central symmetry of the control volume occurs when the hypotenuse of each right triangle is

oriented in the same direction. In figure 7, one of the diagonals has switched direction and the control

volume is no longer centrally symmetric.

In three dimensions this issue becomes more problematic and it is unlikely that central symmetry of

control volumes can be properly assured. However, it again seems plausible that a carefully constructed

mesh of tetrahedra, each with three mutually orthogonal faces, is most likely to approach this ideal. Work

along these lines has been presented by Pirzadeh (ref. 28) for the moving front method and by Marchant

and Weatherill (ref. 20) and Marcum (ref. 22) for Delaunay based methods.

It remains to be seen whether accurate solutions of shear layer flows can be obtained for the Reynolds

numbers of interest on meshes composed entirely of triangles or tetrahedra. An alternative approach is

the use of a hybrid mesh. For example, one could use a quadrilateral, or hexahedral, mesh close to the

surface and change to an unstructured mesh outside the viscous region. The disadvantage of this remedy
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is that oneis againfacedwith mostof the restrictionsthat arisewith structuredmeshes.Anotherversion
of the hybrid meshthat offersmoreof the flexibilityonelooksfor in anunstructuredmethod,isprovided
by usingprismsin theboundarylayerregion.Workin thisareahasbeenpioneeredby Nakahashi(ref. 25)

and more recently by Kalinderis et al (ref. 16). There are still some disadvantages to this approach; the

use of two different cell types complicates the flow solver and mesh adaption no longer has the simplicity

available on purely tetrahedral meshes. However, this may be the price that one has to pay in order to
obtain highly accurate Navier Stokes solutions.

FUTURE DIRECTIONS

In assessing the current status of mesh generation methods and future developments, it seems likely that

there will be an increasing emphasis on two key requirements. First, there is a strong drive towards methods

that are easy to use and reliable (i.e. user friendly). Second, there is an increasing expectation that the

computational results should be accurate, ideally to within some known tolerance. As improved computer

hardware opens up the opportunity to attack increasingly complex problems, an effective response to both
of these issues will become even more urgent.

Although often regarded as a separate entity, it is important to remember that the mesh generator is

a central part of the computational environment, interfacing on one side (through the CAD system) with

the surface definition of the geometry, and on the other side with the flow solver. The quality of the mesh

directly influences the quality of the solution, unfortunately in ways that are usually difficult to quantify.
Mesh quality in the volume mesh can be related to cell aspect ratio and size variation. But there is also the

question of the degree to which the surface mesh matches the true surface. Surface definition is therefore

an important concern. It is clear that the interface between a surface mesh generator and the CAD system

should preserve the surface definition. However, it is also necessary to ensure that the CAD description is

sufficiently well defined to meet the needs of aerodynamic flow calculations. For example, it is often the

case that a CAD definition is provided by a series of patches which do not always abut correctly at their

joins. Furthermore, for Navier Stokes computations, small perturbations in the surface definition could

easily project a significant way into the boundary layer, wreaking havoc on a Navier Stokes mesh and the

resulting flow prediction.

It is therefore necessary to (i) quantify the quality of the underlying surface, placing tolerances on
what deviations are acceptable, (ii) obtain measures of how well a surface mesh matches the true surface

definition, and (iii) generate a volume mesh that conforms to the surface mesh and meets a set of previously
defined mesh quality measures. It is important that adaptive refinement should be carried out without

the need for any user intervention. Moreover, the refined mesh should also meet the same mesh quality
measures that are required for the original mesh.

In order to put together a seamless, user friendly software environment, a high degree of modularity

with clean interfaces between each software module is desirable. First, one requires a link between the

CAD system and the surface mesh generator. It is likely that the interface will need to carry out checks

on the CAD surface definition, and possibly process the CAD data to obtain a surface description that

meets the stringent requirements for computational aerodynamics. The surface mesh generator will require

some input from the user to define the mesh density, perhaps to the extent of defining surface patches and

indicating which parts of the surface require high resolution. However, the generation of the surface

mesh to a specified quality, in terms of mesh aspect ratio and size variation, should be handled entirely

automatically. It would appear that surface mesh generation can be carried out with comparable ease for
either quadrilateral or triangular elements.
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The volumemeshgeneratorshouldcreatea mesh,entirelyautomatically,that matchesthe prescribed
surfacemesh.It is theopinionof the authorthat easeof volumemeshgenerationandadaptiverefinement
arekeyadvantagesthat will continueto favortetrahedralmeshesovertheir hexahedralcounterparts.For
NavierStokescomputations,however,it is quitepossiblethat somecompromisemustbemadeandtetra-
hedralelementswill not beableto capturethe featuresof shearlayerswith sufficientaccuracy.The most
promisingcombinationin this casewouldbetheuseof aprismaticmeshin theshearlayerwith tetrahedra
elsewhere.It seemslikely,however,that purelytetrahedralmesheswill beusedin thenearterm for Navier
Stokescalculations,sincetetrahedralmeshgenerationhasadvancedto a high degreeof automation. In
the longerterm, the demandfor high accuracywill probablydrive the developmentof methodsbasedon
a combinationof prismsand tetrahedrafor threedimensionalNavierStokescomputations.
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Figure 1.-Surface Pressure Contours of the Flow Solution for a

Supersonic Transport, Moo = 2.4, _ = 3.6 °
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Figure 3a.-Delaunay Triangulation of the Boundary Points

Figure 3b.-Delaunay Triangulation of the Interior of the Domain Using Selective Refinement
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Figure 5.-Control Volume for Point P has Central Symmetry
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Figure 6.-Triangulation of an Airfoil/Slat Region Suitable for Viscous Computation

Figure 7.-Control Volume for Point P does not have Central Symmetry

287



k r



N95- 28743

AN UNSTRUCTURED-GRID SOFTWARE SYSTEM FOR SOLVING

COMPLEX AERODYNAMIC PROBLEMS

Neal T. Frink

NASA Langley Research Center, Hampton, Virginia 23681

Shahyar Pirzadeh and Paresh Parikh 1

ViGYAN, Inc., Hampton, Virginia 23666

SUMMARY

A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology
to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing

rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well
developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation
and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also

being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under develop-
ment for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This

paper presents an overview of this effort, along with a perspective on the present and future status of the methodol-

ogy.

INTRODUCTION

The role of advanced Computational Fluid Dynamics (CFD) is becoming increasingly important in the

aerodynamic design process. The transition of CFD technology from the research lab to the project environment
has progressed rapidly in recent years with encouraging results. However, the intense competitive pressures on
U.S. industries to build more efficient or specialized products, e.g. aircraft, automobiles, buildings, pumps, heat

exchangers, etc., in less time and at lower cost and risk continue to challenge the most ardent CFD method devel-

oper. The challenge now is to complete the transition and realize the full potential of CFD technology in the engi-
neering environment. The driving issues affecting CFD utilization in such an environment are time, confidence,
cost, and risk [1]. Thus, codes to be applied in the project environment are those which are validated, robust,

readily usable by non-CFD expert engineers, and provide reliable, timely information at a reasonable cost.

The unstructured-grid (USG) approach has moved us much closer toward meeting these challenges. This

methodology now enables modestly trained engineers to generate tetrahedral grids on complex configurations in a
matter of days [2]. Inviscid flow solutions are readily obtainable from a number of good unstructured flow solvers

[3]. Signilicant progress is also being made toward the grid generation and flow solution for viscous-flow problems
[3], but additional work is needed before a reliable viscous USG capability emerges. This paper will include the

status of our progress in this area.

The status of USG Euler methodology is fairly mature and can play a significant role in the preliminary

design phase of aerodynamic products. This inviscid technology has proven to be quite valuable as an engineering
'tool' for providing critical insights which can lead to the timely solution of complex aerodynamic problems. For
example, Ref. [41 describes a successful effort to redesign the wing/pylon intersection junction of a transport air-
craft with under-wing nacelles by reducing the inviscid peak suction pressures in the region prone to viscous flow

separation. The resulting drag reduction was vcrilied by flight test. Work is also underway to assess the utility of

this technology for modeling the undcrhood flow of automobiles.

1. Consultant
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Theutility of USGEulcrtechnologyhasbeenfurtherenhancedbycouplingit withotherestablishedengi-
neeringtools.Aswill bedescribedin thetext,aninexpensive'viscous"capabilityisprovidedbycouplingtheflow
solverwithanintcractivcboundary-layermethod.A designcapabilityisavailablewith theadditionof apowerful
inversedesignalgorithm.Propulsioneffectscanbcincludedthroughspecialboundaryconditions.Andwhilenot
discussedin thispaper,workisunderwaytolink aUSGtlowsolverandgridgeneratorwithanacroclasticmodule.
Whencomplete,anengineeringcapabilityshouldbcavailablefor therapiddesignof aerodynamicsurfacesfor
applicablecomplexconligurations,whichincludetheeffects_f pr_pulsionflow,aeroclasticdeformation,anda
boundary layer.

There has been an ongoing coordin:,tcd effort at NASA LaRC over the past four years to mature the USG

methodology. The goal is to provide a validated capability to non-expert users for performing rapid aerodynamic
analysis and design of complex conligurations. This has bccn accomplishcd by advancing the methodology in a
team environment using an application-oricntcd approach where the method development/calibration was guided
by parallel focused application assessments from selected users within both NASA and industry. The remainder of
this paper will present an overview of our system, and a perspective on the present and future status of the technol-
ogy.

OVERVIEW OF CURRENT CAPABILITY

A diagram of the subject flow analysis system is presented in Figure 1. The primary components consist of
a graphic user interface (GRIDTOOL), an advancing-front grid generator (VGRID), a cell-centered, upwind flow
solver (USM3D), and a graphic post-processing code (VPLOT3D).

Grid Generation

GRIDTOOL.---GRIDTOOL [5] is a graphic user interface (GUI) utility developed to serve as a "window"
into the unstructured-grid generator, VGRID. The user must provide a surface definition in one of several formats,
i.e. IGES, GRIDGEN, PLOT3D, LAWGS, or simple networks, which are converted within GRIDTOOL into a
NURBS surface for manipulation. This GUI provides easy access to many functions, to bc described below, which
are useful in setting-up an input lile for VGR1D.

VGRID._VGRID [2,6] is an interactive program for generating unstructured, tetrahedral/triangular grids
by the advancing-front method [7]. A grid is generated by forming cells starting from the domain boundaries
marching towards the interior of the computational domain. The advancing-front process is illustrated in Figure 2
for a simple 2D domain. The configuration of interest is first defined in terms of a number of surface patches (line
segments in 2D). A transparent 'background grid" is used to control the distribution of points. The boundary seg-

ments are then triangulated (divided) individually to form the surface mesh or initial front. Next, tetrahedral (trian-
gular) cells are generated over faces on the front by introducing new points in the field. During this process, old
faces are replaced by new ones (reshaping the front), and the front is advanced in the field until the whole region is
lilled with grid cells.

For a 3D configuration, the geometry is divided into subdomains, using GRIDTOOL, on which 3- or 4-
sided parametric surface patches are defined. The process of surface triangulation within VGRID involves trans-
forming the 3D patch into a 2D paramctcr plane while preserving the overall projected shape of the 3D patch. After
surface triangulation in 2D, the newly generated points are then transformed back onto the 3D patch by interpolat-
ing from its boundary curves. Depending on the patch topology, it is possible for points not to return exactly to the
original surface after the transformation. As noted in Figure 1, the surface grid can optionally be passed through
GRIDTOOL to project the points onto the surface.

The distribution of grid points is controlled by a 'structured' background grid [8]. This transparent grid
consists of Cartesian mesh overlaying the entire domain upon which the user prescribes 'point' and 'line' sources
to impose the desircd spacing distribution. Parameters arc available to control cell size, and the direction and inten-

sity of spatial variation. A smooth variation of spacing is achieved throughout the computational domain by solv-
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ing anelliptic partial differential equation on the Cartesian mesh. The approach is analogous to modeling heat
diffusion from discrete heat sources in a conducting medium. A smooth variation of cell spacing is critical to the
robustness of the grid generator and the quality of the grid.

The volume grid can be generated on a workstation through a series of restarts with VGRID. The code

exploits a recurrent local/global renumbering system [2] which drastically reduces the computer memory require-
ment. In each run, a prescribed number of grid points and cells are generated. With the renumbering system, the
point and cell numbers, in each restart run, start from one rather than the accumulated global numbers. This allows
specification of relatively small array dimensions regardless of the final grid size.

After VGRID has completed the volume grid, there are usually some distorted tetrahedra, or some voids in

the domain where the grid generator could not close the front. These problems occur when fronts approach from
different directions in such a way that an ideal next point cannot be identified. As noted in Figure 1, the generated
volume grid is postprocessed by the code POSTGRID [2] which removes distorted cells and/or a layer of cells
around the problem areas, creates new fronts, and resumes the advancing-front process to close the grid. Since the
modified front is now smoother after removing the anomalies, the problems are usually corrected, and a better
quality tetrahedral mesh is produced.

The new versions of VGRID and POSTGRID incorporate recent improvements for better grid quality,
robustness, and easier grid generation. The enhancements include improved graphics for better visualization of
interactive surface and volume grid generation, graphic version of POSTGRID, interactive check and improvement
of the surface and volume grid quality, dynamic memory allocation, better CPU efficiency, and many other
improvements. VGRID requires about 80 bytes of memory per tetrahedron, and generates about 220 tetrahedra

(including I/O) per second using a Silicon Graphics Indigo 2 workstation with R4000 processor.

Flow Solver

USM3D.mUSM3D [9-11] is a cell-centered, finite-volume upwind flow solver for solving the Euler equa-
tions on tetrahedral grids. Inviscid flux quantities are computed across each cell face using the Roe [12] flux-differ-
ence splitting approach (FDS), or the Van Leer [13] flux-vector splitting technique (FVS). Spatial discretization is
accomplished by a novel cell reconstruction process, which is based on an analytical formulation for computing
solution gradients within tetrahedral cells. Solutions are advanced in time by either a 3-stage Jameson-style Runge-
Kutta explicit time-stepping scheme with convergence accelerated to steady state by local time stepping and
implicit residual smoothing, or the linearized backward Euler implicit scheme of Ref. [14].

Cell reconstruction scheme: The higher-order reconstruction scheme, derived in Ref. [11,15] and illus-
trated in Figure 3, is based on a Taylor series expansion of the cell-averaged solution to the cell face. A key compo-
nent of the scheme is the reconstruction of surrounding cell-averaged data to a common vertex or node by a
weighted averaging procedure. Reference [9] proposed a scheme based on an inverse-distance weighted averaging
of the primitive variables from the cell centroid to the cell vertices. While this approach has proven to be both
accurate and robust through wide application, it is not fully second-order accurate in space. It has been shown in
Ref. [16] to be approximately 1.85-order accurate.

As development efforts progressed toward solving the Navier-Stokes equations on highly stretched tetra-

hedral grids, it became evident that the accuracy of the inverse-distance averaging scheme was not adequate. Thus,
a fully second-order accurate averaging procedure was implemented which is based on work by Holmes and Con-
nell [17] and Rausch, et. al. [18]. The procedure is derived by solving a constrained minimization problem to deter-

mine weight factors which satisfy Laplacian relationships. The algorithm reconstructs to machine accuracy the
exact values of a linear function at a node from surrounding cell-centered function values on an arbitrary tetrahe-
dral grid. Furthermore, the simple universal formula shown in Figure 3 for expanding the cell-centered data to the
cell faces also reconstructs the exact value of a linear function to the cell face. Thus, the entire spatial reconstruc-
tion scheme is termed second-order accurate, which has been verified by Mitchell [16].
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Limiter device: Euler, finite-volume, upwind methods occasionally encounter circumstances where some

local cell pressures, Pcetl, become negative and preclude convergence of the global solution. This often occurs in

regions where the inviscid assumptions are violated and viscosity would normally introduce enough diffusion to
relieve the problem in real flow. Since the Euler equations are inviscid, the only source of diffusion in the solution
comes from the discretization error inherent in the numerical approximation. A special empirical technique has

been developed to resolve these local anomalies as they occur and permit the global solution to advance toward
convergence. During each time iteration cycle, PceU is not permitted to become less than a user prescribed mini-

mum value, Ptol, i.e. Pcell=max(Pcell, Pto_. Furthermore, for higher-order differencing, cells which satisfy Pcetl < Ptol
are set to and maintained with a more diffusive lst-order stencil by imposing C_cell=O, as shown in Figure 3. In

many cases, this technique introduces enough local numerical diffusion to stabilize the global solution and permit
convergence. It has greatly increased the robustness of USM3D for complex geometries.

Data structure: An efficient face-based data structure [19] is exploited in the flow code, which does not

require interface fluxes to be stored during the solution cycle. The flux algorithm cycles through the triangular
faces and accumulates the residuals by scattering each flux to the two adjacent tetrahedrai cells. For proper vector-
ization, face-based data structure requires that the faces be ordered into groups or "colors" in which no two faces
share the same cell or opposing node. The explicit time integration scheme requires 45 words/cell of memory and
18 Ix.s/cell/cycle (higher order) on a Cray Y-MP supercomputer. Similarly, the implicit scheme requires 180 words/
cell and 64 lxs/cell/cycle (higher order) on the Cray Y-MP. While the implicit scheme requires more CPU time per
iteration than the explicit scheme, it is demonstrated in Ref. [11] that the implict algorithm converges in 6-times

less computer time than the explict one since higher Courant-Friedrichs-Lewy (CFL) numbers can be utilized. The
following table shows a machine-to-machine comparison of Central Processing Units (CPU) requirements for
USM3D on a test grid for the ONERA M6 wing. The computations involved a combination of lst- and higher-
order differencing. No special effort was made to enhance vectorization or performance on the non-Cray machines.

The larger relative CPU time for the Iris Indigo 2 between implicit (98.9) and explicit (27.6) time integration is
related to excessive swapping of the buffer due to insufficient core memory. Implicit calculations were not made on

the Sun 4 because of insufficient memory.

Cray C-90 7.0 0.44 29.0 0.45

Cray Y-MP 16.2 1.0 64.0 1.0

Convex 331.5 20.5 1234.0 19.3

Iris Indigo 2 (R4000) 448.0 27.6 6335.0 98.9

Sun 4 695.0 42.9

l_oundarv Conditions._The USM3D code is designed for the easy addition/modification of boundary con-
ditions (B.C.). It contains standard B.C.'s for flow tangency or no-slip on solid surfaces, characteristic inflow/out-
flow for subsonic outer boundaries, and freestream inflow and extrapolation outflow for supersonic flow. Some

additional special boundary conditions, which have been added to improve the robustness of the code or to expand

its capability, are described in the following.

Blunt base: With the application of USM3D to a wide range of complex 3D configurations, numerical dif-

ficulties routinely occur in blunt-based regions where a wake-type flow would develop in real flow, e.g. a blunt
wing trailing edge or a blunt termination of a fuselage. For such cases, the inviscid flow assumption yields a singu-

larity where the flow attempts to negotiate the corner.
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A specialboundaryconditionhasbeendevelopedtomimictherelievingeffectof ablunt-basewakeonthe
surroundinginviscidflowfield,whichisto provideasmoothdepartureof theflowpastthecorner.As illustrated in

Figure 4, the reconstructed primitive variables, (p,u,v,w,p), from the nodes of blunt-base boundary cells are aver-
aged and assigned directly to the boundary face and ghost cell. The effect is to introduce a solution defined transpi-
ration boundary condition to the subject faces which simulates the presence of a wake.

Engine model: USM3D contains a feature for modeling propulsion-induced effects of up to four jet-engine
or jet-nozzle components. The model [20] computes inflow and/or outflow boundary conditions from user pre-
scribed values for the total pressure and temperature change across or within the combustor, the exit pressure, the
fuel fraction, and the direction cosines for the jet. When applicable, the inlet mass flow is automatically balanced
with that of the nozzle.

.Preprocessing._A preprocessing step is involved before running USM3D on a given grid generated by
VGRID. The VGRID code outputs a coordinate file of the vertex locations, a cell-to-node connectivity file, and a
triangle-to-patch correlation file. The PREFLO code, depicted in Figure 1 generates an additional face-to-cell con-

nectivity file which is required for the face-based data structure in USM3D. (There are plans to modify the VGRID
output to generate the appropriate files and eliminate this preprocessing step.) Boundary conditions are applied at
the time of USM3D execution through a B.C. map file output by GRIDTOOL.

Graphic Postprocessing, VPLOT3D

VPLOT3D is an interactive, menu-driven post processing program for extraction and display of data on
unstructured (tetrahedral) grids. The philosophy behind the development of VPLOT3D has been to keep the pro-
gram as simple and straight-forward as possible. There is only one 'text" window and only one main 'graphics dis-
play' window. Most of the interaction and steering takes place through pop-up menus.

VPLOT3D has the ability to display grids and flow quantities on either boundary surfaces or user defined

arbitrary planes in the field. Flow quantities can be displayed using line or filled contours, velocity vectors and par-
ticle traces. Some unique features of the program include dynamic memory allocation, a 'probe' option that lets a
user query the local value of a certain displayed fluid dynamic quantity, ability to plot two different data sets side-
by-side and a journaling (log file) capability. Grid post-processing options allow a user to isolate and display 'bad'
grid cells and to visually confirm boundary conditions before proceeding for flow solution. Several hardcopy out-
put options are available including Black&White and Grayscale Postscript and RGB formats.

TECHNOLOGY ASSESSMENT

The present USG flow analysis system is being widely used throughout industry and government laborato-

ries. Studies have been published related to subsonic transports [4,21], high-speed research [22,23], military air-
craft technology [24], turbomachinery applications [25,26], and code calibration/assessments [27-29]. Results
from a published code calibration study are included herein to illustrate the capability.

A study was performed to assess the accuracy and utility of VGRID/USM3D on a wing/pylon/finned store
configuration [27] shown in Figure 5. Tctrahedral grids were generated for the configuration with baseline (or
store-in-carriage) store position, two dropped positions for M_=0.95, and two positions for Moo=1.2. The initial

grid was generated prior to the development of GRIDTOOL and took 4 days to complete. (The same task would
require 1 or 2 days with present codes.) The remaining four grids were generated by 'freezing' the baseline surface

triangulation while translating/rotating the surface patches, background-grid sources, and surface grid for the store
to prescribed locations, then generating a new volume grid. The latter four grids required approximately one-hour
each to generate.

Solutions were computed with Runge-Kutta time stepping and convergence acceleration using a CFL
number of 4 in about 2000 iterations, while the L2 norm (rms average of all residuals) decreased by about 4 orders
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of magnitude. For the baseline position, the computation required about 5.7h of Cray ¥-MP time, whereas for the

other two positions, the required computational time was of the order of 4 CPU h.

Figure 5 compares computed and experimental Cp data [30] on the store along two streamwise rays (along

top, ¢=5 °, and bottom, ¢p=185°) from the nose to the tail. For each case, the computed pressure coefficient com-
pares very well with experimental data. In particular, note the comparison along the 5-deg ray for the baseline con-
figuration that passes through the gap between the store and the pylon and where a large interference is expected•
While not shown, very good agreement was also obtained on the fins of the store.

STATUS OF EMERGING CAPABILITY

Thin-Layer 'Viscous' Grid Generator

Advancing-Layers Metho.d..--A new method for generation of thin-layer 'viscous" grids has been recently
introduced and successfully applied to 2D [31] and 3D [32] problems. The method, referred to as the advancing-

layers method (ALM), is based entirely on a modified advancing-front method (AFM) and benefits from the gener-
ality and flexibility of the conventional advancing-front-based Euler grid generators. Being based on an unstruc-
tured grid strategy, the method alleviates the structural limitations of the structured and semi-unstructured

techniques.

The generation of a grid with the present approach is divided into three separate stages: 1) surface grid

generation, 2) construction of high-aspect-ratio cells in the viscous region, and 3) generation of regular (isotropic)
cells in the inviscid-flow region. Steps 1 and 3 utilize established methodology encompassed in the advancing-

front inviscid grid generation code VGRID. The second step is performed independently by the ALM to reduce the
overall complexity of the process. Although the generation of grid is divided into separate stages with the present
approach, the entire process is performed in a single run with automatic transition from one stage to another.

The main features of the advancing-layers technique are similar to those of the conventional AFM. A vol-

ume grid is generated through a marching process in which tetrahedral cells originate from a triangular surface
mesh and proceed into the computational domain. In contrast to the conventional method which adds cells in the
field in no systematic sequence, the ALM advances one layer of cells at a time to reduce the complexity of produc-
ing high aspect ratio cells. Grid cells are formed by connecting new points, inserted along predetermined surface
vectors using a prescribed stretching function, to the corresponding faces on the front. During the process, the
integrity of the generated grid is monitored at each step. The layers continue to advance in the field, while growing
in thickness, until either 1) opposite fronts approach to within a local cell size or 2) certain grid quality criteria, dic-
tated by a global background grid, are locally satisfied. When the conditions are met on all faces on the front, the
process automatically switches from the advancing-layers to the advancing-front mode to generate equilateral cells

in the remaining inviscid-flow region.

To demonstrate the capability of the method, sample 2D and 3D grids around complex multi-component

configurations are presented. The 2D geometry consists of three airfoil sections in a high-lift arrangement. The
generated grid, shown in Figure 6, contains 34,987 cells and 17,705 points with a first layer spacing of about

7X10 "6 main airfoil chord length. The flow solution, shown in Figure 6 was obtained on the grid at Moo=0.2,

a=16.2 °, and Rec= 9XlO 6 using an available node-based, upwind flow solver 133] with the Baldwin-Barth turbu-

lence model.

• A representative complex 3D configuration was constructed to show the ability of the method to negotiate
difficult aspects of 3D viscous grid generation. Although the geometry resembles a quasi-two-dimensional shape, it
contains 3D complexities such as multiple components, sharp convex and concave edges, small gaps, and thin sur-
faces at the wing tip. The generated grid (surface and volume) is shown in Figure 7. The 'viscous' portion of the
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grid contains490,266tetrahedralcellsandhasbeengeneratedusinganSGIIndigo2workstation(R4000proces-
sor)inonly4.3minutes.Thefinalgridcontainsatotalof 168,734pointsand958,716cells.

Anisotropic stretching:--In order to generate viscous grids of reasonable size on complex configurations,
it will be necessary to have anisotropic (stretched) surface grids so that fewer points can be distributed in directions
of reduced flow field gradients. The development of such a capability is currently under way which has produced
satisfactory preliminary results. Figure 8 compares two surface grids for a wing configuration: one isotropic and
another stretched along the leading and trailing edges of the wing. Also the field grid distributions are represented
by triangulating a plane passing through the middle of the wing. The isotropic surface mesh (wing only) contains
40,778 equilateral triangles and is shown in Figure 8(a). A corresponding stretched grid with a similar chordwise
grid distribution is shown in Figure 8(b). As indicated, the grid is stretched along the edges of the wing in different
directions, with the stretching propagated in the field close to the body and smoothly dissipated further away from
the geometry. The maximum cell aspect ratio in this grid is about 20:1 at the leading edge of the wing. Although
the stretched grid has a similar distribution of points in the chordwise direction, it contains only 6,841 triangles on
the wing.

Navier-Stokes Flow Solver

Considerable progress has been made toward solving the Navier-Stokes equations on thin-layer tetrahedral
grids with USM3D. Ref. [11] provided an initial validation of the solution algorithm on a tetrehedral grid con-
structed by subdividing the hexahedral cells of a structured grid. The following presents a full demonstration of
computing a viscous-flow solution on a fully unstructured thin-layer tetrahedral grid produced from VGRID.

Hummel delta wing.mAn unstructured viscous grid of 730,454 tetrahedral cells was generated for a delta
wing of aspect-ratio 1 by an ALM version of the VGRID code. Normal spacing was distributed with geometric
stretching near the surface to yield approximately 10 nodes (30 tetrahedra) in the mid-chord boundary layer for
laminar flow. Anisotropic stretching, evident in the surface grid shown in the Figure 9, was utilized to reduce the
chordwise density of cells in the grid--this feature resulted in a 7-fold reduction in grid size compared to standard
isotropic triangles.

A viscous flow solution was computed with USM3D. A companion structured-grid computation was also
performed with the CFL3D code [34] on a 65X65X33 (span-radial-chordwise) H-O grid for comparison. Both the

unstructured and structured computations were performed on the delta wing at Moo=0.3, a=20.5 °, and

ReL=O.gXIO 6 with laminar flow.

The figure portrays the surface "oil-flow" pattern and a comparison of the spanwise distribution of pressure

coefficient, Cp, at four chord stations. The coalescing and diverging streamlines in the computed flow patterns
show evidence of the primary, secondary, and tertiary vortices. Good agreement is noted between the unstructured

and structured solutions, and with the experimental data of Hummel [35].

Turbulence modeling.raThe one equation turbulence model of Spalart-Allmaras [36] has been installed in
USM3D and is prcscntly undergoing testing. The derivation of this model relies heavily on empirical reasoning
and dimensional analysis, and is recciving a growing acceptance within the CFD community. The turbulence equa-
tion solves for turbulent viscosity separately from the flow equations during each time step, resulting in a loosely
coupled solution process. The governing equation is solved using the same back-ward-Euler time-stepping scheme
1141 as used for the flow equations.

A preliminary assessment of the turbulcnce model has been made for flat-plate boundary layer flow. A
two-dimensional flow was simulated by computing on a three-dimensional 'channel' grid which was constructed

by subdividing the hexahedral cells of a structured grid into tetrahedra. The grid was sized for a y+-I and 20-25

nodes across the boundary layer with M_=0.5 and ReL=2XIO 6. Figure 10 depicts a very good agreement between

the computed behavior of the law-of-the-wall and the model of Spalding [37]. Additional assessments are under-
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wayfor aNACA0012airfoilandtheONERAM6wing.Theuseof wall functionstoeliminatetheneedtoresolve
thelaminarsublayerisalsounderinvestigation.

InteractiveBoundaryLayer

An interactiveboundarylayer(IBL) capabilityhasbeeninstalledintoUSM3D[38]to provideforaninex-
pensiveaccountingof viscouseffectsin anunstructured-gridflowsolverfor predominantlyattachedflowcases,
suchasthetransoniccruiseconditionof asubsonictransport.Thetwo-dimensionalstripboundary-layermethodof
Cebecietal. [39]for turbulent,compressibleflowwasintegratedwithUSM3Dinacoupledfashionwherethedis-
placementthicknesswassimulatedby transpirationvelocities.Theautomatedprocessbeginswithapartiallycon-
vergedinviscidsolutionandcontinueswith the boundarylayermethodbeinginvokedat specifiedintervals
throughouttheremainderof thesolutioniterations.Theinviscidpressuresalongchordwisestripsonthewingsur-
facearepassedto theboundarylayerroutinewhichcalculatestheestimatedboundarylayerdisplacementthick-
ness.Thetranspirationvelocitiesarecomputedalongeachstripfromtheboundarylayerdisplacementthickness
usingLighthill'sequation[40]. A linear interpolation is performed between the strips to establish transpiration
velocities at the remaining surface nodes. The face-based displacement boundary conditions are determined by
averaging the node-based transpiration velocities to the centroid of the boundary triangle, then modifying the orig-
inal tangent-flow condition to include the non-zero normal velocity. Face-center density and energy are set equal to
their corresponding cell-center value. A similar capability for a node-centered unstructured flow solver is described

in Ref. [41].

An application of the unstructured IBL capability, taken from Ref. [38], is shown in Figure 11 for a low-

wing transport configuration with a supercritical airfoil at M_o=0.77, a=I.12 °, and Rec=2.6XlO 6. The computa-

tional grid contains 286,000 tetrahedral cells and has ten chordwise strips along the wing span for applying the
boundary layer method. A comparison of pressure coefficient at the 34-percent semispan station is shown in Figure
11. The inclusion of the boundary layer model results in substantial improvement in predicting both shock location
and strength, as well as in the suction plateau. The poor agreement between the Euler result and the experimental
data is typical of inviscid solutions on supercritical airfoils, where the shock location can be overpredicted by as

much as 10- to 20-percent aft-chord.

Inverse Iterative Design

The Constrained Direct Iterative Surface Curvature (CDISC) design method [42] has been coupled with

USM3D to provide a capability for aerodynamic design of complex configurations. The CDISC method automati-
cally generates and modifies the target pressures that are used by the basic DISC design module so that flow and
geometry constraints are met. The CDISC module is coupled with the flow solver in an iterative manner and is
called after a user-specified number of flow iterations (typically 25). After the target pressures are altered to meet

the design constraints, the basic DISC module is used to modify the affected surface points. Geometry constraints
are directly enforced on this new surface, then the volume grid is perturbed, using the spring analogy of Ref. [43],
to reflect the geometry changes. Since the target pressure modilication, surface design, and flow solution are con-
verged in parallel, and the CDISC design system components themselves are very efficient, a converged design is

usually obtained in about 25-50% more time beyond the initial baseline analysis.

To illustrate the USM3D/CDISC design capability, the wing of an executive transport configuration (Fig-

ure 12) has been redesigned for reduced drag at a primary design point without increasing the drag at a secondary
design point. The baseline configuration was first analyzed using the USM3D code to establish reference values for
performance comparisons at the primary (Mach = 0.8) and secondary (Mach = 0.9) design points. These conditions
correspond to the long-range and high-speed cruise points, respectively. Two approaches are available in CDISC
for reducing the wave drag of a configuration at transonic speeds: 1) a simple incremental method that limits the
Mach number ahead of a shock to a specified value while matching lift and pitching-moment constraints; and 2)
the Modified Uniform Distribution (MUD) method, which redistributes the chordwise loading over an airfoil sec-

tion. The MUD option was selected for this case and was used to redesign the wing to reduce the drag at the pri-
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mary design point. The wing planform, nacelle location, root airfoil section, airfoil maximum thickness, and

spanwise load distribution were all held fixed. Initial results showed a 15 count drag improvement at Mach = 0.8,

with only a 3 count penalty at Mach= 0.9. This design however had an unacceptable twist distribution just out-

board of the nacelle. An input paramctcr to the MUD method was adjusted to shift the chordwise loading forward
at several sections, which brought the twist distribution much closer to that of the original wing. The baseline and

modified pressure distributions at Mach = 0.8, along with the corresponding airfoil sections, are shown in Figure

12 for two wing stations. At the inboard station, the strong shock near the quarter-chord of the baseline wing has

been significantly weakened, resulting in an overall drag decrease of 6 counts. Analysis at the high-speed cruise

point indicated that the new design had a 1 count drag improvement over the baseline at that condition. The design

took an additional 4 hours of Cray C-90 time beyond the 16 hours requircd to obtain the initial baseline analysis.

The grid had 700,000 tetrahedral cells, producing a central memory requirement of 148 megawords.

Solution Adaptive Gridding

One of the strong advantages of unstructured-grid tcchnology is the potential to exploit its flexibility in

adapting or clustering the grid in the vicinity of dominant flow features, such as shocks and vortices, to enhance

solution accuracy with fewer cells. This capability should facilitate a more rapid transfer of the technology to the

workstation environment. Attention has been focused on providing an unstructured "remeshing" capability which

distributes grid points efliciently throughout the domain and adequately resolves important flow features.

Remeshing procedures have been developed and applied for shock [44] and vortex [45] dominated flows.
The proccdure integrates the grid generation and flow solver functions in such a way that the information produced

by one is successively used by the other until a desired accuracy is obtained. Accordingly, the grid generator

VGRID, is combined with the flow solver USM3D, to produce a unified procedure that produces input parameters

for the mesh generator bascd on the solution on a previous grid. The concept of a background grid, which is used in

the adwmcing-front technique to specify and control grid size distribution, is exploited in the remeshing procedure.

Shocked flows:--The proccdurc of Rcf. [44], which addressed shock dominated flows, was based on the

"tetrahedral" background grid I concept [7] where the computational grid scrves as the background grid for gener-

ating a subsequent grid. Grid spacing parameters were calculated at the nodes of this mesh based on the previous

flow solution, and ancw mesh was generated. Figure 13 shows the result of applying this remeshing procedure on

the ONERA M6 wing. The upper portion of the figure compares the upper surface triangulation between the

adapted grid (at the end of three adaptation cycles) and an unadapted grid. On the lower portion, Cp distribution at

two spanwise stations are compared (for M_=0.84 and a=3.06 °) between the adapted and unadapted grids, and the

experimental data. While both sets of computed data compare well with the experimental values, the efficiency of

the adaptive procedure is established by the fact that the adapted grid had about 2.5 times fewer cells than the

unadapted case.

Vortex flows:--A solution adaptive remeshing procedure, based on the "structured" Cartesian background

grid concept, has been developed for low-speed vortex dominated flows [45], such as those produced by sharp

swept-back leading edges or shed from the free ends of lifting surfaces. As discussed earlier with the structured

background grid, grid spacing is controlled by point and line 'sources' strategically placed throughout the domain

by the uscr. The present approach provides a capability for automatically prescribing line sources for refining the

grid in regions of vortex flow.

In the current procedure, the w_rticcs are located by an entropy parameter. In addition, a vortex in close

proximity to a surface induces a static pressure peak on the surface. To accurately resolve both the vortex core and

the accompanying static pressure peak, line sources are placed in the field and on the surface of the configuration.
The proccdure is automated t(_ the point that the user need only specify the approximate starting locations for the

1. The "tetrahedral" background grid is no loager used in VGRID, but has been replaced by the "structured" background grid

approach.
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vortices and threshold cut-off values for both the entropy and the static pressure. All other functions, such as iden-

tifying the location and strength of the background grid 'sources" and creation of a new input for the grid generator,
are automated.

The adaptation procedure has been applied to the Modular Transonic Vortex Interaction (MTVI) model,
tested at NASA Langley, which is characterized by the presence of multiple vortices (see Figure 14). Computations
were initiated on a relatively coarse grid with 35,388 points and 188,304 tetrahedral cells (GRID 1). Two succes-
sively finer adapted grids were generated with the adaptive procedure. The final adapted grid (GRID 3) had 68,158

points and 371,360 cells.

The left side of Figure 14 shows a comparison of surface triangulation for the unadapted (GRID 1) and the
adapted (GRID 3) cases. For the adapted case, surface grid clustering near leading edges as well as near the wing
tip is evident representing the static pressure peak due to proximity of vortices to the configuration surface. The
bottom right portion of the figure shows a comparison of the field grid projected on to a cross sectional plane at 93-

percent of root chord. Grid clustering around the vortex cores between the fuselage and the vertical tail and near
the wing tip can be seen clearly. On the top right of the figure, flow field results are compared between the

unadapted (GRID 1), the adapted (GRID 3) and experimental data. The Cp comparison is shown at a streamwise

station located at 93-percent of the root chord for M_o=0.4 and a=10.54 °. Results are also compared from a 'fine'

grid with 148,285 points and 825,469 tetrahedra. During generation of the 'fine' grid, no special effort was made
to cluster grid points around vortex core locations. An expected higher suction peak resulting from grid adaptation
is evident. The fine grid did not capture the suction peak at the station shown due to lack of grid resolution there,
while the adapted grid automatically provided the grid resolution needed. This case clearly establishes the ability
of the adaptation procedure to automatically provide adequate grid resolution where needed. The whole adaptation
process required about 2.5 hours of CPU time on a Cray-YMP computer, compared to about 4.0 hours for the 'fine'
grid. The adapted results show a better accuracy with about 2.2 times less number of cells and about 38-percent
CPU saving compared to the 'fine' grid case.

CONCLUDING REMARKS

An overview has been presented of a maturing capability for performing rapid aerodynamic analysis and
design of complex configurations using unstructured-grid methodology. Development priorities have been dictated
by program needs from within NASA as well as those of industry partners. This technology also offers strong
potential for impacting other non-aerospace disciplines, such as automobiles, boat sail and hull design, wind loads
on buildings, design of ventilation systems, analysis of pumps and pipe systems, design of heat exchangers, and
electromagnetics. The present unstructured Euler technology can be readily applied by modestly trained engineers
to solve complex aerodynamic problems. Significant progress has also been made towards developing an unstruc-
tured Navier-Stokes capability for complex geometries.

Considerable utility can be derived from the base Euler technology. Often, the inviscid flow equations can
provide the critical aerodynamic insights needed to resolve more complex problems. The Euler methodology has
also been enhanced with additional engineering features such as interacting boundary layers, constrained inverse

design, propulsion flow boundary conditions, and solution-adaptive gridding, thereby providing a powerful capa-
bility for aerodynamic design and analysis to the project-level engineer.

The capability for solving the Navier-Stokes equations on complex conligurations using unstructured-grid
methodology is still evolving. Such a flow solver has been developed and is presently being tested. The primary
obstacle to a practical unstructured Navier-Stokes capability has been the lack of a robust thin-layer 'viscous' tetra-
hedral grid generator. As demonstrated in this paper, the Advancing-Layers method shows great promise toward
providing that capability.
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Figure 7. - Complete tetrahedral viscous grid on a multi-elcmcnt wing shown on a plane.

304



\

(a) lsotropic surface and field grid (40,778 triangles on wing).

(b) Multidirectional anisotropically stretchcd surface and field grid (6,841 triangles on wing).

Figure 8. - Example of multidirectional anisotropic grid stretching for cranked-wing configuration.
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ABSTRACT

The paper presents generation of adaptive hybrid prismatic/tetrahedral grids for complex 3-D ge-

ometries including multi-body domains. The prisms cover the region close to each body's surface, while
tetrahedra are created elsewhere.

Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is

a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main

feature of the present advancing front tetrahedra generator that is different from previous such methods

is that it does not require the creation of a background mesh by the user for the determination of the

grid-spacing and stretching parameters. These are determined via an automatically generated octree.

The second development is an Automatic Receding Method (ARM) for treating the narrow gaps in

between different bodies in a multiply-connected domain. This method is applied to a two-element wing
case.

A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is de-

veloped to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation

scheme that couples division of tetrahedra, as well as 2-D directional division of prisms.

INTRODUCTION

Simulation of flows around three-dimensional bodies is a major issue in computational fluid mechanics.

Geometrical and flow-field complexity combine to make 3-D computations a pacing item. The generation

of a body-conforming grid has proven to be a difficult task [1, 2].

The success of a structured grid generation may be extremely dependent on geometry and operator

proficiency. Block-structured schemes exist which, based on extensive user input, break the computational
domain into a number of blocks within which hexahedra are constructed. A radical alternative to structured

meshes is to use tetrahedra. Tetrahedral grids provide flexibility in 3-D grid generation since they can cover

complicated topologies easier compared to the hexahedral meshes. This does not come without a price,

viz., unstructured grids require a great deal more memory than their structured counterparts. They

*Associate Professor
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employpointersto provideconnectivityinformationbetween(:ells,faces,edges,and nodes.Additionally,
approximatelyfive t.osix timesmoretetrahedrathan hexahedraare requiredto fill a givenregionwith
a fixed numberof nodes.This vastincreasein the numt)erof requiredcellsleadsdirectly to impractical
memoryrequirementsfor 3-Dviscousflowsimulations.Furthermore,resolutionof the strongdirectional
flowgradientsencounteredin viscousflowsrequiresverythin grid elements.It is veryexpensiveto generate
tetrahedralcellswith highaspectratio to resolvesuchgradients.

Onesolution to the dilemmabetweenhexahedraand tetrahedrais to usea semi-unstructuredgrid
madeof prisms. Prismaticcellsarecomposedof triangularfacesin the lateral (body-surface)directions
and quadrilateralfacesin the normaldirection. Therefore,they canprovidethe geometricflexibility of
unstructuredgridsaswell astheorthogonalityandhighaspectratio qualitiesof structuredgrids. Results
havebeenobtainedusingprismaticgridsthat revealtheir suitability for resolvingviscousflowphenomena
[3,4, 5]. The prismaticgrid requiresa setof pointersto definetheir basetriangularmeshcombined with

a single index for each prism belonging to the same stack [4]. Finally, structure of the prisms in one
of the directions can be exploited in order to apply directional multigrid acceleration within the viscous

regions [4, 6].
The areas between different prismatic layers covering the surfaces of the domain can be quite irregular.

Furthermore, the relevant flow features do not usually exhibit the strong directionality that the viscous

stresses have. Tetrahedral elements appear to be appropriate for these irregularly shaped regions. Their

triangular faces can match the corresponding triangular faces of the prisms.

The present work employs two families of grid elements: prismatic grid cells for the viscous region

and tetrahedral grid cells elsewhere. A new advancing front type of method is developed for generation

of the tetrahedra of the hybrid (prismatic/tetrahedral) mesh. The main feature that is different from

previous advancing front generators [7, 8] is that it does not require a user-constructed background mesh
for determination of the grid-spacing and stretching parameters. It. should be noted that generation of the

background mesh has been a very time-consuming and user-dependent part of previous advancing front

methods. A special octree is constructed via. a. Divide-alzd-Co_zque:r method of the space outside of the

region covered by the prisms. The grid spacing is then determined based on the size of local octants which

form the octree.

An important issue arising with use of semi-structured prismatic grids is covering of narrow gaps in
between different bodies. In the present work, an Automatic Receding Method (ARM) is developed that

relies on receding the prisms layers that surround each body. The gap that the prisms leave is filled with
tetrahedra. The case of a two-element wing is considered as a test of the technique.

A High Speed Civil Transport (ttSCT) type of aircraft geometry is considered in order to investigate

efficiency and to demonstrate robustness of the method in handling relatively complex topologies. The

generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral
mesh been used in the prisms region, as well.

A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is de-

veloped to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation

scheme that couples division of tetrahedra, as well as 2-D directional division of prisms.

GENERATION OF PRISMS

An unstructured triangular grid is employed as the starting surface to generate a prismatic mesh. This

grid, covering the body surface, is marched away from the body in distinct steps, resulting in generation of
semi-structured prismatic layers in the marching direction. The goal of the marching scheme is to reduce
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the curvatureof the previousmarchingsurfaceat eachstepwhileensuringsmoothgrid spacingto avoid
surfaceoverlap.The processcanbevisualizedasagradualinflationof thebody'svolume.Therearethree
main aspectsof the algebraicgrid generationprocess:(i) determinationof the directionsalongwhichthe
nodeswill march(marchingvectors),(it) determinationof the distanceby whichtile nodeswill march
alongthe marchingvectors,and(iii) smoothingoperationsonpositioningof the nodeson the new layer.

Determination of the Marching Vectors

Each node on the marching surface is advanced along a marching vector. The marching direction is

based on the node-martifold, which consists of the group of faces surrounding the node to be marched. The

primary criterion to be satisfied when marching is that the new node should be visible from all the faces
on the manifold.

Tile node-normal vector lies on the bisection plane of the two faces on the manifold that form the

wedge with the smallest angle. Its location on this plane is determined by bisecting the visibility region

on the plane. This process has yielded consistently valid normal vectors at. the nodes by constructing the

vector most normal to the nlost acute face planes. Essentially, it. does this by' maximizing the minimum

angle between the node-normal and all the surrounding face normals. A more detailed description of the
marching procedure can be found in [3].

Since the visibility requirement is a necessary one in order to obtain a valid grid, all subsequent

smoothing operations performed on the original normal vector enforce the visibility constraint.

Marching Step Size

Determination of marching distances is based on tile characteristic angle /)_ of the manifold of each

node to be marched. This angle is computed using the average dot product between the pairs of faces

forming the manifold. The marching distance is a linear function of/3av_. It yields relatively large march-

ing distances in the concave regions, and small distances in the convex areas of the marching surface.
Specifically, the distance A1z is:

An = (1 + c_)Al_., (1)

where An_,¢ is the average marching step for that layer, and o is a linear flmction of the manifold angle
_,_. The sign of a is positive for concave regions and negative for convex regions.

The average marching step for each layer, AI_,_ is computed based on a user specified initial marching

step Ano and a stretching factor st. The actual marching step for layer j is given by:

An_,_ = AT_o × st (a-l) (2)

Smoothing Steps

The initial marching vectors are the normal vectors. However, this may not provide a valid grid since

overlapping may occur -especially in regions of the grid with closely' spaced nodes. To prevent overlapping,

the directions of tile marching vectors must be altered. A number of smoothing passes (typically 5) are

performed over all the nodes on the marching surface. Weighted Laplacian smoothing is applied to the
direction of the marching vectors as follows:

(1 -_')

I_ = coI:_:+ E., 117l_ _j ( 1/dij)I7i' (3)
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whereV[ and _ are the initial and final marching vectors of node i, while Vj are the marching vectors

of the surrounding nodes j that belong to the manifold of node i. The weighting factor w is a function of
the manifold characteristic angle/_=ve. It has small values in concave regions, and relatively large ones in

convex areas. The averaging of the marching vectors of the neighboring nodes is distance-weighted with

dij denoting the distance between nodes i and j.
A similar procedure is employed for the smoothing of the marching steps An.

Constraints Imposed to Enhance Quality

Typical Navier-Stokes integration methods impose restrictions on the spacing of the points along the

marching lines, as well as on smoothness of these lines. In other words, the prismatic grid should not be

excessively stretched or skewed. In the present work, two constraints are imposed on the positioning of

points on the marching lines, as well as on the deviation of the direction of the marching vectors from one

layer to the next. The ratio of the grid spacings along the marching lines of any two consecutive prisms

layers should be less than a stretching factor st:

(1 - st)Anlj-1 < Anlj < (1 + st)Anlj-1, (4)

where the subscripts j - 1 and j denote the order of points along each marching line. A typical value of

the allowed stretching factor st is 0.2. Furthermore, the angle between two consecutive marching vectors

tTj_l and Vj should be less than a specified angle of 30 °.

Scalability of Prisms Generation Time

Grid generation time depends on the number of boundary faces, as well as on the number of prisms layers
that are created. The cases of mesh generation around an ONERA M6 wing and an HSCT configuration

are employed in order to study how the time scales with these two factors. Three different surfaces

triangulations of the M6 wing are considered. The first consists of 3239 faces, the second of 8807 faces,
while the third has 15279 faces. Figure 1 shows almost linear increase in generation time with number of

boundary faces. The number of generated prisms layers was kept the same in all three cases and equal
to 24. Perfect linear scaling of the mesh generation time with number of prisms layers is demonstrated in

Figure 2. This implies that the required operations of the generator are exactly the same for each layer.

OCTREE/ADVANCING FRONT TETRAHEDRA GENERATION

A new method is presented for generating the tetrahedra of the hybrid grid. Advancing front type of

methods require specification by the user of the distribution of three parameters over the entire domain to

be gridded. These field functions are: (i) the node spacing, (ii) the grid stretching, and (iii) the direction

of the stretching. In the present work these parameters do not need to be specified. The distribution of

grid size, stretching, and direction of stretching is automatically determined via an octree. There is no

need for a special background mesh which has been the backbone of previous advancing front generators.
The tetrahedra that are generated should progressively become larger as the front advances away from

the original surface. Their size, the rate of increase of their size, as well as the direction of the increase

are given from an octree consisting of cubes which is generated automatically via a Divide-and-Conquer
method. This process generates octants that are progressively larger with distance away from the body.

Their size will be the characteristic size of the tetrahedra that will be generated in their vicinity.
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Generationstartsfrom theoutermostsurfaceof the layerof prismssurroundingthebody.Thetriangles
of this surfaceform the initial front. Then,a list of pointsis createdthat consistsof a newnode,aswell
asof "nearby" existingpoints of the front. Oneof thesepointsis chosento connectto the verticesof
the face. Followingchoiceof the point to connectto, a newtetrahedronis formed. Thelist of the faces,
edges,and pointsof the front is updatedt)y addingand/or removingelements.The algorithmfollowed
in thepresentwork is the onepresentedill [8,9]. The methodrequiresa datastructurewhichallowsfor
efficientaddition/removalof faces,edgesand points, aswell asfor fast identificationof facesandedges
that intersecta certainregion.Thealternatingdigital tree(ADT) algorithnlis elnployedfor thesetasks.

A Special Oetree for Tetrahedral Grid Spacing Control

The divide-and-conquer process starts with a master hexahedron that contains the body. This hexa-

hedron is recursively subdivided into eight smaller hexahedra called octants. Any octant that intersects

the body is a boundary octant and is subdivided further (inward retinement). The subdivision of those

boundary octants ceases when the size of the boundary octant nmtches the thickness of the prisms on the

outermost prisms surface.

Then, the hexahedral grid is further refined in a balancing proee_'s (outward refinement) to prevent

neighboring octants whose depth differs by more than one (intcTface oclants). Outward refinement is

performed to ensure that. the final octree varies smoothly ill size within the areas not covered by the

prisms. The sole criterion for outward refinement is a depth difference grealer lhan one between the octant

itself and any of its neighbors. Only interface octants are subject to outward refinement. Figure 3 illustrates

the growth of the size of the octauts away, from the surface. The figure shows the outermost prisms surface

around a tligh Speed Civil Transport (HSCT) type of aircraft geometry, as well as a cut through the

octree. Growth of tile octants away from the outermost prisms surface guides growth of the corresponding

tetrahedra. Figure 4 illustrates the symmetry plane of the ItSCT geometry. The quadrilaterals (dark lines)

correspond to the faces of the octants on this plane, while the triangles (light lines) correspond to the faces

of the tetrahedra. It is observed that the size of the tetrahedra, as well t.ho stretching of tile mesh and the

direction of stretching is guided quite accurately by' the octree.

Simplicity and no user intervention are main advantages of the octree. The usual trial-and-error

procedures for constructing the field functions that give the local size of the tetra.hedra, the stretching of

the mesh, and the direction of the stretching (background mesh) for previous advancing front, generators

are avoided in the present method. The octree is generated once and remains the same throughout the
generation process.

Determination of Size of the Tetrahedra

The advancing front method creates a new tetra.hedron by connecting each face of the current front to

either a new or an existing node. This point, is found by, using a characteristic distance (_which is calculated

from the size of the local octant to which the face of the front belongs.
The local characteristic size b is calculated as follows:

]I._/, (5)

where H is the size of the boundary octants, st is the stretching paranmter, and 1 is the level of the local

octant to which the face of the front belongs. The values of l range from 0 (boundary octant) up to a

number equal to the number of recursive subdivisions of the initial (master) hexahedron. A typical value
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of the stretchingparameter,stis 1.8.Thesmallerthe valueof st, the smoother the variation in size of the

generated tetrahedra. However, a very small value results in generation of a very large number of elements.
The chosen value is a compromise between the two effects. Further details of the method are given in Ill].

THE AUTOMATIC RECEDING METHOD (ARM) FOR HYBRID GRID

GENERATION AROUND MULTI-BODY DOMAINS

The developed hybrid grid generation method is flexible and general in order to treat domains that

contain multiple bodies. A prismatic layer is created around each one of the bodies, while the regions in

between these meshes are filled with tetrahedra. Any location and orientation of these bodies is allowed.

This is accomplished via a special method for treatment of narrow gaps that frequently form in multiply-
connected domains, such as multi-element wings. The key feature of the method is the fact that the

prismatic grid around each of the bodies is generated indet)endently of all the other bodies. As a result,

such generation is as simple as the generation of prisms for a domain containing a single body. tIowever,

overlapping meshes are avoided here by employing a special technique that redistributes the prisms nodes

along their corresponding marching lines after the initial generation. This redistribution occurs in the

vicinity of the regions of overlapping prismatic meshes and results in formation of gaps in between the

previously overlapping prisms layers. Then a tetrahedral grid is generated in order to fill in those gaps. It

should be emphasize(t that the structure of the prismalic grid is not destroyed.

Receding of the Prism Layers

Receding of the prisms nodes occurs along the marching lines that intersect with another 1)rismatic
mesh. The distance over which the outermost point is "l)ulled-back '' depends on the local extent of

overlapping. In order to avoid abrul)t changes in the thickness of the layer due to the local receding,

the nodes belonging to the neighboring marching lines are also receded to a certain extent. This extent

gradually reduces to zero away froln the area of overlapI)ing of the meshes. Furthermore, the marching
line is not altered due to the rearrangement of the t)oints on it. Finally, redistribution of tile points along

each marching line obeys the constraint on allowable stretching of the mesh. As a result, the spacing of

the first point off the surface is reduced which will have no adverse effect on accuracy of solutions.

The steps that are followed in order to remove overlapping of a specific pair of prism layers are:
1. Find the marching lines of each one of the separate prismatic meshes that intersect with one or more

of the other grids.

2. Calculate the length of overlapping of each one of the mar('hing lines of the two or more prismatic

nleshes that overlap.

3. Redistribute the nodes on these marching lines so that no overlapping occurs. Essentially, this results

in receding of the nodes closer to the body' surface.

4. Avoid abrupt changes in the thickness of the prisms layers by receding neighboring marching lines
that do not intersect. This is accomplished t)y flagging the neighboring marching lines and calculating

the distance of receding (An") according to:
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wherethe subscript neib denotes the marching lines that are neighboring the specific line, and N is

the number of neighboring lines. This lateral smoothing process is repeated a few times (typically
10).

An integral part of the previous method of receding is repositioning of all the points on the marching

lines that are 'pulled-back'. A scheme is employed which redistributes the nodes so that the shape of the

lines is not altered. In other words, tile marching directions are maintained, but the marching distances

between consecutive points are modified. This is accomplished by performing a cubic-spline fit to each of

the marching lines using the prism node locations for the spline knots. The nodes are then redistributed

along the splined lines. The distribution is such that the new node-positions satisfy the grid spacing

constraint. In the present work, a certain stretching factor is maintained, while the spacing of tlle first
point off the body surface is reduced.

Application to Two-Element Wing with Variable Gap Size

In order to illustrate validity of the previous procedure, the case of a two-element wing with variable

size of the gap between tile main wing and its flap is considered. Figure 5 shows the geometry of the

two-element wing. Tile gap increases along tlle span. Stage one involves generation of the two separate

prismatic meshes that cover each one of the two bodies. Generation is quite simple due to the fact that

each layer of prisms is grown independently of the other layer. The two grids overlal) locally as shown

in Figure 6. In the second stage, the thickness of tile prisms layers is reduced locally and the overlap no

longer occurs as shown in Figure 7. Comparing tile grids of Figures 6 and 7, it is observed that the receding
occurs over a larger region which results in a smooth variation of the local lhicknesses of both meshes. The

final stage involves generation of the tetrahedral mesh that covers all areas in between the prisms. Figure 8
shows the final hybrid (prismatic/tetrahedral) grid on the plane of symmetry. Tile quadrilaterals are the

signature of the prisms on that platte, while tile triangles correspond to faces of the tet.rahedral mesh.

HYBRID GRID GENERATION AROUND THE HSCT

A High Speed Civil Transport (HSCT)-type of aircraft, geometry was chosen as tile test case for the

developed grid generator. Figure 9 shows the triangulation of the initial surface. The mesh consists of

4412 triangles and 2275 nodes. A symmetry plane is considered that divides tile body. Thus, hybrid grid
is generated for half of the space.

The time required to generate the prismatic grid around the HSCT was 90 seconds for 40 layers of prisms

on an IBM 390 workstation. Generation of approximately 170,000 tetra.he(Ira took about 67 minutes on the

same station. It. should be emphasized that employment of a hybrid grid for the tISCT geometry required

only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms
region, as well.

A view of the grown prismatic surface is shown in Figure 10. Tile growth of tile grid is illustrated after

40 marching steps. The effect of the marching process is similar to inflating of the original body volume.

Figure 11 shows portion of the initial wing surface, as well as the outer surface of the t)risms. Both the

structured part (quadrilateral faces), and tit(, unstru('l ured part (triangular faces) of the prisms is shown.

Every fourth layer of prisms is shown for clarity of the plot.. Two wire-frame views of the prismatic grid

are illustrated in Figure 12. Tile shaded regions correspond to tile surfa(:e of ttle aircraft.

Three different, stages in the growth of tile tetrahedral mesh on top of the prisms is shown in the

sequence of Figure 13. The space between the outer prisms surface and tlle farfield is 'filled up' quite fast.
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It is worth observingthe transitionof the hybrid meshfrom the prismsto the tetrahedra.Figure14
showsthehybridgrid at asectionof thesymmetryplaneofthe aircraft.Thequadrilateralfacescorrespond
to the prisms,while the triangularfacesbelongto the tetrahedra.It is observedthat the grid transitions
smoothlyfrom the prismsregionto thetetrahedralarea.

Thefinal hybridgridconsistsof 176,480prismsandof 170,300tetrahedra.Figure15showsthesignature
of the meshon thesymmetryplane.Finally,Figure16illustratesthehybridmeshon twodifferentplanes
that are perpendicularto eachother. The first planeis the symmetryand it is indicatedby the darker
lines,while the secondis intersectingthe fuselageat a locationupstreamof the wing andit is shownvia
light lines. It shouldbe notedthat the irregularityof the linesobservedon the secondplanearedueto
the fact that the grid it intersectsis not planarasit ison the symmetryplane.

COMBINED REFINEMENT/REDISTRIBUTION FOR HYBRID GRIDS

A dynamicgrid adaptationalgorithmhaspreviouslybeendevelopedfor 3-D unstructuredgrids [10].
Thealgorithmis capableof simultaneouslyrefiningandun-refiningappropriateregionsof the flowdomain.
This methodis extendedto thepresentworkandis coupledwith prismaticgrid adaptationto implement
a hybrid grid adaptationmethod.

Directional Division of Prisms

The prismsarerefineddirectionallyin orderto preservethestructureof themeshalongthenormal-to-
surfacedirection.Theprismaticgrid refinementproceedsbydividingonly the lateral edges that lie on the

wall surface and hence the wall faces. The faces are divided either into two or four subfaces. The resulting

surface triangulation is replicated in each successive layer of the prismatic grid. This results in all the

prisms that belong to the same stack (namely, the group of cells that originate from the same triangular
face on the wall surface) getting divided alike. The prismatic grid refinement preserves the structure of

the initial grid in the direction normal to the surface. The primary advantage of using such an adaptive

algorithm for prisms is that the data structures needed for its implementation are essentially as simple as

that for refining a 2-D triangular grid.
The directional division of the prisms does not increase resolution of flow features that are aligned in

a direction that is normal to the wall surface. However, a grid redistribution algorithm can be employed

in order to recluster nodes in the normal direction so as to better resolve the viscous stresses [3, 11].

The tetrahedral cells constitute the portion of the grid where inviscid flow features are dominant.

These features do not exhibit the directionality that is generally prevalent in viscous stresses. Hence, the

tetrahedra are refined by division into eight, four, or two subcells [10].

Redistribution of Prisms

The redistribution algorithm increases local grid resolution by clustering existing grid points in regions

of interest. A measure of the grid resolution required normal to the no-slip wall is the values of y+ =

with u_ = ,_ being the wall friction velocity. A criterion based on the values of y+ at the wall is
Y Pwa|l

employed to either attract nodes towards the wall or repelthem away from the surface so that a specific value

of y+ is attained at all the wall nodes. This procedure in essence determines a new value for the spacing

5w_u of the first node off the wall at all locations on the wall surface. The nodes in the prismatic region
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are then reclustered along the marching lines emanating from the corresponding wall node, in accordance

with the new value of ¢5,_ll. Details are presented in [4].

Application of Hybrid-Adaptation Method

The test case of flow past a sphere at a free stream Mach number of Moo = 1.4 and a. Reynolds number

of Re = 1000 (based on the radius of sphere) is considered. The flow is characterized by both inviscid and

viscous flow features such as shock waves and boundary layer separation. Details are given in [4].

The hybrid grid adaptation algorithm is implemented to obtain a numerical solution for the flow

situation discussed above. A coarse hybrid grid comprising _,, I_00 wall boundary nodes and --, lOOK

tetrahedra is used as the initial grid. The prismatic region is constituted by 20 layers of prisms. The

locally adapted grid obtained after h-refinement based on an initial solution and the Math number contour

lines of the final solution obtained on tile adapted grid a.re shown sinmltaneous]y in Figure 17. The

figure shows the enlbedded tessellations on the wall surface, symmetry plane as well a.s on an equatorial

plane cutting through the interior of the grid, normal t.o the symmetry plane. Mach number contour

lines are shown superimposed on tile embedded mesh on the equatorial plane in the figure. It is clearly

seen that embedding in tile tetrahedral region is focussed near the shock location just outside of the

prismatic-tetrahedral interface. The prismalic region is also directionally refined near the upstream and

downstream sections of tile body. This is due to lhe flow upstream accelerating rapidly fi'om the upstream

stagnation point and the flow downstream separating that causes tlow gradients in lhe lateral directions

that are detected by the directional ada.pliw, algorithm. The embedded hybrid grid comprises ,-, 2500

wall boundary nodes and _ 275K tetrahedra. Tile numerical solution obt.ailmd by the solution-adaptive

approach is compared with that of the solution obtained on a globally refined grid, starting with the same

initial coarse mesh as before. The va.lues of skin-friction coefficients computed oll the wall surface are

compared between the two solutions, as shown in Figure 18. The tigure shows the excellent agreement of

the results computed on tile locally adapted grid with that of the globally refilled grid.

SUMMARY

Generation of the tetrahedra was made simpler due to the fact that a background mesh was not required

for determination of the mesh spacings. The spacing parameters provided by the octree yielded t.etrahedral

elements that varied in size smoothly. Furthermore, the octree enabled a smooth transition of the grid

from the prisms to the tetrahedra.

The time required to generate the prismatic grid around the IISCT type of configuration was 90 seconds

for 40 layers of prisms on an IBM 390 workstation. This time scales almost linearly with the number of

boundary faces. Generation of approximately 170,000 tetrahedra took about 67 minutes on the same

station.

Employment of a hybrid grid for an HSCT-type of geometry required only 170 K tetrahedra instead of

an estimated two million had a tetrahedral mesh been used in the prisms region, as well.

The developed method of receding prisms layers (ARM) for narrow gaps between different bodies was

validated via a case of a two-element wing with variahle size of tho gap between the two elements.
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Figure 1: Scaling of prisms generation time with number of boundary faces.

Case of the ONERA M6 wing with 24 layers of prisms.
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Figure 2: Linear increase in prisms generation time with number of prismatic layers.

Case of the HSCT aircraft with 4412 boundary faces.
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Figure3: Outwardrefinementresultsin gradualgrowthof theoctree.
3-Dsectionof domainshowingthe outerprismaticsurfaceandtheoctants.
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Figure 4: Effect of the octree on growth of the tetrahedra.

View of the octants (quadrilateral faces), as well as of the tetrahedra (triangular faces) on the symmetry

plane. Growth of the tetrahedra away from the outermost prisms surface follows growth of the octree quite

faithfully.
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Figure5: Geometryof two-elementwingwith a variablesizegapbetweenthe mainwingandthe flap.

Figure 6: Prismaticgrids growaroundeachbody independentlyof oneanother(viewon the symmetry
plane).

Figure7: Mutual recedingof the two prismaticgridsremovesprior overlapping(viewon the symmetry
plane).
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Figure 8: Tetrahedral grid fills the areas in between the two prismatic meshes (view o11 lhe symmetry

plane).

Lower portion: Enlarged view of tile gap region between the two bodies.
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Figure 9: Triangulation of the HSCT surface (4412 triangles, 2275 nodes). A symmetry plane is considered.

Figure 10: View of the outer surface of the prismatic mesh of the HSCT.
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Figure 11: View of the initial andfinal prismssurfacesaroundthe HSCTaswell asof the quadrilateral
facesof the prisms(everyfourth layeris plotted).
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Figure 12: Wire-frame views of the grown prismatic mesh around the wing of the HSCT (shaded area

denotes the surface of the aircraft).
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Figure 13: View of different stages in growth of the layer of tetrahedra away from the prisms outer surface

for the HSCT.
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Figure 14: Smooth transition of the hybrid grid from the prisms to the tetrahedra. Partial view of the

mesh on the symmetry plane.
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Figure 15: View of the hybrid grid on the symmetry plane of the HSCT. The quadrilateral faces correspond

to the prisms, while the triangles belong to the tetrahedra.
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Figure 16: View of the hybrid mesh around the HSCT on two different planes that are perpendicular to

each other. The first plane is the symmetry (dark lines), while the second is intersecting the fuselage at a

location upstream of the wing (light lines).
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Figure 17: An isometric view of the tessellation on the wall surface, symmetry plane and an interior equa-

torial plane and Mach number contour lines on the equatorial plane. Hybrid grid embedded isotropieally

in the tetrahedral region and directionally in the prismatic region. (Mmin = 0., Mma= = 2., AM = 0.05).
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Figure 18: Comparison of Skin-friction coefficients at the wall, on the equatorial plane normal to the

symmetry plane.

-- Globally refined hybrid grid solution,- - - Locally embedded hybrid grid solution.
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THREE-DIMENSIONAL IIYBRID GRID GENERATION USING

ADVANCING FRONT TECItNIQUES

N95.28745

John P. Steinbrenner and Ralph W. Noack

MDA Engineering, Inc.

Arlington, TX

ABSTRACT

A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing

fronts for both structured and unstructured grids. In this approach, structured grids are first generated
independently around individual components of the geometry. Fronts are initialized on these structured

grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing

typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria.
When no more viable structured cells exist, further cells are advanced in an unstructured manner to close

off the overall domain, resulting in a grid of "hybri(l" form. There are two primary advantages to the hybrid

formulation. First, generating blocks with limited regard to topology (,liminates the bottleneck encountered

when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated

free of external constraints, which will significantly re(tuce the generation time. Secondly, grid points near

the body (presumably with high aspect ratio) will still maintain a structured (non triangular or tetrahedral)
character, thereby maximizing grid quality and solution accuracy near the surface.

INTIIODI_CTION

Grid generation has turned out to be a significant aspect of the computational simulation of field prob-

lems. A cursory literature search would produce a variety of fundamental grid types in lnainstream use,

which is an indicator that no one method offers clearly, superior features. The traditional method of grid

generation for computational fluid d),namics, structured grid generation, remains popular today because it

provides substantial solution accuracy, particularly in viscous regions of the flowfield. A generalization of the
structured method, the multiple block method, allows virtually any geometry to be modeled with a series

of abutting grid blocks. This geometrical flexibility comes at a price, however, as the person-hours needed

for generation can become exhorbitantly high. This one fact was probably the major reason for the ground

swell of unstructured grid generation CFD applications in the last eight or so years. Unstructured grids do

indeed ameliorate the generation-time botlleneck, but there has been a conspicuous delay in application of

unstructured grids to viscous regions, where the severe lengt.h-scale disparilies of the problem necesitates

cells of very large aspect ratio. Even now that viscous ai)plications are appearing in the literature, the mem-

ory and computational overhead associated with an unstructured grid makes it dilticul! to generate grids of

sufficient resolution. In 3I), for example, it. takes 5 or (i tetra.hedral cells near the I)ody to replace a single

hexahedral cell, and even then the tetrahedra will usually exhibit high aspect ratios.

Much of the grid generation research of the past few years has been aimed at. alternate methods that

allow grids to be generated in reasonable times without compromising resolution and hence, solution accuracy.

Perhaps the most mature of these methods is the overset_ or Chimera approach, t[ere, structured grids are

generated independently about different components of lhe geometry in an overlapping mauner. Overlap

regions are then determined either from user-input, or lately from a.utomated means [1], and solutions are

obtained on the composite grid. The difficulty of this method is in the conservative interpolation of the

flow solution from one component grid to another. Complex methodologies have been developed for this

step. Another emerging grid technology is the cartesian approach, whereby the flow domain is autotnatically
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divided into quadrilaterals and parallelepipeds at locations aligned with the physical coordinates. Here,

local refinement is often used for enhanced accuracy. Tile current problem with the cartesian method is the

representation of the geometry surfaces, which are usually not aligned with the physical axes. Tile typical

remedy is to modify the cell locally near tile surface to maintain a body-conforming fit.

This last fix introduces yet another emerging grid technology, that of the grid of mixed structure, or

the "hybrid" grid. The most popular hybrid grid application is to combine regions of structured grids with

regions of unstructured grids in such a way to preserve the salient features of each method. For example,

by using structured grids near the geometry surface, and unstructured grids everywhere else, the inner

grid could be generated quickly, and the outer grid could be generated automatically, thus eliminating the

difficulty of constructing a multiple block topology that links several blocks together to represent the entire

domain. The structured character of ceils near the body would then lead to improved solution accuracy, while

representing the domain locally with fewer grid cells. Early hybrid grid examples were applied to geometries

with clearly defined near and farfield regions [2], with the non-overlapping structured grids generated first,

and the remaining regions filled in later with unstructured cells. More recent examples, applied to extremely

complex geometries, still require user-defined boundaries between regions of structured and unstructured

cells [3]. In the general case, however, the line of demarcation between structured and unstructured regions

is not clearly defined, and in fact, may be impossible for the user to specify. The most intuitive solution is to

allow the near-geometry region to be generated automatically, until a. specified distance is reached or until

intersections are found. Very ilnpressive grids have been developed recently using this approach [4], [5], but

as the generation of surface and near-surface grids is the toughest aspect, in all types of grid generation, it

may be some time before grids of this tyl)e may be generated automatically for general geometries and flow

conditions.

Another means of generating hyt>rid grids is to generate a. series of structured, overlapping grids around

different components of the geometry, similar to the chimera al)l>roach, llere, however, grid cells in the

overlapt>ing regions of the grid will be remove<t, and will be replaced with unstructured cells. The resulting

hybrid grid will then fully encal)sulate the tlow <tomain with no regions of overlal>. Determination of regions

of overlap becomes the central issue in this approach. One effort employed well-estat)lished chimera tools for

blanking out the regions of overlap between grids [6]. The chimera tools use<t, however, required the grids

to be sorted into major and minor componenls, which forced users to be familiar with the manner in which

the component grids overlapped. For obvious reasons, re<luisite user-comprehension of block overlap will

impede the generation of hybrid grids aroun<l general contigurations, and so an automatic means of overlap

detection is desirable.

The method proposed in lifts paper for hybrid grid generation manages grid overlap automatically through

the use of an advancing front algorithn|. Sl)ecifically, fronts are h)rmed on surfaces of the structured blocks,

and are then advanced by covering structured cells lhat do not intersect the front, t The end result is a

collection of structured cells that cover the tlow domain in all regions except for the gaps where opposing

fronts nearly converge on each other. The gaps are in turn discretized with unstrtlctured cells by applying

another advancing front solution, this time using uiislr|lclured cells.

The remainder of this pal)or explains the details of lhe advancing front hybrid approach, and provides

both 2 and 3 dimensional applications.

lThe basic idea of using advancing front techniques on a series of slruclured grids is also presented in Reference [7]. In that

chilnera grid application, the adva,cing front determined regions of lhe grid Io be blanked out in the composite grid, and limited

the overlap (a chimera requirenwnt) ralher lhan eliminaled il.
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BASIC ADVANCING FRONT METtlOD

Generationof hybrid grids ill this study is basedo11advancingfront methodstraditionMly usedfor
unstructuredgridgeneration,tlybrid generationconsistsoftwosuccessiveapplicationsofageneraladvancing
front algorithm-the first advancingalonga predefinedsetof overlappingstructuredgrid data, resultingin
a non-overlappingsetof structuredcells,and the secondadvancingalongpreviouslyunfilled regionsof the
domainusingunstructuredmethods.Despitethe inherentdifferencesill thesetwoapplications,eachemploys
thesamebasicsteps:

1. Forman initial front asa closed-loopof faces.

2. Identify a face (pface) on the front from which a cell is to be constructed.

a. Form a candidate cell, celll, using the place.

4. Test the candidate cell for validity.

5. If the candidate cell is valid, add the cell to the grid, and modify tile front so that the new cell lies

behind it. This requires removing faces that are covered by eelll, and adding the remaining faces of
cell1 to the front.

6. If the candidate eelll is not valid, find another candidate cell and go to step 3.

7. Repeat the process until there are no more faces on the front, or until there are no more suitable

place's.

The specifics of the advancing front method for both structured and unstructured grid regions will be
detailed in subsequent seclions.

COMMON DATA STI:IUCTUt:{I.;S AND ALGORITHMS

There are so many fundamental similarities between the two advancing front applications that the cur-

rent method attempts to utilize common data structures aud routines in generating the structured and

unstructured grid regions.

Data Structure

There are three basic geometric entities, each with at, associated data structure. The smallest discretiza-

tion of the overall problem domain is known as a cell, which represents an area in 2D and a volume in 3D.

Cells are bounded by a number of faces, which represents a length in 2D and an area in 3D. The edges of the

faces are then represented by either a single node in 2D, or a line bound by two nodes ill 3D. Nodes are the

basic geometric entity, and their data structure contains an (x, y, z) coordinate triple indicating location in

physical space. A face data structure, on the other hand, contains a list of forming nodes (2 in 2D, 3 in 3D)
as well as a pointer to the two cells formed on each side of the face. Finally, a cell data structure is composed

of a list of faces and nodes. The number of faces per cell depends on the dimension of the problem and

on whether the cell is structured or unstructured. Triangular (2I)) and tetrahedral (3D) cells are used for

unstructured cells, and quadrilateral (2D) and hexahedral(3l)) cells are used for structured cells. Figure 1

lists the number of faces required to form the differen! ('ells used in the present work. Note that there are

twelve faces in tile hexahedron (:ell because each hexahedral side is broken into two triangular faces in order

to utilize the same face intersection routines (described below) as the letrahedral mesh generator.

The final data structure to discuss is the fl',mt. The overall front is a list of front entities, each of which

contains a face and the associated connection data that specifies tile face's neighbors at each edge. Additional

geometric data is stored to facilitate the various searches required by the method. A bounding sphere radius

and center is stored for each cell and face on the front to assist in face intersection and proximity tests
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Figure 1: Cell structures for 2D and 3D.

described later. A front face also stores ttte normal to tile face, area of the face, target cell size evaluated at

the face centroid, and the angle between the face and its neighbors. A state indicator is also stored at each
face on the front and reflects how close the face and one or more of its neighbors are to forming a complete

cell. State values will be descrit)ed in depth later in the structured and unstructured advancing front details.

Quadtree/Octree l)ata Storage

The advancing front method requires a significant number of global data searches. Two examples include

searching for a list of all nodes on the front that mighl be suitable for forming a cell, and searching for the
list of candidate faces that might intersect a candidate cell. Typically several searches of this type are needed

for every iteration of the advancing front. Clearly then, global linear searches for all of these possibilities is

prohibitively expensive. The present approach to speed these searches is to use octree (3D) and quadtree

(2D) data structures [8], so that linear searches are localized to a relatively small vicinity. Currently the
nodes on the front and a list of faces containing the node are stored in one octree/quadtree structure, and

the front faces themselves are stored in another, with the face centroid used as the storage location. The

bounding box for the quad/hex containing the list of faces is expanded to contain the bounding sphere for

all the faces contained in the quad/hex. Thus when searching for the list of faces whose bounding spheres

intersect the bounding sphere of a cell, the ('ell bounding sphere is tested against the bounding box of a

quad/hex in the tree. Those bounding boxes that do not overlap do not need to be tested further.

Intersection Tests

The validity of a candidate cell, cclll, formed by advancing the front depends upon accurate testing for
intersections between celll and the faces on the fi'ont. The first step is to determine a set of faces on the

front that are likely to intersect the faces of celll. The bounding spheres for the candidate cell and the faces

on the front are utilized in the search for a set of faces that that could possibly intersect the candidate cell.

Since the cell and a face are completely contained within the bounding sphere, if the spheres do not intersect,

then neither will the cell and faces. ]lence rigorous intersection tests need m,ly be applied to the list of all

faces whose bounding spheres intersect the bounding sphere of the candidate cell.

The intersection test between a cell and a face I)egins I)y checking if the edges of the cell intersect the face

and conversely, checking if the edges of the face intersecl the faces of the cell. Additional tests are performed

to reject the candidate cell1 if the edges of the ('ell lie witlfin the face or if the edges of a face lie within the
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faces of the cell. Finally, celll is rejected if any nodes on the front lie within tile volume of the cell.

IIYBRID FLOW SOLVER

An extensive development effort parallel to this one is currently underway for a 2 and 3 dimensional

Euler and Navier-Stokes solver for use with the hybrid grids generated herein. The flow solver adopts a cell-

centered finite-volume formulation and a,n unstructured face-based grid connectivity that allows each cell to

have an arbitrary number of bouuding faces and allows each face to have all arbitrary number of forming

nodes on its perimeter. The system of equations is solved with an implicit point Gauss-Seidel relaxation

scheme. An upwind difference flux-vector splitting scheme is used to define the numerical flux at each cell

interface. A second-order accurate upwind-biased extrapolation of the primitive flow variables defines the

left and right states at the cell face using a cell-averaged gradient computed with a Green-Gauss integration

of the solution reconstructed at the forming nodes. This flow solver is described in detail in [12].

GENERATION OF STRUCTUP_ED MULTIPLE BLOCK GRIDS

A major advantage hybrid grids afford the user over multiple block structured grids is the ability to

generate block grids indet)endently for different components of the geometry, thereby eliminating the un-

wieldy topological constraint of l)oint-to-point matching a.t block boundaries. In this hybrid approach, these

component block grids are assembled together, forming regions of single grid representation, regions of grid

overlap, and regions of no grid representation. While these last two t.ypes would preclude tile multiple block

approach, both are handled with this hyl)rid algorithm, which automatically removes overlapping regions,

and which fills gaps between grids with unstructured cells.

Still, the structured grid remains the starting point for the hybrid process, and serves as tile "skeleton"

for the final grid. In this method, structured grids are generaled in multiple block clusters, with each cluster

containing a series of blocks that abut one another exactly over a portion of the blocks' surfaces. The

limiting case of single block clusters is permissible, so single blocks may be considered a subset of multiple

blocks for this scheme. Fortunately, a multiple block grid cluster is sometimes as easy to generate as an

individual block, and the quality of grid found in a multiple block cluster is worth preserving in the hybrid

grid. For example, in Figure 2, the two a.bntting blocks (D and E) around tile main airfoil require no more

work to construct (perhaps less) than would several overlapping blocks around the same airfoil. The proper

strategy, then, is to generate multiple block grids only in regions where the topology does not markedly

impact generation time.

Numerous tools are readily available for the construction of multiple block grids. All grids in this work

were generated with Gridgen [9], [10], a widely-used general-purpose software, package designed for use with

a suite of public-domain flow solvers. Gridgen automatically delects regions of block-to-block connections,

and also provides a graphic user-interface for the establishnmnt of flow solver boundary conditions on block

surfaces. Further, it exports ASCII grid data and connection data that is directly readable by the selected

flow solver. This feature was exploited in the development of tlle hybrid solver, which adopted Gridgen's

generic file formats for both grid point and connection data. This allows the user to set up the majority of

the hybrid grid generator inputs directly in Gridgen. Keep in mind, however, that any multiple block grid

generator would work as well, once the expor|ed data were translated to the proper format.

IIYBRII) CI¢ll) (;ENI.:I{ATION

The generation of the hybrid grids from the l)redelined set of struclured grid points follows a linear

path that begins with converting the structured grids into hybrid COml)onents, and continues with parsing

these points into non-intersecting regions, forming an initial front, advancing the front along structured cells,
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removing unused cells, massaging the front and then advancing it further using unstructured cells.

Importing Grids into Hybrid Structure

The hybrid algorithm commences with a conversion of the raw grid data generated in multiple block

form into the node-face-cell paradigm required by the hybrid solver. Conversion to the hybrid format follows

the multi-step path described below.

For the trivial single block case, the remainder of this section is unnecessarily complex, since connections

will not exist, and the block's nodes, faces and cells could be generated automatically on the basis of their

implied connectivity. In tile more general (and more interesting) multiple block case, however, surfaces from
different blocks will abut one another, with any number of block edges and corners sharing nodal values. In

these cases it will not suffice to treat blocks independently, lest multiply defined nodes and faces be formed

on the block's abutting regions.

Construction of the hybrid entities begins with node formation, and continues with face and then cell

formation for all blocks in the system. No consideration is given to component overlap or intersections

during this phase. Rather, the entire struclure<l grid is fit into a hyt)rid structure that will later serve as the

template on which the advancing front algorithm will be applied. This later phase will determine overlap

and will act accordingly.

Connection Arrays.- The interblock connection tile associated with the multiple block grid is read into

a series of arrays as a preliminary stel). These arrays specify flow boundary conditions or connections with

other blocks for each bounding surface of the block. Connections and BC's may be a.pplied at tile partial

surface level, meaning that more than one BC or connection may be applied to a. particular block boundary.

Next, blocks in the system are divided into groups based on topological linkages defined in the connection

arrays. Two blocks of the same group indicate that it. is possible to get from one block to the other while

crossing only at connections specified in the arrays. 1.'igure 2 illustrates the block group concept for a 6

block, 3 group example. Although block grouI)S make no guarantee ahout tile relative geometric positioning

of the blocks, as a matter of practice it is assumed that blocks of the same group contain no region of

overlap. This is not unreasonal)le in consi(leration of the fact that block groups will generally correspond to

components of the geometry, and will likely be generated indel)endently of other groups. This assumption

of no overlap within block groul)s will be exploited later to reduce the number of intersection tests during

front advancement.

Formation of nodes.- Nodes are the most difficult hybrid component to construct from a set of multiple-

block structured grid data. because there exists no one-to-one correspondence between grid points and nodes.

In Figure 3, for example, grid l)oints from three individual blocks are all represented by the same hybrid

node value. In contrast, a.t. most two structure(t grid sut'faces will be represented by a hybrid face, and a

hybrid cell will always represent a uni(lue region of a sl ructured grid.

To facilitate the placement of no(tes into face and cell components, a temt)orary rectangular array of Null-

initialized node pointers node_pit[i, j, k, n] is formed for each t)lock in the system, sized to the computational

dimensions of the block. The i,j,k, 7_ indices correspond (lirectly to the structured grid point with like-

indices, with u referring to block numb('r. The *_o&_lflr array is filled easily for indices on the interior of the

block, Since interior points will correspond to unique nodes. For these indices, a new node is allocated, and

its address is assigned to nodc_ptr[i,j, k, n]. For indi(:es corresponding to block extremities, however, more

care is taken. If tile value in 7_ode_ptr is Null, a lisl of (111 grid points using the node is formed, a new node

is allocated, and its address is assigned to 7w&_ptr at. each grid i)oint index in the grid point list. On the
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Figure3: Nodescommonto blocks.

otherhand,if the valuein node_ptr is not Null, a node is already assigned to the grid point, and the next
index is considered.

The list of block grid points sharing a node is determined via an iterative algorithm that traverses

the outer surfaces of tile structured blocks, searching for minimunl surface elenmnts that use the node. A

minimum surface element is defined here as a 2 by 2 patch (2 by 1 in 2D) of adjacent grid points on the block

boundary. Define also a POF {point on face) as an artificial entity' containing i,j, k, n ranges of a minimum
surface element, and indices to one of the element's corners.

Now, for each grid point i,j, k,n index on the outer surfaces of the structured blocks, a POF, labeled A,

is formed at the index. A is pushed onto a stack, and the iterative loop begins.

1. Look through the stack for the first unused POF, called P. Mark P as used. If there are no unused
POF's, exit.

2. Using the connection arrays, determine if P abuts to another block. Call this "image" POF I. If it

exists, check I for uniqueness with all other POF's on the stack. If unique, add it to the stack, and
mark it used.

3. There will be up to 3 other POF's on the block boundary that will be adjacent to P and will share the

same grid point index (up to 1 POF in 2D). Add each one of these "neighbor" POF's to the stack if
they are unique, and mark them as unused.

4. Similarly, look for up to 3 other POF's on the block boundary that are adjacent to I and share the

same grid point index. Add each one of these "neighl)or" POFs to the stack if they are unique, and
mark then as unused.

When this algorithm is exited, all POF's corresp,)nding to a particular hybrid node will be determined.

The final step is to scan the list of POF's one more time, removing any POF's that correspond to the same

:,j,k,n grid point index. What is left is a list of all block grid points that wil share the same nodal value.

This algorithm is illustrated in Figure 4, which tracks the 4 iteration history of determining the grid points
associated with a particular node.
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GetthefirstunusedPOFonthestack,calledP.
MarkasUSED.

Usingconnectioninfo, find the image of P, called 1.

Mark as USED, add to stack if unique.

Find neighbor(s) of P sharing node i on the boundary.

Mark as UNUSED, add to stack if unique.

Find neighbor(s) of I using node i.

Mark as UNUSED, add to stack if unique.

A D E F Block2

B C

D A B C

E F -

Figure 4: Algorithm for deterlnination of conamon nodes.

Formation of cells.- llybrid cell formation from structured grid data proceeds by allocating a temporary

rectangular array of Null-initialized cell pointers cell_pit[i, j, k, 7_]for each block ill the system, sized to the cell

dimensions (grid point dimension minus one) of the block. Each array is then filled by allocating a new cell

and assigning its address to ccll_ptr. Nodes are then assigned to these cells by using the node_ptr data at the

same i,j,k, n index in addition to its neighbors ((((_odc-ptr[i+ a,j +b,k+ c, n],ct = 0, 1),b = 0, 1),c = 0, 1))

Formation of faces.- Face formation also proceeds by traversing the cell_pit arrays at all possible cell

indices i,j,k,n. The cell data structure contains pointers to all 12 (4 in 2D) of its constituent faces. At

a given i,j, k, n index, heretofore unassigned faces are allocated and assigned to the cell. Faces interior to

blocks are also assigned to the cell adjacent in the cell_pit arrays. Faces on the boundary of blocks are

checked for abutment with other blocks via the connection arrays. If such a connection exists, the newly

allocated face is assigned to the abutting cell.

Treatment of singularities.- In order to fully represent a component of a geometry with structured multi-

ple blocks, it is often convenient to introduce regions of singularities, or poles. Grid points lying along a 3D

axis of symmetry, for example, will locally collapse to a region of zero area in the circumferential direction.

Fortunately, these regions are easily identified and may be set with a Pole-type boundary condition in the

connection arrays.

During node formation above, a node is allocated for each point along the singularity axis within the

specified Pole BC regions and is assigned to 7_odc_ptr. This node_ptr value is then applied to all remaining

grid points in the direction of the singularity, therel>y preventing the duplication of nodes. During face

formation, then, if the candidate face accesses a giw_n node more than once, the face will have zero area,

and will be discarded and removed from the cell(s). This in turn modifies the local form of the cell, which

could be reduced from 12 to as few as 4 faces in 3D, or from 4 to 3 faces in 2D.

Identification of Non-Intersecting Subblocks

All structured grid points have now been loaded into the hybrid entities, namely the nodes, faces and cells.

In the next section, some of these faces will be grouped and linked to form initial fronts for the advancing

front algorithm. As will be shown, the front is advanced by swallowing one cell at a time, employing a series

of intersection tests to ensure that the new fi'ont does not intersect the previous front. This is a relatively

expensive test that is applied to the complete front once for each non-intersecting cell, and one that is clearly
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not needed if it is known a priori that the cell in question does not violate intersection tests.

In light of this, a simple preprocessing step based on rectangular-extent or bounding-box testing [11], is

employed to identify regions of the grids quickly that do not overlap or intersect with any others. Figure 5
depicts a collection of non-intersecting cells determined purely from these tests, described below.

Figure 5: Non-intersecting subblocks.

Formation of subblocks.- Tile subblock entity is a data structure containing tile computational and physi-

cal extents of part of a block. Initially, one subblock is formed for each block in the system, extending over the
entire block, from 1 to (imax,jmax,kmaz). Each grid point ill tile subblock is then examined to formulate

the range of x, y and z values for tile snbblock (tile bounding box).

Splitting subblocks.- Next, a number of independent subblocks is constructed through successive subblock

splitting. A subblock is deemed independent if its bounding box does not intersect the bounding box of any

other subblock with a differing block group number. The test for subblock intersection is trivially performed
due to the cartesian shape of the bounding boxes.

When a subblock is found to intersect another, it is split along its longest computational dimension, and

new bounding boxes are computed for each subblock. The subblock is split as long as it does not violate a

user-prescribed (usu. 3) minimum size. If an intersection is not detected, the subblock is independent and

flagged as such. The procedure ends when there are no more dependent subblocks left to split.

Concatenating subblocks.- The previous step generally produces a large number of small independent
subblocks, and so the subblocks are concatenated in this step to reduce their number. Concatenation takes

place by checking the computational range of each edge of each subblock for an identical range elsewhere in

the list. A match indicates two fully al)utting subblocks, which are combined into a larger subblock. The

procedure continues until there are no two remaining subblock edges that represent the same surface.

Remove overlapping subblocks.- Finally, all subblocks flagged as dependent are removed, resulting in a

list of block ranges on which there is known to be nooverlap or intersection. All cells within these independent
subblocks are marked for easy disposition later.

Formal ion of Initial Front

The collection of newly formed cells, faces and nodes represents a superset of the structured entities

that will comprise the hybrid grid. This superset will be pared down to a non-intersecting set of entities by

advancing a series of initial fronts one cell at a time, rejecting cells along the way that violate overlap and
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proximity criteria. There are two types of initial fronts- those specified by the user and those representing

bounding surfaces of non-intersecting subblocks formed earlier. Both types of fronts must form closed

surfaces, so that it will remain simply connected as it covers cells. Such a requirement will eventually allow

some of the front to disappear, signaling the end of the algorithm.

The faces in tile system which will comprise the initial fronts are specified in a list of structured surface

regions. User-specified front regions are passed in through the connection arrays, and generally will corre-

spond either to the geometry surfaces or to the farfield extents of the overall domain. A total of six (4 ill

2D) regions (corresponding to the block boundaries) are also added to the list for each remaining subblock.

Subblock boundaries are chosen as initial fronts because they represent boundaries of regions of no overlap,

and subsequent front advancement will move away from tile boundaries, thereby eliminating a large number

of unnecessary intersection tests.

Initial fronts are formed in two sweeps. In the first, each surface region, which represents a computa-

tionally rectangular surface on the structured blocks, is swept. Each face in the region will be loaded into

the front, and will be connected to the faces with adjacent i,j, k, n index, via the cell_ptr arrays. When the

region is loaded, only the region's bounding edges will not be connecled to other faces.

Special care is needed for pieces of front regions that are doul)ly-defined. This situation occurs at common

surfaces of subblocks, and at subhlock surfaces also user-specified as initial fronts. In all cases, a doubly-

defined front face should be removed from the front, and so if a face to be added is already on the front, it

is instead removed, and its neighbor's connections are broken.

In the second sweep, tile edges of front regions and (h)ubly-defined regions are stitched together to ensure

a series of simply-connected initial fronts. This is a cconll)lished 1)y interrogaling each edge of each front face.

If the neighbor to the face at tile edge in question is not defined, a search is made to find all faces on the

front using the edge. If two edges are returned, their corresponding faces are linked together, and the next

edge is found. The case when more than two edges are returned indicates an improperly formed initial front,

at which time the algorithm is aborted.

Temporary arrays cell_ptr and nodc_ptr may be discarded after front initialization. From this point on,

all connectivity between cells, faces and nodes is transmitted from within their respective data structures.

Advancing Front Along Structured Cells

Except for the user-specified initial front selection, all of the steps described above proceed in an au-

tomatic fashion. When these steps have COml)leted, the advancing fi'ont algorithm is started along the

structured cells. Front advancement follows an iterative three step procedure until the front has disappeared

or until it may be advanced no more. In the first step, a suitable face on the front is selected for front

advancement. Secondly, the cell in fi'ont of this face (the cell to be covered) is tested for geometric violation

with other faces on the fi'ont. Finally, if it passes the lest, the front is modified to include the cell, and the

front face connections are modified to maintain a proper front.

Candidate face selection.- The first step in the iterative structured fi'ont advancement procedure is to

select a face, called place, from which the front is to adw_nce. The importance of place selection should not

be underestimated, as differing selection criteria lnay l)roduce hybrid grids of widely varying character. This

is because front advancement at a given location precludes advancement of an opposing front that is vying

to cover the same physical space.

Penalty function: Since the proper selection of pfacc is influenced by a host of conflicting geometrical
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andtopologicalfactors,it is logicalto assemblethesefactorsintoa mathematical"penalty" function,sothat
place may be selected as the face of minimal functional value. In this work the linear expression below is

used, where n refers to the number of component functions, ci is a user-set non-negative influence coefficient,

and fi is the normalized i'th component function.

['penalty = _ cifi

i=1

There are currently two component functions used in the overall penalty function. The first, fsize,

measures the relative size of tile face. Specifically,

f_i-_ = log(S/S..,_)
log( Sm_x/ S,,.. )

where S is the area (length in 2D) of the face, and S,,_i,_ and Sm=x are tile inininmm and maximum areas

among all faces on the front. Notice that f,i_ is t)ound by 0 and 1. This function produces a smaller penalty

for faces of smaller size, but the logarithmic form reduces order of magnitude disparities in face size to a

linear scale, preventing over-penalization of the mid-size faces.

The second component function, f,t_te, measures the local "raggedness" of the front, ttere, a "state"

variable is formed at each face in the cell, set e(lual to the number of front neighhors that touch the same cell

outside the front. Front faces with larger values of the state variable result in a. local "stair-step" construction

of the front, as depicted in Figure 6. This local phenomenon is to be avoided, if possible, because it reduces

the advantage of local structure in the hybrid grid, and it. creates a more challenging starting front for the

unstructured grid generator described later. Therefore, the goal of f._t,,t,, is to minimize the penalty at faces

that tend to fill in the ragged edges of the front. This suggests the following form:

T
f,.,t_ = 1--

Tlncl,r _

where T is tile state value, and 7max is the ma.ximum state value found on the front.

In practice, f,i_ seems to be tile more important function, and is typically used with coefficients of

Csize = 1 and Cst_t_ = 0.25 . This combination insures that the pfoce will be chosen on the basis of state

variable when the face sizes are nearly the same.

By no means are the two fimctions a.bove sufficient fox' front face selection in all cases; this is in fact one

of the lesser mature aspects of the a(Ivancing front hybrid approach. Other penalty function components

for future consideration include the proximity of the front face to Ol)l)osing fronts and the variance of the

forming cell size from a prescrit)ed target volume.

Cycling: During the early stages of front advancement, it is desirable to have tile front grow in a fairly

uniform manner, so that viscous layers of the structured grid may be covered by the front before overlap in

the grids becomes a factor. This is accomplished by associating a cycle variable to all front faces, roughly

equivalent to the number of layers from the initial front that the current face lies. A global cycle value is also

formed, equivalent to tile layer that is currently being filled. As the front advances, only front faces with the

current value of cycle become candidate pfocr's, and tho winning pface is selected from the candidates using

the penalty function approach described at)ove. After pfnce is covered by the front, any new front faces are

given an incremented cycle value so that they will not become candidate pface's until the next layer (global

cycle is incremented). When there are no more front faces with the global cycle value, the cycle value is
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Figure 6" State values along a typical front, circles.

incremented, and the procedure is repeated. When tim numl)er of user-sl)ecified cycles is met, all front faces

become candidate p face's henceforth.

A typical value for cycle is 3, which guarantees 3 layers of grid points around initial fronts, barring front

violations, described next.

Violation checks with front.- Before the structured front is advanced at a given place, the faces of celll,

the cell outside the front at place, are checked for two types of geometric violations, described below, with

the rest of the front. If a violation is detected, the front is not advanced at place, and place is flagged so

that it will not be a candidate face in subsequent iterations.

Strict intersection: All faces on cell1 not already on the front are checked for intersections with all faces

on the front as described earlier. If an intersection is found, celll clearly may not be covered by the front.

Proximity: Experience has indicated that it is also necessary to kee t) fronts from getting "too close" to

each other• This is driven by the fact that the COml)lete(I structured front will serve as the starting front for

the unstructured generator, and a finite distance I)etween fronts is needed to provide adequate space for the

unstructured front to form reasonable cells.

Definition of the term "too close" is understandably nebulous. The approach herein is to calculate

the pseudo-centroid of the cell1 by averaging the node values, and then to form a sphere (circle in 2D) of

minimum radius that surrounds all nodes. Next, for each face on the front, the sphere (circle in 2D) of

minimum radius that contains all nodes on the face is cal'culated. The fi•ont face minimum spheres are then

scanned for intersections with the minimum cell1 sphere, ignoring fi•ont faces belonging to the same block

group as the original place. Front faces of the same block group are ignored because front faces adjacent to

place would almost always be intersecting, and it is implicitly assumed that blocks of a common block group

contain no overlap•

This type of "proximity" check is schematically illustrated in Figure 7, and its effect is shown in the
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exampleof Figure 8.

Figure 8: Structured cells advanced with (1) and without (r) l)roximity tests.

Front modification and reconnection.- If the pface-celll combination passes both violation checks, the

front is next modified to cover the cell. First, the cell to be covered, cell1, is flagged to indicate that it now

lies behind the front. Next, faces in cellI not already on the front are added, and faces ill cell1 already on the

front are removed. Finally, the new faces are connected to one another and to the neighbors of faces removed

from the fronts. This task is straightforward for simple cases, but COml)licates quickly for odd combinations

of converging fronts. For that reason, it was necessary to develop the general algorithm for front reconnection

outlined in Figure 9.

edge

Get a list of all faces and Celll's (cells fl,cl

outside of fron0 on front using the edge. f2_c2

Remove faces in Cell from list. fl,cl

Add non-front faces of Cell using the f8,cl
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Figure 9: Front reconnection algorilhm.

Front faces are reconnected via a four step procedure applied to each edge of celll (c2 in Figure 9), the

cell outside of pface to be covered by the front. In 2D (Figure 9), this amounts to a reconnection at the

four nodes of the cell. In the first step a list of all faces and their corresponding celll's is formed from all

front faces that use the edge. Next, any face/cell combinations with cells equal to the original celll (c2) are
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removed from the list. Third, any of the faces on celll that do not lie oll the front are added to the list.

There will now be an even number of list entries, and these entries are grouped together on the basis of like

cell numbers. On occasion when there remains two unmatched entries in the list with different cells, they

are matched to one another. These paired cell/face combinations now refer to the connections needed to

maintain a proper front linkage. For example, in the first column (edge nl) in Figure 9, faces f8 and fl

must be set to neighbor each other along their common edge, nl.

In the figure above, connections at edges n3 and n4 are broken in tile upper left and upper right fronts
and are reconnected with the faces ill cellI. This is contrary to intuition, which would have the upper left and

upper right front connections remain intact, and the faces on celll connect to one another. Repeated front

reconnections like this would result in fronts that collapse on themselves like a deflated balloon. In contrast,

the algorithm outlined above will produce collapse-free fronts that will continually divide and reduce to
minimal surface area. The difference is crucial when applying the unstructured advancing front algorithm

described shortly.

Unused Component Removal

The structured portion of the advancing front algorithm finishes when each face on the front either lies

on the outer edges of the multiple block grid or may advance no further due to close proximity to other

regions of the front.

All cells, faces and nodes lying outside of the front at this point may be discarded, since they will not

comprise part of the hybrid grid. Unused cells are determined by the absence of the flag set in cells overtaken

by the front. After unused cells are removed, all faces and nodes in the remaining cells are flagged, and then

all unflagged faces and nodes are removed.

Diagonal Swal)ping on tim Final Structured Front

Before the regions encapsulated by the final structured front(s) will be filled with nnstructured cells, it is

necessary to massage the front to reduce the l)urden on the unstructured solver. In aD, a side of a structured

cell lying on the front will always he rel)resented by a pair of complementary triangular faces, originally

formed purely on the basis of their computational index. Since the unstructured solver has a natural bias

to triangles of smaller maximum angle, the diagonal along each face pair on the front is compared to the

imaginary diagonal along the two non-common nodes on the two faces. If the latter diagonal is shorter than

the former, the quad region is retriangulated with diagonals swapped, so that the maximum angle on both

triangles is reduced, as shown in Figure 10.

Figure 10: Swapping diagonals of COml)lementary faces.

It is also helpfld to swap diagonals on regions of the final front that represent inside corners of cells

outside the front. Specifically,, whenever three (or more) adjacent non-complementary faces on the front

have the same cell1 and share a common node, an inside corner situalion exists, as depicted in Figure lla.

In these cases, the diagonals of the faces are swapt)ed as necessary so that they do not touch the inside
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corner. This creates a natural crevice that will later be filled with a tetrahedron by the unstructured solver

(Figure llb), thereby smoothing a formerly sharp corner of the front.

inside corner shared by 5 faces tetrahedron added after diagonal swapping

a. inside comer of an unused cell b. diagonals are swapped

Figure 11: Swapping diagonals on inside corners.

Refinement/l)erefinement of Final Structured Fronl

The use of overlapping stretched structured grids to produce hybrid grids can produce starting fronts

for the unstructured grid generator with significant variations in face sizes. When adjacent faces of a highly

stretched structured grid cell are present on the front, a small face and a much larger face will be present.

In addition a fine mesh around one component in the grid system may extend into the coarse mesh region

of another component. Disparate sizes of faces in close proximity can lead to the generation of undesirable

highly stretched or skewed triangles and tetrahedra. To lessen the face size disparity, local refinement and

derefinement of the final structured front is added as a tool for further preprocessing the fi'ont for unstructured
front advancement.

The derefinement procedure will merge faces on the front and their corresponding cells whenever the

sizes of faces on the front are too small in comparison with a target size and whenever the aspect ratio of

the structured grid cell behind the front is larger than a user specified value. Once the derefinement of the

front is complete, the derefinement is propagated into the interior of the mesh my allowing a side of a cell

to have at most two neighboring cells.

The refinement proce(ture will split faces on the fl'ont if the sizes of faces on the front are too large in

comparison with a target size or if the size of a neighboring face. The procedure to split tim cells behind the

front has not yet been implemented.

Advancing Front With Unstructured Cells

When the the front has advanced as far as it can along structured cells, and after the final front has been

massaged as described in the previous two sections, discretization of the domain is completed by advancing

the front again, this time until it completely vanishes.

After the first advancing front application, there remains no more usable structured grid data beyond

the front, and so in the second application lhe fronl is advanced from the more traditional, unstructured

sense. Unfortunately, there are a whole new sel of concerns to address during the unstructured application,

since the front will now advance on the basis of geometric, rather than topological reasoning.

State variable.- Recall that a state indicator is stored at each face on the front, and its value reflects how
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closethe faceandoneor moreof its neighboring faces are to forming a complete cell. For unstructured grid

advancement, a minimal state value means that none of the neighboring faces are suitable for forming a cell

with the face. The next state level means that a single neighboring face is suitable for forming a cell. This

occurs when the angle between the two faces is less than a user-specified threshold, typically 135 degrees.

The next highest state level occurs when two faces touching the face share a node and the angle between the

build face and tile two neighbors is less than tile threshold. The highest state level occurs when the face and

all its neighbors form a complete cell. Different front face states for a triangle and a quadrilateral are shown

in Figure 12. States for tile 3D cell forms, the tetrahedron and hexahedron, are defined in an analogous

fashion.

STATE

TRIANGLES

QUADRILATERALS

Figure 12: State hwels for unstructured cells.

Target Face Size.- The present study uses a set of clustering points to specify a desired, or target, size

for a cell face. Each clustering point is given l)y a spatial location, the desired size of a face, di at that

location (xi, yi, zi) and a clustering parameter, Ci, that controls the spatial variation away from the point.

The target size, t, at an arbitrary point in space (x,y, z) is given by

! = rain di + Cil_
t

where R_ = (xi - x) 2 + (yi - y)2 + (zi - z) 2 and mini represents the minimum value for all the clustering

points.

The clustering points can be specified by the user or set to the size and locations of the faces on a set of

boundary surfaces. Tile latter method ensures a smooth variation in faces away from each boundary with a

minimum of user inputs.

The target size can also be specified by interpolating fiehl values from a cartesian background grid similar

to the approach of [13]. This wouht be the preferred al)l)roach for 3D cases due to the large number of faces

on the surfaces of the geometry.

Candidate face selection.- Just. as it was for structure(1 front advancelnent, the unstructured grid gener-

ated by the advancing front method is significantly influenced by the criteria used for place selection. During

the unstructured application, the advancing face place _is s(,t equal to the first face returned from the ordered

set of criteria below:

1. the first face that is at the maxinmm state (forming a closed cell with neighboring front faces) or the

maximum state minus one (lacking only one face to form a closed cell).

2. the face that forms the minimum angle (below the threshold angle) with a neighboring front face.

3. the smallest, face on the fl'ont.

348



A degreeof uniformity andsmoothnessmaybe incorporatedinto an unstructuredmeshby assigninga
cyclenumberto eachfront faceand by advancinga faceonly if it hasa lowercyclenumberthan currently
beingused.As describedearlier,whenno suitablefacesare found,the cyclenumberis incremented.This
cyclingstrategyseemsto workbestwhenfilling largeareas/volumesthat havesmoothboundaries,tlence,
it is probably not appropriatefor use in this application-namely,filling in tile jagged regionsbetween
overlappingstructuredgrids.

Candidate Cell selection.- The most critical step ill unstructured front advancement is tile determination

of the validity of the ca, ndidate cell, celll. Candi(late cells will still be deemed invalid if their faces intersect

any others on the front, but they will also be rejected if lhey lie too close to others on the front. Rejection

is necessary to filter out highly stretched or skewed cells from tile hybrid grid.

The four step procedure below is currently used to arrive at a suitable cell emanating from place, the

building face.

1. If place is at the maximum state, form the cell from its neighboring faces.

2. Generate a node perpendicular to place usiug the target cell size for the face. If the node is not too

close to another face, if the node is not within the boule(ling sphere of a face on the front, and if the

faces formed by the node do not intersect the frol,t, form the cell ft'om pfacc and the generated node.

In 2d, try to form an even better cell using Delaunay criteria as suggested by Merriam [14]. Use the

node that is closest to the circumsphere center of the candidate (:ell to form a new candidate cell.

3. Use the nodes on neighboring faces that raised pf(tce to its state to form a cell.

4. Form the cell by using nearby nodes on the front within solne radius of ])face.

Note that no attempt is made to maintain a Delaunay [15] grid. Though the Delaunay criteria will

produce a grid with triangles that are the most equilateral, it is overly restrictive in 3D as it produces flat

or planar cells in regions of coplanar nodes. Since the structured grids forming the initial unstructured front

will typically have numerous regions of planar nodes, the Delaunay method would connect these nodes to

form flat cells.

The nearly planar nodes and faces forming the initial unstructured front are especially troublesome when

the faces surround a point that was a corner of a structured cell. See for example Figure 13. If the wrong

choice for a candidate cell is made and accepted, the cell may well contain a face that is nearly planar with

other faces on the front. A different choice for the starting face and hence the candidate cell would have

eliminated the possibility of the cell with the planar face from even being considered. The present method

begins by finding all the nodes with 6 faces surrounding the node. If two neighboring faces in the list for a

node are found to be planar, then a cell is constructed from one of the faces. The same procedure is then

applied to nodes with 5 and 4 surrounding faces.

Figure 13: Node Surrounded by 4 faces(l) and 6 faces(r)
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EXAMPLES

The presentapproachis first ilhlstratedusinga two-dimensionalmulti-elementairfoil asshownin Fig-
ure 14. Figure 15 presentsthe overlappingstructuredsystem,whichconsistsof an "O-type" structured
mesharoundthe mainairfoil sectionand "C-Type" meshesaroundthe leadingand trailing edgeflaps.The
structuredmeshwith the overlappingcellsremovedis shownin Figure16.Close up views of the leading and

trailing edge regions are shown ill Figure 17 and clearly illustrate the difficulties ill using the front left by

removing cells from a stret('hed and clustered mesh. The cells in the leading edge region of the main airfoil

grid are stretched and have a high aspect ratio. 'I'll(" f,'out will have a small face adjacent to a larger face,

corresponding to tllesides of one of the stretched cells. In the trailing edge region the line mesh around the

last trailing edge flap has cells, an(t hence faces on t.ho frollt, that are in the coarse region of tile main airfoil

grid. Clearly it. is advantageous t.o fill the voi(l with a smoolhly varying unstructured mesh.

Two different at)t)roaches have I)een teste(t il_ lhe present effort and are illustrated in Figures 18 and 19.

The first approach uses refinenlent of the unslru('tured grid starting front to ensure a smooth variation in the

faces (m the front. Figure 18 shows thai some of the sides of the quadrilaterals adjacent to the unstructured

cells have l)een split into smaller faces with_)ut sl)littiug the cell. The colnpanion flow solver was developed to

allow an arbitrary nUlnl)er of fa(:es per cell. Relilling the front may add too many ('ells st) a second approach

of derefinement has been tesle(l. Figure 1,q show the results for the case where the strut:lured grid front and

the cells behind tile front haw, t)een (lerefined to provide a smoother distribulion of cell sizes. Figures 20

and 21 show the final complete hybrid grids for the multi-element airfoil when refinement and derefinement

strategies are used. The derelinement pl'oceduro has significantly reduce(1 the nulnl)or of cells in comparison

to the refinement case. The preferred approach will obviously depend upon the t)articular flow conditions in

the region of refinement or (lerefinement.

The results for a three-dimensional ('as(' are illustrat.ed for a aircraft store in close proximity to a pylon.

For simplicity tile wing geometry is not considered in this examI)le. The l)ylon and store geometries are

shown in Figure 22 and a [)ortion of the overlapl)illg structured grids around the geometries is shown in

Figure 23. The portion of the front resulting from removal of the overlapping l)ortion of the pylon mesh is

shown ill Figure 2,1. and for the removal of the overlapping portion of the store mesh is shown in Figure 25.

In this particular case the unstructured grid starling front will include a. portion of the store surface since tile

store and pylon are in such close proximity. The tetrahedral unstructured mesh filling tile void between the

store and pylon meshes is not presented here due to the difficulty in viewing three-dimensional unstructured

grids.

CONCI,IIS1ONS

This l)aper has introduced a new 3-dinlensional hyt)rid grid generation technique based on advancing front

ideas at>plied to both structured and unstru('tured grids. The advantages of the scheme have I)een shown

to be that structured grids may be genet'ated around individual grid components independently, with any

overlap or gaps between grids removed anti/or filled automatically. This dramatically reduces grid generation

time, but still provides a locally stru('tured grid near Ill(, geometry surfaces. Further, tile structured character

of cells near the body markedly re(tuces the number o[" cells needed to resolve the flowfield.

Future effort is aimed at. improving the elliciency of lhe hyl)rid generation time and also tile <tuality

of tile grid. Etticiency issues include the improvenmnt of the quadtree/octree searching routines, and grid

quality issues inclu(te modifications to the fa('e selection criteria, refinement of the front proximity definition

for converging fronts, an(t extension of the schelne to allow nou-enclose(l initial fronts, such as in problems

with a plane of symmetry.
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Figure 1,1:Multi-elemelltAirfoil Geometry

Figure15: Setof OverlappingStructuredGridsfor Multi-elementAirfoil Geometry

Figure16:Structured(;rids with ()verla[)removedfor Multi-elementAirfoil Geometry
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Figure 17:
removed

Cioseup of Leading(l) and Trailing(r) Edge Flap Region for Structured Grids with Overlap

Figure 18: Closeup of Leading(l) and Trailing(r) Edge Flap Region of Hybrid Grid With Refinement of Front
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Figure 19: Closeup of Leading(l) and Trailing(r) Edge Flap Region of Hybrid Grid With Derefinement of

Front

Figure 20: Final Hybrid Grid for Multi-Element Airfoil with Refinement of Front Between Structured and

Unstructured Grid Regions
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Figure 21: Final Hybrid Grid for Multi-Element Airfoil with Derefinement of Fronl Bet.ween Structured and

Unstructured Grid Regions
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Figure 22: Pylon and Store Geometry

t i

Figure 23: Pylon and Store with Portion of Grids Surrounding the Pylon _nd Store
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Figure2,1:Storewith Frontfrolll Removalof OverlappingPortionof tile Pylon Mesh

Figure25: Storeand Pylon with Front from Removal of Overlapping Portion of the Store Mesh
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EMERGING CFD TECHNOLOGIES AND AEROSPACE VEHICLE DESIGN

Michael J. Aftosmis
US Air Force Wright-Laboratory / NASA Ames

Moffett Field, California

OVERVIEW

With the recent focus on the needs of design and applications CFD, research groups have begun to address

the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies
promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status

of these emerging technologies. It will argue that some tools are already available which can have positive

impact on portions of the design cycle. However, in most cases, these tools need to be integrated into

specific engineering systems and process cycles to be used effectively. The rapidly maturing status of

unstructured and Cartesian approaches for Inviscid simulations makes suggests the possibility of highly

automated Euler-boundary layer simulations with application to loads estimation and even preliminary

design. Similarly, technology is available to link block structured mesh generation algorithms with topology
libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based
auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh

generation may be properly posed as problems in Computational Geometry, and following this approach
may lead to robust algorithmic processes for automatic mesh generation.

I. INTRODUCTION

Over the past 20 years, Computational Fluid Dynamics has made significant progress toward generating

accurate simulations of flows around realistically complex aerospace configurations. While pundits are

quick to point out that there exist multitudes of topologically simple model problems which quickly reveal

shortcomings in turbulence models, dissipation models or advection schemes, a widening class of problems
has moved within reach. Thus, although some regions of the flight envelope remain outside the realm of

affordable and reliable numerical simulation, a growing body of evidence suggests that many critical

situations may be predicted with accuracy. As a result of this increased confidence, the past decade has

witnessed a shift in the focus of the CFD community from studying flow physics on topologically simple
model problems toward ever more bold attempts at simulating vehicles in flight. This shift is evident

throughout the military laboratories, NASA and industry as new codes are developed with increasing
attention to generality and utility.

I.A Computational Fluid Dynamics in Aerospace Design

From the first studies of numerical techniques for solving the Euler equations by Courantlll Lax and

Friedrichsl21, and the landmark calculations by MacCormackl31, CFD development has centered on issues of
accurately solving the governing equations of fluid mechanics. This work set the tone for much of the

subsequent development. Implicit schemes for centered spatial operators were presented in the mid 70's by

Briley (1975)141, and Beam and Warming (1976)[51. Jameson et al.16] introduced a very successful finite
volume Runge-Kutta scheme in 1981 at about the same time that Enquist and Osherl71, Osherl81 and

Roel91,[lOl were beginning development of approximate Riemann solvers which lead to many successful
upwind methods in the years that followed.

This brief chronology highlights a major point when one considers CFD applied to the design cycle. While

Steger had begun to consider complex configurations as early as 197811, development did not begin to

concentrate on design or applications CFD before the mid 1980's. In 1985 Benek, Buning and Stegerll21

II.llllt
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introduceda 3D chimeraschemefor applicationto problemswith realisticgeometric complexity. This

occurred at approximately the same time as other segments of the community pursued multi-block
structured solvers and triangular mesh schemes for confronting the same issuesD3],D4].

EulerD41 and Navier-Stokes [151'[t6]'[171 computations of flow around complete aircraft began to appear in

the latter half of the 1980's. While these represented stunning achievements, they also served as omens

which, it may be argued, the community was slow to identify and act upon. Grid systems for some of these
early calculations consisted of single block meshes which literally took man-years to developDS],[161,[171.

Multi-block approaches for Navier-Stokes simulations of complete configurations appeared in 1987D81.

However, while multi-block was a significant step forward, these efforts were also largely singular and did

not directly focus on streamlining the grid generation or surface modeling steps in the process.

The evolving situation was documented in 1992 in an address by CosnerD9l. Figure 1 is taken from this

reference and we use it here to epitomize the experience of designers and applications CFD groups. The

figure depicts the breakdown of man-hours required to obtain two Navier-Stokes solutions of the transonic
flow around an F/A-18 on meshes with about 3 million nodes. Even with the block structured grid

generation tools available to industry in 1992, this chart shows that only about 14% of the man-hours were
dedicated to running the solution. Fully 80% of the effort was spent on grid generation and geometry

acquisition. Note that man-hours generally represent a direct monetary cost to the work's sponsor.

Generation

Geometry

ullllloll

Post-

rocenlng

Solution

Figure 1. Breakdown of man-hours from CFD solution of F/A-18E/F configuration by McDonnell Douglas in
1992. (Reprinted from Ref.[19] with permission).

In the early 90's, examples like this lead to a better fundamental understanding of the importance of surface

modeling and grid generation to the overall of the CFD solution process. However, excessive time for grid
generation and surface modeling are not the only roadblocks to CFD's use in design and applied

aerodynamics environments. In a well conceived article presented to the AIAA in 1991, Garner et. a/[2°]

_. (3 ExperimentJotanson-Klng
, ---- Baldwin- Barth
_- ...... Baldwin- Lomax
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Figure 2. Sensitivity of surface pressure coefficient, Cp, profiles to the choice of turbulence model for a 3D
transport wing. (Reprinted from Ref.[20] with permission).
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highlightedseveralfundamentalobstaclesfacingCFD'susewithin a designprocess.Figure2 is anexcerpt
from this report.Thesedatadepicttheresultof threeseparatethin-layerNavier-Stokessolutionsarounda
wing, varyingonly theturbulencemodel. The figure comparesthe distributionof the surfacepressure
coefficient,Cp, resulting from these calculations. In examining these figures, the designer becomes aware of
the tremendous sensitivity of the shock location to turbulence model (nearly 10%c variation over the 3
models). Subsequent improvements in the models may reduce this variation somewhat, but the essential

problem of discrete solution sensitivity to turbulence model remains.

A similar situation is shown in Figure 3 - excerpted from the same report. This figure highlights the

sensitivity of surface pressure to grid resolution at the trailing edge of the wing. These results emphasize

that simply generating a mesh (even automatically) is not sufficient. The grid must accurately resolve not

only the geometry, but also the physics of the flow. Of course, if a grid system takes weeks to setup, then
designers cannot be expected to iterate through multiple cycles of grid generation and flow solution.

%/
© Experiment

-- Fine trailing edge grid
..... Coarse trailing edge grid

1 I i 1 1 I I I r r
0 2 .4 .6 .,_ _.0

Figure 3. Effects of trailing edge mesh resolution on surface Cp profiles for a 3D transport wing. (Reprinted from
Ref.[20] with l_rmission).

I.B. Efficiency of the Numerical Simulation Process

The preceding three figures summarize the main difficulties historically associated with CFD in design;
setup time, cycle time, physical modeling, and risks associated with inexpert generation of grids or setting of

parameters within codes. These factors all raise the risks (and expense) associated with CFD's incorporation
into aerospace design.

The aspect of time deserves special emphasis, both as measured in calendar time and in man-hours. For

example, reducing the simulation time could allow multiple cycles to be run and therefore lower the risk

involved in the process. Since this cycle is dominated by the human efforts of engineers and scientists,

shortening the process generally equates to automation. Such increased automation opens the door for
engineers with less specialized training. As a result, motivation exists on many levels to decrease simulation
cycle times.

Other aspects of the impact of cycle time on design and applications CFD are less obvious from the

perspective of a research environment. In a thoughtful review article presented to the AIAA in 1994,
Rubbert [21] presents an economic model of the aircraft industry which further emphasizes the fundamental

importance of time within the design cycle. This model is used to demonstrate that market share is inversely

proportional to the time required to produce an aircraft of fixed specifications. Initially it seems intuitive
that a company with a slow design cycle will loose market share to quicker, more flexible manufacturers of

comparable products. However, the example documented in Figure 1 shows that the promise of reaping the
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benefitsof full CFDanalysisin adesign asks that manufacturers adopt a process which is 80% "overhead".

Converting file formats of surface geometry files, computing lines of intersection between surfaces, laying-

out grid block topologies, matching faces of grid blocks and stretching ratios of grid points, all represent,
essentially, internal steps. They require highly skilled individuals to perform repetitive tasks on expensive

equipment, and produce only an intermediate result. After they are used, the intricate details of the process

add very little value, unless the experience acquired reduces the overhead of the next project.

Over the past five years, research groups have increasingly focused on increasing the efficiency of the
simulation process. This work has revolved around building processes and systems which permit the utility

of CFD to be limited by the accuracy of the physical models and numerical algorithms - rather than the time

taken to re-grid a configuration when a pylon is moved, or when the aircraft's outer moldline must be
modified due to structural considerations.

I.C. Overview of Emerging Technologies

The techniques reviewed by this paper fall into several categories. Unstructured methods include any

approach in which the tessellation of the computational domain or sub-domains does not map onto a

logical right parallelepiped. This classification is therefore general enough to include methods with grids of

pure tetrahedra, hybrid meshes, unstructured hexahedral meshes, and some implementations of Cartesian
methods. Also included will be several methods which control or "drive" traditional multi-block grid

generators and solvers. Such control based techniques generally proceed through direct automation of the
tasks involved in the layout and construction of overset or abutted block structured meshes.

More specifically we will examine:

Pure unstructured - Tetrahedrai based approaches for mesh generation and flow solution.

Hybrid methods - Schemes based on mixed elements, including prismatic/tetrahedral meshes intended to
resolve viscous near-body layers on prismatic elements, and inviscid regions using tetrahedra

(e.g. [221, I23], and 124] ).

Cartesian methods - Cartesian, non-body fitted methods, in which the geometry is "cut out" of
subdivided Cartesian cells within the mesh. Algorithms for such tesseilations may consider the

mesh through unstructured, octtree structured, or embedded (and i,j,k structured) operations.

Automation / Controllers for Block Structured CFD Schemes

Auto-blocking - Automatic generation of sub-domains and required connectivity based on global
information and surface geometry specifications.

Grid Abstractions - Topology of surface geometry is communicated to grid generator through
building-block like geometric abstractions.

Scripting - Block layout and grid generation is handled automatically for pre-defined generic
topologies. Operating system level controllers also run flow solution and automate post-
processing of results (see the article by Buning 25 in these proceedings).

Macros - During grid generation, the user's actions are "recorded" in a macro, which may be
played back to generate meshes around other geometries with the same topology.

A survey paper such as this is based upon a subjective view of the research it discusses. Inevitably, the

author's opinions and experiences filter the material and flavor the discussion. Nevertheless, this paper

attempts to present a valid perspective on the issues discussed, and concentrate on pertinent topics of general
interest and concern.

II. EMERGING TECHNOLOGIES

This section presents overviews and assessments of promising techniques which are aimed at reducing the

time required for numerical simulation. Rather than attempt an exhaustive review of each topic, the
discussion will lead through a general overview supported with important results and discussion stemming

from analysis within the research community. Since these technologies are in various stages of maturity, an
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attempthasbeenmadeto documentthe currentstatusandsummarizethe potential outcome of future

research. Subsequent sections will use this information to investigate ways in v_hich these methods can be
effectively used within the design and applications CFD environment.

II.A. Pure Unstructured Methods

Techniques involving unstructured grids composed of triangles (in 2D) or tetrahedra (in 3D) have been

applied to the Euler and Navier-Stokes equations since the mid- 1980's.[2_l Based upon theoretical
foundations developed largely in the late 1970's[27l,[6l, such methods have been attractive from the outset

since their spatial discretization operators avoid unnecessary assumptions about global mesh topology.

Thus, solvers view the mesh as an unstructured collection of cells, with some explicitly defined connectivity.
The grid generation task reduces to the more general problem of generating and tessellating coordinate data
between prescribed boundaries, and is therefore more amenable to automation. This section will detail the

current state of such research and discuss approaches for flow simulation and mesh generation fi)r inviscid
and viscous simulations.

II.A.I Unstructured Flow Solvers

Unstructured simulations using central difference finite volume techniques were applied to the inviscid

simulation of a complete aircraft as early as 19861261. The short span of time l'rom inception to application

on such complex configurations provided significant motivation lk)r their continued development. Several

outstanding reviews and summaries exist to track development of these methods over the past decade.
Excellent articles have been prepared by Venkatakrishnan[281 and Mavriplisl2'_] chronicling progress in both

flow solver development and mesh generation. In addition, the proceedings in reference 130] provide a

detailed description of a variety of unstructured methods with supporting theory and applications, including

domain decomposition for parallel architectures, implicit time integration, and a host of mesh generation
strategies.

The first flow solvers of Jameson and Mavriplis [26] operated in a cell-centered finite volume environment.

In the subsequent 3D work, which appeared in 1986, Jameson et al. 114] extended these ideas to permit
vertex based formulations and related the central difference finite volume tYamework to a Galerkin finite

element approach with linear basis functions. Desideri and Dervieux[31l presented one of the first higher-

order accurate upwind schemes for triangular meshes in 1988. This work relied upon van Leer's
MUSCL 1321 scheme to construct a node-based upwind method on meshes composed of simplices. Since

unstructured meshes have no dominant coordinate direction, some ambiguity existed in the implementation
of one-dimensional limiting ideas and the use of directional operator splitting on unstructured meshes1331.

This shortcoming was overcome when Barth and Jespersen[341 presented an unstructured upwind method

based on a central difference gradient estimation that obeyed multi-directional monotonicity principles.

In the past five years, a host of improvements have been proposed to many of these algorithms. Just as

importantly, however, theoretical frameworks have been introduced which give insight into commonalty
between various schemes and aide in developing efficient implementations. For example, reference [35]

proposed the use of edge-based formulas and data structures which have since become one of the major
contributions of the research. Since that time, a variety of authors have invoked minimal storage and
computational complexity arguments to further support the use of such structures in node based schemes
[35],136],[37].

Most unstructured Navier-Stokes work has adopted either central difference finite volume or finite element

discretizations of the diffusive terms in the governing equations (see for ex. [35], [38], [39], [40], among
others). Like the convective terms, these operators are also amenable to edge-based data structures which
permit compact construction and storage. Reference [28] provides additional sources of discussion
concerning recent developments in unstructured Navier-Stokes solvers.
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II.A.2 Mesh Generation

Initial efforts with unstructured techniques generally relied upon meshes constructed from quadrilateral

structured meshes through the addition of a diagonal spanning each cellI26]. In their initial complete

aircraft calculations, however, Jameson et al. [14] began to invoke principles of Delaunay triangulation in

tessellating point data and related techniques have become commonplace in subsequent mesh generation
strategies. This initial work identifies the main strength of unstructured approaches - that is, the ability to

automate generation of a volume mesh from an initial triangulation of the domain boundaries. Thus, the

tedious, ambiguous, and often complex process of decomposing the computational domain into regular
hexahedral blocks is avoided.

A Delaunay triangulation of coordinate data is one in which the circumcircle through the vertices of each

triangle does not contain any other vertex in the mesh[411. Most approaches can be classified as either

Delaunay, advancing front1421,1431 or a combination of the twol441,1451,146]. Recent research in this field has

produced a variety of Steiner Triangulation techniques 1471, in which new sites are incrementally inserted into

existing, usually Delaunay, triangulations [481,1491,[5°1. Such methods appeal to the unique properties of
Delaunay triangulationsl511 to produce meshes with mathematically provable control over maximum angles

and mesh quality. For example, a Delaunay triangulation of a planar point data satisfies the rain-max

criterion, i.e. it leads to a unique graph which minimizes the maximum angle of any triangle in the mesh.

Exploitation of this property, taken in conjunction with a circumcenter site insertion strategy permits
advocates of Steiner triangulation techniques to produce triangulations which guarantee that all angles in the

final mesh will lie between prescribed minima and maxima1521.

The phenomenal success of references [42], [44], [53], and others, attests to the fact that two and three

dimensional meshes of isotropic triangular or tetrahedral elements can be robustly generated with well
documented methods. Current research is therefore directed at generation meshes containing stretched

elements in a similarly reliable manner [461,[491,[501'1541. Although many techniques have been proposed,

this topic remains one of the pacing items in the application of unstructured Navier-Stokes solvers to

complex configurations.

II.A.3 Current Status

The recent literature has witnessed a virtual explosion of research in unstructured methods. However,

looking with an emphasis on design and applications CFD, we are able to consider a smaller subset of this

work which is restricted to 3D applications. Within this subset, several classifications still exist. Research

pursuing efficient and accurate Navier-Stokes solution represents a large body of work and several

competing methods are being debated. Nevertheless, applications are not yet commonplace, and one may

argue that this work is still formative. Similarly, despite some impressive results [551,1561,1571,time dependent

adaptive schemes and re-meshing algorithms such as those for unsteady flows and moving body problems,

is also largely a research topic. Excluding these topics we are left with work which presents applications of

unstructured methods to 3D steady flow fields.

This process of narrowing down and classifying ongoing research is instructive. It emphasizes the point that

although the research community exerts considerable resources in unstructured flow solvers and mesh

generation, only a small fraction of this effort is dedicated to working problems directly related to the
generic application of these methods. Relatively few researchers focus directly on issues surrounding

efficient implementation and routine application. Such work is, perhaps, almost unattractive in an

environment which rewards novelty and fundamental concepts. However, from an industrial or applications

CFD point of view, the automation of routine processes is of paramount importance, and in this polarity lies
a serious conundrum.

Within the subset of steady, inviscid applications, huge progress has been made since the first complete
aircraft simulations of reference [14]. Good examples of relatively efficient codes may be found
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•throughoutthe recentliterature[40],[43],[37],[58].Figure4 containsrepresentativeresultsfrom this body of
work, andwas takenfrom the resultsof Mavriplis and Venkatakrishnan[58]. The figure depictsa Low
WingTransport(LWT) configurationwith pylonsandnacellescomputedon a meshof 804,056vertices
connectedby a graphthat forms4.5Mtetrahedra.Theflow is transonicat Mach0.77andanangleof attack
of 1.116°. This is a good example for the present discussion, since the code was written to take advantage of

edge-based data structures, and requires only approximately 150 words of storage per vertex (relatively few
for an unstructured multigrid code). Convergence acceleration of the multi-stage Runge-Kutta time

stepping scheme is performed through agglomeration multigrid[ 58] which generates coarser meshes by

fusing together fine grid cells. This multigrid strategy is particularly well suited to complex geometry, since

it avoids the traditional shortfall of failing to resolve the geometry on coarser meshes in the grid sequence.

Figure 4a shows a view of the surface grid for the first coarser mesh in the multigrid cycle (containing
106,064 nodes). Figure 4b contains surface and symmetry plane Mach contours showing the lambda shock

structure on the wing, and the effects of propulsion integration. The convergence history depicted in Figure

4c indicates that the L2 norm of the residual was reduced six orders of magnitude in 100 multigrid cycles.

4b.

3

4C.
! I

100 200

Number of Cycles
Figure 4. (a) Surface mesh for coarse grid with 106,064 vertices, fine mesh (not shown) contains 804,056 vertices.
(b) Surface and symmetry plane Mach contours for transonic flow over LWT configuration. (c) Convergence history
of 7-level agglomerated multigrid for LWT case. (Frames reprinted from reference [58] with permission).
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The simulationrequired96MW of memoryand90 minutesof singleprocessorCPUon a CrayY-MP.
Theseresultsarerepresentativeof theCPUandmemoryrequirementsof modern,well-writtenunstructured
solvers.

II.A.4

Surface

UnresolvedIssuesandOn-goingResearch

modeling - In the contextof unstructuredmethods,surfacemodelingplaystwo important
roles. First,an initial triangulation(whichis constrainedto thesurfacegeometry)mustbesupplied
to thevolumemesherfor generationof the initial mesh.Secondly,if flow field drivenadaptationis
permitted,new sitesmaybe insertedon the boundaryandthesetoo mustconformto theactual
surfacegeometry.Generationof sucha constrainedinitial surfacetriangulationis non-trivialwhen
one considersthat the surfacemaybe originally describedthroughCAD data, loftings,natural
NURBS,trimmedNURBS,patchesor surfacegrids. Edgesin this triangulationmustfollow leading
edges,trailing edges,juncturesbetweencomponents,and may not be allowedto swap(if edge
swappingwill producefaceswhichno longercoincidewith thesurfacedescription).Generationof
this surfacetriangulationis typically the mosttimeconsuminganduser-intensiveoperationin the
meshgenerationprocedure.While volumemeshingmaytakeminutes,or tensof minuteson an
engineeringworkstation,the initial triangulationmaytakehoursto days. Moreover,if the surface
triangulation is computed with a preprocessor or commercial software package, the true geometry
description may be unavailable for later use, and adaptation becomes a clumsy process.

Anisotropic Mesh Generation - Several approaches have been proposed for creating meshes with high
aspect elements suitable for Navier-Stokes including those in references [54], [59], [46], and [50]
among others. However, research involving the retention of angular control while still retaining a
sufficiently smooth blending of anisotropic viscous cells with isotropic Euler elements continues. In
addition, the insertion of high aspect ratio tetrahedra into general unstructured meshes increases the

likelihood of generating "sliver" elements, non-tetrahedralizable regions, etc. Such effects have a
detrimental effect on the robustness of viscous grid generators. Finally, even with the addition of

solution based adaptation, difficulties exist concerning meshing wakes and other free shear layers
with sufficient resolution [541.

Counting Arguments - A variety of authors have raised concerns about the total numbers of cells and
edges required to fill volume space with high aspect ratio tetrahedra. As an example, suppose we
seek to grid the boundary layer region around a single element 3D wing at elevated Reynolds
number. A structured surface mesh may contain 200 vertices around the chord and perhaps 50

spanwise stations. Spanning an expected attached boundary layer with 25 stations would permit sites
at y+ of around unity with reasonable grid stretching. Thus the boundary layer portion of the mesh
would consist of 200x50x25 = N= 250,000 vertices, and hexahedral cells made up of 750,000

edges (assuming we remain away from mesh boundaries). Tessellating this structured region with
right tetrahedra would lead to dissecting each hexahedral cell into a = 5 tetrahedra (best case). This
leads to 1.25M tetrahedrals and (a+l)N= 1.5M edges. Thus, for an explicit, edge-based, code we
have doubled the storage and per sweep CPU requirements simply by virtue of the tessellation. In

an implicit code the edges must still be stored, but now the additional connectivity implies a fuller
matrix for inversion. Moreover, recent analysis and numerical experiments suggest that for certain
classes of schemes, the additional diagonal edges do not necessarily lead to greater accuracy1601. (In

fact, Ref. [61] has actually demonstrated improved discrete solutions through choosing control
volumes which de-emphasize the contributions of such diagonal edges.)

II.B Hybrid Methods

The counting arguments, accuracy concerns and other issues in the preceding paragraphs have prompted

several groups to consider alternatives to pure unstructured methods I221,1231,I241,1621,I631. For example,

reference [60] suggested that diagonal edges found in semi-structured viscous layers of triangular or
tetrahedral meshes could be deleted to leave triangular, hexahedral or prismatic elements. Such edges incur

a memory penalty with no apparent accuracy advantage and thus degrade the efficiency of the method. The

366



Figure5. (left) Unstructured mesh near the first and second elements of a multi-element airfoil discretization.
(right) Mixed element mesh where 11,544 triangles were collapsed to form 5,772 quadrilateral elements. (Frames
reprinted from reference [46] with permission).

extension of edge-based unstructured flow solvers to accept hybrid elements is relatively straight forward

and the idea has been investigated by several authors. Figure 5 contains two figures excerpted from the
work of Marcum[ 46] and shows just such an approach. Sites forming triangles in the semi-structured wall

boundary region near the leading edge of a muti-element airfoil have been re-tessellated as quadrilateral
elements. In this example, 11,544 triangles near the wall were collapsed to form 5,772 quadrilaterals

through removal of the unnecessary diagonals. In addition, reference [46] has investigated collapsing

tetrahedral elements to form prisms in semi-structured regions of the mesh, but final results have not yet
been presented.

II.B.1 Prismatic and Hybrid Meshes

The use of prismatic elements for efficiently discretizing viscous layers, or even entire domains has received

increased attention since the late 1980's. Prismatic mesh generation ideas have been presented by
references [23], [24] and [62] among others. The methods proposed by Nakahashi[ 23] and Kallinderis[621

are based on algebraic construction principles that begin with a surface triangulation of the geometry.

Families of mesh lines spawn from mesh vertices in the surface triangulation. The mesh is constructed layer
by layer in a manner which is analogous to an inflation of the surface triangulation. This construction

technique permits a semi-structured interpretation of the mesh. The lines emanating from vertices on the

body are continuous, and nodes along each of these are vertices of fixed degree. This local structure

permits straight forward implementations of semi-implicit multigrid, or even semi-coarsened multigrid
convergence acceleration[24],[64].

The algebraic marching procedure described here clearly has the character of a hyperbolic algorithm for

the positioning of sites on subsequent layers of the mesh. Recognizing this, Pandya [24] has proposed

alternative construction schemes based on solving hyperbolic partial differential equations for determining
the vertex locations on successive mesh layers.

One criticism of early prismatic mesh generation techniques was that the extension to multiple body

configurations was unclear, since there appears to be no clearly defined manner in which to prevent multiple

prismatic meshes to fuse together as they grow. To address this issue, recent work presented by
Kallinderis |221 proposed constructing layers of prismatic elements only near the wall boundaries to resolve

viscous layers, and then discretizting the rest of the domain using an advancing front technique, filling the

space with isotropic tetrahedra. If prismatic layers from multiple elements overlap, then they are locally

"receded", and the space in between may be filled with tetrahedral elements during the advancing front
step. Reference [22] presents a variety of viscous multi-body meshes constructed following this procedure.
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II.B.2 Current Status and Unresolved Issues

As compared with unstructured tetrahedral techniques, research into prismatic and other hybrid methods is

relatively new. As a result, a smaller body of work exists to highlight their strengths or document potential
shortfalls. Research in these methods has shown great promise, however there are still relatively few detailed

computations on sufficiently fine grids.

Hybrid methods were developed in direct response to the concerns about anisotropic tetrahedra and

counting arguments documented above, and they have successfully overcome many these obstacles. The

research community has been quick to respond to criticisms concerning multi-body and meshing concave
domains and is similarly working to resolve most outstanding issues. A partial list of potential roadblocks

includes:

Surface modeling - Like pure unstructured methods, prismatic techniques and most other hybrid
methods generally employ a surface triangulation to begin the mesh generation process. Thus, such
methods inherit the difficulties associated with generation of such a triangulation that were

presented, above, in section II.A.4

Adaptation In hybrid techniques that rely upon the semi-structured nature of prismatic regions, the
incorporation of adaptive mesh algorithms can become unclear. Parthasarathy et al. [64] have
presented some promising work addressing this topic in their consideration of viscous flow around a
sphere, In this work, the sphere was encased in a prismatic mesh to capture viscous phenomena and
a tetrahedral mesh was employed away from the body. The hybrid adaptation scheme included h-
refinement and mesh re-distribution. Nevertheless, the flexibility of mesh re-distribution algorithms

on more general topologies remains an open question. Additionally, if a tetrahedral cell at the

prism-tet interface is h-refined the entire stack of prismatic elements between this cell and the body
must also be h-refined if one is to preserve the semi-structured nature of the prismatic layers. Such a

strategy raises efficiency concerns. Of course, if the solver does not make use of the structure in the
prismatic layers, and considers the mesh simply as an unstructured collection of mixed element
types, the restrictions on adaptation largely disappear. Finally, we note that since prismatic meshes
have an O-O topology, mesh adaptation to resolve wakes and/or free shear layers within the flow

may present a problem

II.C Cartesian Mesh Methods

Cartesian approaches differ from those presented in the previous sections by virtue of the fact that they
make use of a non-body fitted mesh system to discretize the computational domain. The hexahedral cells in

the domain are a set of right parallelepipeds and the original grid system may extend through solid wall

boundaries in the computational domain. The process then removes any fully internal cells, flags cells

which intersect the body and treats remaining cells as general volume mesh control volumes. The promise

of the technique stems from the fact that it trades the case specific problem of generating a body fitted mesh
(unstructured, structured, blocked, etc.) with a more general problem of computing and characterizing

geometric intersections between Cartesian flow field cells and the surface geometry. Thus, all difficulties
associated with meshing a particular geometry are restricted to a lower order manifold which constitutes the

outer shell of the geometry - rather than occurring throughout the computational domain. Recent research
has demonstrated that these mesh generation operations readily lend themselves toward automation and the

method can be applied to extremely complex geometries 1651,[661,1671'1681'1691.Since solid wall boundaries

may cut arbitrarily through the layer of "cut cells" encasing the body, surface boundary conditions are of

obvious importance in Cartesian schemes.

Cartesian approaches fall into two general categories. Either they consider the mesh to be an unstructured
(or octree structured) collection of h-refined hexahedra, or they operate by embedding structured sub-grids

within existing structured blocks. In unstructured or octree methods, volume meshing of the computational
domain relies on a simple and robust procedure of cell division. Beginning with a coarse background grid,
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or evena single root cell, the hexahedralelementsare recursivelysubdividedin order to resolvethe
geometryandevolvingflow features.Thefinal meshis a collectionof cellsat variouslevelsof refinement,
viewedaseitherentirelyunstructuredor ashavinganunderlyingoctreeconnectivity.Structuredapproaches
embedi,j,k structured sub-grids similarly aimed at resolving geometric and flow field features. Successful

2D and 3D solution procedures have been proposed following both implementations1651,1671,[701,171 I.

II.C.1 Development of Cartesian Approaches

Although three dimensional applications to complex geometry have only recently become commonplace,
Cartesian approaches have been evaluated since the late 1970's. Work by Purvis and Burkhalter1721 solved

the full potential equation on 2D Cartesian meshes using a finite volume method. Solution of the Euler

equations was pursued in the mid-1980's by a variety of researchers1731,1741 and the first three dimensional

inviscid solutions appeared in the late 1980's by Gaffney, Hassan and Salas1751.

Cartesian approaches have been successfully utilized in industrial applications including Boeing's

TRANAIR code which solves the full potential equation, and the commercially available MGAEROI761

package for Euler simulations. These applications are notable because they provide close links with surface

modeling and provide a wide base of experience with large-scale computations using Cartesian methods.
MGAERO, for example, adopts a component based approach to complex geometries1771,1781. Similar

approaches have been adopted within the research documented in References [66],[67] and [79].

The cut cells necessarily present in Cartesian discretizations present unique problems in the implementation

of accurate boundary conditions. References [80],[81],[82] and others present insight into the important
issues involved.

The isotropic elements stemming from h-refinement of Cartesian hexahedra are well suited to resolving flow

structures in inviscid simulations. However, use of such elements to capture boundary layers and other stiff

viscous phenomena would be grossly inefficient1831,1841. Recently, a variety of authors have proposed
alternate techniques for extending inviscid Cartesian approaches to viscous tlow1681,1841. Historically, the

lack of a clear extension to viscous simulations has been a weak link and the recently proposed venues offer
the possibility of further research.

II.C.2 Current Status

In the recent literature, one finds a multitude of work stemming from Cartesian mesh methods. Many

notable 3D computations have investigated the flow around complex geometries. The 3D Reynolds

averaged Navier-Stokes results which use prismatic meshes near the body in reference [68] are particularly

promising. However, such examples are still formative, and the technology has not spread across the
community for independent confirmation. The target of most Cartesian work is a role within the inviscid
design/analysis cycle. Appropriately, this section restricts its attention to the discussion of 3D Euler

applications similar to those found in [671,[69],[78].

While unstructured and structured CFD approaches both involve surface modeling issues, the static nature of

their surface description permits these techniques to develop sufficient surface meshes in preparatory steps.

A notable exception, of course, are unstructured adaptive algorithms which must interrogate the surface

database during each mesh adaptation phase. For similar reasons, Cartesian approaches demand that the

mesh generation and adaptation algorithms be closely coupled with the geometric database. Throughout the

mesh generation process, Cartesian cells must be constantly tested against the surface database. Again during
adaptation, new cut cells are clipped against the surface, and fully internal cells are eliminated. In reference

[66], tests were performed with direct inquiries to a NURBS description of the body. However, speed,
robustness and other issues motivated a return to the use of a surface triangulation database in later research.

Important differences exist between the surface triangulations required for Cartesian and fully unstructured

or prismatic approaches. In Cartesian approaches, individual components of the geometry may be
independently triangulated into closed polyhedra, without regard to overlap or intersection of the

369



componenttriangulations.Thus, the techniqueavoidscomputationof surface-surfaceintersections,and
since Cartesiancells may cut arbitrarily throughthe geometry,they may intersectthe triangulationsof
several different componentswithout special handling. In essence,the actual topology of the full

configuration need never be communicated to the grid generation routines, and herein lies the fundamental
difference with structured of unstructured techniques. This single factor is perhaps the key in

understanding Cartesian claims for rapid turn-around and automation. Within many mesh generation codes,

it is relatively easy to obtain surface grids or triangulations for individual components if one does not worry

about intersections with other parts of the overall geometry. As a result, the geometric modeling is

substantially quicker for many applications.

Figure 6 contains an adapted Cartesian mesh generated by Aftosmis and reprinted from Reference [67].
The domain includes over 2.9M Cartesian cells and the surface geometry is described by 12 separate

component triangulations. The final adapted grid contains 10 levels of cells and approximately half of these
are at the finest level of refinement. The discrete solution began on an initial, geometry adapted, mesh with

5 levels of cells. Further cell refinement was based on the evolving flow solution. Figure 7 shows a close-up

of the adapted mesh painted with isobars of the discrete solution on a plane located between the fuselage
and first nacelle.

Figure 6. Adapted Cartesian mesh for High Wing Transport (HWT) configuration with 2.9M Cartesian cells and
10 levels of refinement. The surface geometry is described by 12 separate component triangulations. (Reprinted from
Reference [67])
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Figure 7. Close-up of the adapted mesh and isobars in the discrete solution on a plane located between the fuselage
and first nacelle. (Reprinted from Reference [67])

In an effort to more clearly distinguish automated from interactive tasks in obtaining such solutions, it is

useful to trace the primary steps in the process. The example used here is similar to the HWT configuration

shown in figures 6 and 7, but with the addition of a winglet, and high lift devices (inc. leading edge slat, flap,
flap vane, and spoiler). Figure 8 summarizes the contributions of the various steps as a fraction of the total
time required for performing the complete simulation and analyzing the results.

CAD (18%) -Perform CAD operations to generate trimmed NURBS surface description of each
component in configuration. Interactive

Surface Grid (18%) -Fix problems with NURBS representation, generate surface triangulation and
close the triangulation of each component to form watertight polyhedra. Interactive

Initial Mesh (1%)- Determine extent of computational domain, and generate geometry adapted
Cartesian starting mesh. 50% Interactive, 50% Automated

Adaptive Euler Solution (40%) - Use of UNIX level control scripts cycle between running the Euler
flow Solver and flow field adaptation steps. Scripts handle job control, job submission and
posting of intermediate results for review by engineer. Note that approximately 80% of this

Process

CAD
Surface Grid
Initial Mesh

Adaptive Eider Soltn.
Post Processing

Interactive

100%
100%
50%
5%

70%

Automated

0%
0%

50%
95%
30%

AD 18%

'__ Surface Mesh 18%

,I_ Initlal Vol. Mesh 1%

Figure 8. Breakdown of interactive and automated processes in HWT example in figure 9.



time is dedicatedto waiting for jobs in queueandnot CPU. Also, this codeis essentially
unacceleratedandthereforeconvergesslowly. 5% Interactive, 95% Automated.

Post Processing (23%)- Post processing of results to extract surface pressure, cutting planes,
streamlines in solution and other structures in flow. Surface pressures and cutting planes are
extracted automatically. 70% Interactive, 30% Automated.

An overall view of the discrete solution for this case is depicted by Figure 9. The computation placed

1.65M cells in the domain, and the adaptation was restricted at the finest level of adaptation to focus on the

high-lift system. The figure shows a macroscopic view with isobars, streamribbons and an inset frame

detailing the Cartesian mesh surrounding the flap system.

The total time for this simulation, in a research environment without dedicated CAD support or computing

resources, was 17 days. This is relatively quick for a research application, but still far rom optimal for

preliminary design or loads estimation environments. One strength is that subsequent parametric
studies,(e.g, flap deflection or nacelle modifications) may be computed comparatively quickly. After

approximately 1/2-1 day setup, follow on numerical simulations would turn around in a few days time.

II.C.3 Unresolved Issues and Current Research Tooics

Viscous Simulations Despite increasing documentation of efforts proposing full Navier-Stokes

Figure 9. Isobars, mesh planes and streamribbons from High Wing Transport (HWT) case computed with flap,
flap vane, spoiler, leading edge slat, winglet, pylons and nacelles. The final mesh contained 1.65M cells at 10 levels
of refinement. The inset frame shows a detail of the computational mesh around the flap system.
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simulations1681,[831,1841,openquestionsexistconcerningefficientlyconstructedmethodsfor viscous
solutionsonCartesianmeshes.Resolvingboundary-layerswith isotropicCartesiancellsis inherently
inefficient.Theuseof prismaticgridsnearbodiesinheritsthedifficultiesassociatedwith prismatic
methodswhile addingthe complexityof couplingthe Cartesianand prismatic cells. As new
techniquesfor constructingsurfacetriangulationsfor entireconfigurationsbecomemoreaccessible,
this pathmay provefruitful. However,adaptingCartesianmeshesto wakesandother viscous
phenomenawill continueto bea problem. Nearertermresultsmaycomethroughthecouplingof
Cartesiansolverswith 3Dboundarylayermodels.

SurfaceModeling- Althoughsurfacemodelingproblemswith Cartesianmethodsaresomewhatalleviated
by working directly from NURBS or triangulationsof individual components,the example
presentedaboveshowsthatthisprocedurestill demandsconsiderableeffort.DedicatedCAD systems
depend on experienced users. Appropriate surface triangulations of various components are
similarly non-trivial and require specialized software. Although no serious technical roadblocks exist
in this process, the topic requires additional research attention and increased automation.

Accuracy at Boundaries - One view of Cartesian methods is that they take advantage of simpler flow field
discretization stencils but suffer from increased boundary complexity. The intersection of the body
with the grid may be very arbitrary thereby making the implementation of accurate and conservative
boundary conditions more difficult. Although a variety of implementations have been reported,
definitive formulations have been elusive. Most work has resulted in implementations that are
between first and second-order accurate[ 71],[79],1811,[821.

II.D. Automation of Block Structured Mesh Generation

Even with recent advancements in unstructured, hybrid, and Cartesian technology, the vast majority of CFD

applications are computed with structured CFD schemes. This is especially true for Navier-Stokes

simulations where the robustness, speed, and accuracy of unstructured viscous approaches have yet to be

convincingly demonstrated. The basic paradigm of multi-block approaches begins with a decomposition of

the computational domain in to a collection of deformed hexahedral blocks with either matching or
overlapped faces. During the flow solution, the solver processes these blocks independently and then passes
information to neighboring blocks as boundary conditions. Modifications of this basic model exist for both

parallel machines and time dependent simulations.

In a recent paper, Dannenhoffer1851 separates the development of 3-D block structured grid generation into

three stages of evolution. Initially, grid generation research focused on operations within each mesh block.

Conformally mapped, elliptic and hyperbolic methods were developed for creating mesh block, were widely
used1861,1871,1881. Block-to-block pointers, common edges, and all other connectivity or control information

was input by hand. Such systems typically operated in batch mode. With the fundamental algorithms

identified, research focus then shifted toward useability. Second generation mesh generators replaced the

tedious and error-prone process of typed-in control information with input through a Graphical User
Interface (GUI) and such systems make up the bulk of currently available grid generators. Such interfaces

are designed to give feedback to the user while aiding in visualizing the grid creation process. The end

result, however, is essentially the same user-specified location and connectivity information required by the

first generation systems. Third generation systems involve automating the blocking and mesh generation
process to reduce the dependence on human input and decision making.

In the past decade, a number of approaches have been presented for automating the mesh generation

process. These attempts may be generally categorized as either interactive, knowledge-based, or
algorithmic1891, and this section presents a sampling of the current state of research in each of these
directions.
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II.D.1 Automation of Interactive Processes

The most direct approach toward automation of structured grid generation is through automation of the

processes which exist in current gridding strategies. This implies that the user must still ultimately convey

the topology of the body and block connectivity, and improvements stem from reducing the clutter of trivial
tasks. Bookkeeping and obvious choices may be made automatically by the system, leaving the user free to

work on the core problems of mesh and surface topology. One basic algorithm for interactive construction

of blocked grids might be as follows:

Algorithm I: a. Generate and link curves to form block edges.
b. Construct block faces from edges.
c. Distribute points on block edges and enumerate block connectivity.
d. Generate volume mesh within each block.

Some current systems take small steps toward automating this process by automatically dimensioning and

distributing points on matching block faces, or by using geometric proximity to infer a topology and/or

connectivity. However, even with such subtle streamlining, the process remains highly interactive and
cumbersome. The essence of the problem is detail. As long as it requires an engineer to specify each curve

of every block, the process will be labor intensive for complex configurations with many hundreds of

blocks.

One solutions to this problem of excessive detail comes through the classical process of abstraction. Using a

technique pioneered by Ailwrightl901 the user focuses on generating a blocked abstraction of the geometry
which then communicates the topology of the configuration to the mesh generation system. Reference [85]
has extended these ideas and applied them to a variety of published examples. One approach uses

hypercube building blocks to construct "squared-up" abstractions of the configuration in three-

dimensions. The use of the hypercube - which is simply the volume between two nested cubes - was first

proposed by Allwright and applied to Euler simulations of a complete business jet as early as 19881901.

Figure 10 shows a sample abstraction for the HWT configuration of Figures 6 and 7.

Once such an abstraction is formed, the blocking process occurs automatically following pre-set rules and

point distribution algorithms. Next the surfaces of the abstraction may be deformed to match their

counterparts in the real geometry. These deformations are distributed throughout the blocking, and thus the
final block locations and topology are established. The last stage of mesh generation creates the volume

grid within each block, using standard techniques.

The fundamental simplification in this approach is that the mesh topology is generated from an abstraction

and not the actual geometry. This construction communicates only the essential geometric and topological

information required to layout the mesh blocks. In addition, the process of forcing the user to construct the

configuration out of pre-defined building blocks links certain surfaces with specific block layouts. In this

way, the system guides the user, interactively, through the steps necessary to layout the mesh blocks. It is

not clear if the procedure described will always lead to the most efficient blocking for any given

configuration. However, the strength of the technique is that it will reliably lead to a decomposition.

Ultimately this robustness and agility may provide shorter complete cycle times and yield a more efficient

CFD process.
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Variantsof thisapproachweredocumentedasearlyas 198819°1.However,whileprototypesystemsarein
developmentat numberof researchcenters,commercialproducts,detailed examplesand extensive
documentationareunavailablein theopenliterature.

II.D.2 Knowledge-Based Approaches

In the same paper which laid the groundwork for the geometric abstractions presented above, Allwright[ 90]

investigated the utility of linking grid point positioning and spacing throughout the mesh to generic features

of the configurations. Such concepts lead to so-called knowledge-based approaches and similar procedures

have been investigated by a number of researchers and commercial firms. Applications of knowledge-based

approaches revolve around the idea that a new configuration should be blocked only once and subsequent

meshes for topologically similar configurations may then make use of similar block layouts and point
distributions.

While conceptually simple, the ability to grid a new configuration from a library of previously studied

examples is of indispensable utility in a detail design or loads estimation environment. For example,
adjusting the position or contour of a pylon/nacelle combination, or investigating various flap deflections

are common operations which should not require the re-blocking of entire mesh systems. The current

software releases of many mesh generation software systems include this functionality. Often described as

"macros", "configuration libraries" or "checkpointing" such approaches all permit the engineer to
rapidly grid topologically similar cases with a minimum of new input.

The concept of "driving" mesh generation systems from an experience base has been extended by
Buning [251 who has investigated prototype software which generates entire mesh systems, automatically runs
flow simulations, and then extracts pre-determined results from the discrete solutions. These software

"scripts" run at the operating system level and call FORTRAN or C codes which search for certain

geometric or topological features in the input geometry. The system has been demonstrated for wing-body

geometries using the OVERFLOW[911 solver and the Hypgen[92] mesh generation systems and is being

Figure 10. Sample blocked abstraction of HWT configuration following references 1901and [85].
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consideredfor extensionto moregeneralclassesof problems.

Extensionsof theseconceptshavemotivatedresearchintocontrollingtheblockingandpoint distribution
processwith expertsystemsor artificial intelligence.Preliminarywork in this directionwasperformedby
Dannenhofferin 19911931andthetopic wasre-visitedin a NASA sponsoredworkshopin late 19941941.
Within sucha framework,expert systemswould either choosefrom libraries of pre-definedblocking
strategies,or createnewblocklayoutsaccordingto apre-definedrulebase.

II.D.3 Algorithmic Approaches

In the introduction of a paper which proposes a possible theoretical framework for formalizing the problem

of multiple block structured grid generation, Cordova1891 poses the following question:

"Could it be that human intervention is necessary for solving the blocking problem?"

When one considers that unstructured mesh generators routinely operate with only minimal user input, the

obvious answer to this question must be that such intervention can not be necessary. This argument is

illuminating because it highlights the difference between our approach to multi-block gridding and

techniques for unstructured mesh generation. Just as mesh blocking is a domain decomposition into

hexahedra, unstructured mesh generation is a decomposition into tetrahedra.

Following this reasoning, Cordova suggests viewing structured grid blocking as a problem in Topological

Graph Theory[951. Within this framework, one seeks a hexahedral tessellation of the computational domain,
in which each cell constitutes a grid block - or even a further decomposition to yield individual grid cells.

Using the language of Computational Geometry (CG), the unstructured and structured mesh generation

problems may be phrased as follows:1891

Unstructured Mesh Generation - Decompose a region bounded by algebraic surfaces of degree = I

into tetrahedra.

Block Structured Mesh Generation - Decompose a region bounded by algebraic surfaces of degree > 1 in
to deformed hexahedra.

The inequality in the second statement recognizes that a block on a wall boundary will not necessarily have

planar faces. We note in passing that unlike tetrahedra, hexahedra are not rigid figures (polyhedra). This

property,, and the inequality in the second statement leads to the observation that while the CG problem of

tetrahedral meshing is linear, the block structuring problem is non-linear, and solution strageties may

require linearization steps.

With these definitions, Ref. [89] suggests the following algorithm for approaching multiple block grid

generation:

Algorithm II: a. Approximate the configuration with polyhedra.
b. Decompose surrounding space into convex polyhedra.
c. Construct computational space.
d. Set boundary conditions in each block
e. Solve elliptic equations globally over computational space.

Before examining this algorithm, we return to a brief analysis of the complexity of operations involved in

the construction of tetrahedral grids as discussed in section II.A. The process of triangulating given

coordinate data has linear complexity - that is to say that the operation count required to triangulate N

vertices scales linearly with the number of vertices. Sorting N vertices requires O(NlogN) operations and

procedures such as clipping or the removal of hidden surfaces have quadratic complexity (O(N2)). Such

processes are in the class P since they may be performed in polynomial time. Other processes cannot be

performed in polynomial time, and in fact their complexity is undetermined. These problems are said to
belong to the class NP if candidate solutions may be verified in polynomial time18911961. A problem is
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terrmedNP-completewhenonecanshowthatif it could be solved in polynomial time then all similar NP
problems could also be solved with similar complexity.

In applying the decomposition step (b) of Algorithm II to 2-D blocking problems, one finds that

decomposition of a multiply connected region (a polygon with polygonal holes in it) into quadrilateral

regions is NP-complete[97]. It is interesting to note that if the region hapens to be simply connected (no

holes) it may be quadrilateralized in polynomial time. However, NP-completeness does not imply that the
problem is unsolvable, simply that one must search for a novel algorithm for generating candidate solutions.

For example, a novel algorithm for quadrilateral decompositions in the plane may be obtained by first

obtaining a candidate solution through a Delaunay triangulation of the coordinate data (possible in linear
time). Then one simply inserts new sites at the centroids of each triangle, and connects them to new sites

inserted at the midpoint of each edge. The result will always be a quadrilateral decomposition of the region,

despite the problem's inherent difficulty due to its NP-completeness[981. Unfortunately, decompositions
constructed through this method are unlikely to meet the requirements of mesh smoothness that are

imposed by the relatively low-order (linear) elements used by most CFD solvers.

In reference [99] Cordova suggests pursuing similar novel algorithms for solving the blocking problem. In

addition the work in references [89] and [100] show that the framework and strategies of computational
geometry and the theory of NP-completeness may be applied to the problem of point placement which is

necessary to construct the computational space (step c, algorithm II) for a given mesh.

These examples demonstrate that while research in algorithmic approaches to solving the blocking and point

placement problems is still formative, the work is promising and worthy of pursuit. Significant theoretical

resources have been developed in the fields of Topological Graph Theory and Computational Geometry
which are directly applicable to the problems of constructing structured multi-block meshes. Such

approaches offer the possibility of replacing the heuristics of interactive mesh generation with robust,
provable techniques.

III. OPPORTUNITIES IN DESIGN AND APPLIED AERODYNAMICS

With the partial review of emerging CFD tools in the preceding section, focus now shifts to the application
of these techniques within design and applied aerodynamics environments. Throughout this discussion a

recurring theme will be the appropriateness of physical modeling and numerical tools as measured by the

temporal requirements of the process. The examples and arguments in the introduction (sect. I), point out

that various aspects of design and applied aerodynamics require a different balance of speed and accuracy.
In reference [21] Rubbert uses an economic model of the aircraft industry to make a strong case that often a

faster, but more approximate, process may lead to a higher level of functional "goodness" if that process is

time constrained. In economic terms, he notes that maximum market share is generally achieved before a

process has had time to reach its asymptotic level of functional goodness. Ultimately, the time asymptotic

level of goodness achievable by a given process may mean very little if it takes to long to get close to that

level. In the context of numerical simulations, the speed of a process is related to set-up time, CPU/memory
requirements and post processing of discrete solutions.

As various CFD technologies mature, set-up and execution times will content to decrease. Thus,

increasingly sophisticated physical modeling will become available progressively earlier in the design cycle.

The discussion in this section is intended, therefore, to reflect the status of CFD research and computing
hardware that currently exists.

III.A Inviscid Techniques

Since they require minimal set-up, and avoid the problems of laying out and constructing a block structured

mesh, unstructured and Cartesian approaches currently offer an attractive method for computing inviscid
simulations. For example the unstructured, LWT simulation that was presented in figure 4 demonstrated that
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a one million node Euler simulations currently require between one and two hours of supercomputer CPU.

Alternatively, 200,000 vertex simulations currendy converge in less than an hour on modern engineering
workstations. The documented success of these methods suggests that 3D unstructured or Cartesian Euler

solvers could be coupled with strip boundary layer modeling to provide an extremely flexible platform for

rapid aerodynamic analysis. Such a system may be of greater immediate use than a full unslruclt.red Navier-
Stokes scheme, since inviscid solutions require approximately an order of magnitude fewer nodes, and 5-10

times less storage and CPU. Moreover, the discussion in section 11 points out that there are many unresolved

issues remaining in the extension of these techniques to viscous simulations, while the inviscid technology is

relatively mature.

Readily accessible inviscid, or inviscid and boundary-layer analysis is extremely valuable in various aspects

of design and applications aerodynamics. The task of preliminary loads estimation is followed in series by

thal of structural analysis. This serial connection, and the importance of the follow-on task makes load

estimation an example of a time critical process which would benefit greatly from improved physical

modeling. Although it is true that many critical loading conditions occur in regions of the flight envelope in

which Euler and boundary layer modeling may not be entirely sufficient, the approach offers great

improvements over current approaches which are largely based on panel and potential codes. With the

ability to capture non-linear features in the flow, Euler modeling permits prediction of vortex m0ectories

and shock structures which impact component loads over a wide range of conditions. With finer mesh

resolution or solution adaptation, the same system would also provide a valuable method for getting

preliminary results for detailed design or propulsion integration (PI) studies. With much of the set-up

already completed during loads estimation, these fine mesh runs would guide PI teams in deveh_ping high

quality block structured grid systems for full Navier-Stokes simulations. This prelilninary analysis would

alert design engineers to possible unfavorable shock or w)rtex interactions and permit a priori tailoring of

the viscous mesh.

A critical aspect of such an approach is integration. Many manufacturers already use some kind of Euler-

boundary layer modeling, but typically such systems are constrained by, excessive overhead and are

frequently poorly integrated. Automated mesh generation, macros for running angle of attack sweeps,

automated post-processing, etc. are all features central to the usefulness of such a system. The engineer must

be given quick access to the important data and the ability to assess the quality of the discrete solutions.

III.B Surface Modeling and Preliminary Design

In surveying the techniques discussed in Section II, deficiencies in surface modeling emerged as an

iinpediment t(7 nearly all techniques for applied CFD. In this context, "surface modeling" refers to the

process of generating an accurate representation of the true geometry in a form directly amenable to mesh

generation. Unstructured, Citrtesian and prismatic approaches require constrained triangulations of either the

aircraft's surface or individual components. Block structured solvers require i,,j ordered surface meshes.

Robust techniques for generating these descriptions have been documented in the literature, and are

generally coupled with mesh generation software. However, transitioning this task to preliminary design or

CAD software may offer significant advantages. Multi-disciplinary preliminary design and CAD systems

contain a complete description of the geometry, aud provide access to this information for all subsequent

disciplines in the analysis cycle. Importing a CAD file into a mesh generation system places the burden of

surface modeling not only on the mesh generator, but also on the CAD engineer. Since it is unlikely that the

CFD model will include the myriad of details that the full CAD model includes, the model will need to be

"cleaned-up" within the CAD system. Moreover, if a configuration originates in a preliminary design

system, this model must first be translated to a dedicated CAD system before production of a model for grid

generation. The intermediate step is unnecessary. With surface triangulations or surface grids directly

available as output options form preliminary design or CAD software the current, updated geometry would

be immediately available for aerodynamic analysis.
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Preliminary design is an inherently multi-disciplinary process. A variety of software is in use, and many
include multi-disciplinary optimization strategies that "fly" candidate vehicle designs through specified

mission profiles, permitting multi-point optimization and trade-off analysis[10Jl,[1021,II031. Physical

modeling in these systems is based on an internal representation of the geometry, and includes approximate

methods for structures, manufacturing and aerodynamics. The requirement for speed drives such systems to
use handbook, or panel methods for approximate aerodynamic analysis. If such systems were extended to

output constrained surface triangulations it would then be possible to also spawn coarse grid, Euler or full-

potential CFD solutions using either unstructured or Cartesian meshes. Critical points within the flight

envelope could be identified and run within the preliminary design environment, offering improved

physical modeling. Preliminary design could then operate further from its experience base to explore novel
configurations while simultaneously increasing the confidence in the results obtained with lower order
methods.

III.C Navier-Stokes Analysis

Processes such as wing optimization, propulsion integration, and high-lift system design ultimately require

full Navier-Stokes analysis. Although the technology is constantly changing, block structured techniques
currently appear to offer the most confidence and efficiency for such analysis. Many recent research

programs have been dedicated to improving the efficiency of the grid generation process. The review of

current and prospective block structuring techniques in Section II permits general statements concerning
structured grid generation. Specifically, while developers strive for general algorithmic solutions to domain

decomposition and point placement problems, interactive approaches have yielded remarkable success for

specific topologies. Various research efforts have produced streamlined interactive procedures which guide

even novice users through the block generation process using minimalist descriptions of complex aerospace

geometries. Such approaches have demonstrated mesh set-up times on the order of hours using engineering
workstations. Meanwhile, experience with these and more traditional mesh generation systems has resulted

in a large knowledge base, or library, linking various mesh block arrangements to specific surface

topologies. Work has also explored using this knowledge base to mesh new configurations by deforming
topologically similar blockings from previous, or generic configurations. Clearly the possibility exists to
combine these factors into grid generation systems which are vastly improved over those currently available.

If surface meshes were available directly from CAD products, or from prior steps in design, such mesh
generation systems would offer greatly reduced set-up times. Even if appropriate surface meshes are not

available, the use of abstractions discussed in Section II would permit block layout to be performed in

parallel with surface mesh preparation - reducing at least the calendar time required for multi-block
structured analysis.

Off-design analysis, wing optimization, and various tasks in applied CFD require the consideration of a

variety of specific cases. This fact underscores the necessity of integrated CFD software to accept

macroscopic automation. Automated control of job submittal, job monitoring and routine post-processing
would again lead to more efficient processes.

IV. CONCLUSIONS

This paper has reviewed the progress of a variety of emerging technologies against the issues which limit
CFD's usefulness in design and applied aerodynamics. In doing so, the discussion has concentrated on

approaches which intend to reduce the overhead associated with flow simulations around complex
configurations. The discussion examined the current status of unstructured, hybrid, and Cartesian
approaches as well as techniques for automating traditional multi-block mesh generation schemes. These

methods were evaluated with special consideration of the differences that exist between research and design
environments.
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Therapidlymaturingstateof unstructuredandCartesianbasedtechniquessuggeststhepossibilityof highly
automatedEuler-boundarylayersolversfor usein loadsestimationandothertime-criticalprocesseswithin
the designcycle. Meshgenerationfor thesetechniquesis largely automatedand it requiresonly the
generationof constrainedtriangulationsfor surfacemodelingasan input. Similarly,opportunitiesexist to
increasethelevelof automationin theconstructionof blockedmeshesfor usewith structuredNavier-Stokes
solvers.Strategieswhichlink blockstructuredmeshgenerationalgorithmswith librariesof priorexamples
areparticularlyattractive,sincetheyavoidrepeatedmeshingof topologicallysimilarconfigurations.The
interactiveapproachof buildinggrid abstractionsis alsopromisingsinceit permitstheblockingprocessto
go on in parallelwith surfacemodelingefforts. Work in algorithmicbasedauto-blockingsuggeststhat
domaindecompositionandpoint placementoperationsin multi-blockmeshgenerationmaybe properly
posedas problemsin ComputationalGeometry.This approachis unifyingsinceit describesbothmulti-
blockstructuredmethodsandunstructuredmeshmethodswithin a commonframework.
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SUMMARY

An assessment of two unstructured methods is presented in this paper. A tetrahedral unstructured

method USM3D, developed at NASA Langley Research Center is compared to a Cartesian unstructured

method, SPLITFLOW, developed at Lockheed Fort Worth Company. USM3D is an upwind finite volume
solver that accepts grids generated primarily from the Vgrid grid generator. SPLITFLOW combines an

unstructured grid generator with an implicit flow solver in one package. Both methods are exercised on three

test cases, a wing, and a wing body, and a fully expanded nozzle. The results for the first two runs are included

here and compared to the structured grid method TEAM and to available test data. On each test case, the set up

procedure are described, including any difficulties that were encountered. Detailed descriptions of the solvers
are not included in this paper.

INTRODUCTION

One of the aims of computational fluid dynamics (CFD) is the timely analysis of complete aircraft

configurations. To this end, unstructured methods hold considerable promise as a tool by which CFD engineers

can efficiently analyze complete aircraft configurations in a timely fashion. Although structured grid methods

such as TEAM I and CDFALCON 2, based on patched multi-block grids have been applied to complete

configurations like the F-22 and F-16, the time to generate such grids remains unacceptably large. In order to

reduce the time required to generate grids around complex configurations, unstructured grid technology are
being explored. The goal is to reduce turnaround time from weeks to days to hours.

Two unstructured methods are currently being used at Lockheed. The first method, acquired from

NASA Langley, is composed of three codes, a grid preprocessor GridTool 3, an advancing front grid generator

Vgrid 4, and an Euler flow solver USM3D 5. The second unstructured method, SPLITFLOW 6, is being

developed at the Lockheed Fort Worth Company (LFWC) and uses Cartesian unstructured meshes. This paper

compares and contrasts these unstructured methods based on three test cases. The results are compared to

available experimental data and to results generated by the patched structured grid method TEAM.

Copyright ©1995 by Lockheed Corporation. All rights reserved.
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SYMBOLS

C
CD
CL
CM

CN

CFL

M

x,y,z

(t

Chord

Drag coefficient

Lift coefficient

Pitching moment coefficient

Normal force coefficient

Courant Friedrichs Lewy number

Mach number

Cartesian coordinates

Angle of attack
METHOD DESCRIPTION

Tetrahedral Unstructured Method

The tetrahedral grid generation system from NASA Langley is composed of three codes. With these

codes, an Euler solution can be generated on simple configurations in a matter of hours.

GridTool. The first code used in the unstructured grid generation process is GridTool. This program

takes geometry files in either discrete point or IGES 7 format. Once an adequate geometry file is entered into

the program, a user interactively constructs curves and patches on the surfaces exposed to the flowfield. When
the entire surface has been divided into patches then the outer boundaries are prescribed, usually with a simple

box. Point and line sources are then prescribed, which control the distribution of points not only on the surface

but also in the flowfield. A restart option is available to allow the engineer to save intermediate results. This

option is particularly helpful in treating complex configurations which may require more than one session to

complete the patching. The output of GridTool is an input file for Vgrid. GridTool also has the capability of

displaying surface grids on a patch by patch basis, to allow the user to inspect the quality of an unstructured

mesh.

Vgrid. The surface and volume grids are generated with Vgrid. Vgrid uses the advancing front
method a to generate both surface mesh and volume meshes. A structured background 8 mesh is used to define

the point distributions for the surface and volume region. The structured background grid is constructed by

subdividing the entire flowfield domain into cells. The spacing information for the unstructured grid is stored
at the cell nodes. The distributions are determined in a manner similar to the diffusion of heat in a conducting

medium from discrete sources.

Once the background grid has been created a surface mesh is constructed by placing points along the

edges of the user defined patches, and then triangles are constructed to fill each patch. After each patch is

triangulated, the mesh quality is checked automatically and any regions of poor quality are displayed. The user
has the ability to change the patch in order to achieve a better meshing if necessary. The surface mesh then
forms the initial front for the volume grid. The front is advanced into the field by introducing new points and

forming tetrahedra and new faces to complete the grid. This step is usually accomplished in a batch process.
The code continues to fill the flowfield domain until either the domain is filled with cells or no more cells can

be formed thus leaving pockets or voids in the grid. These pockets are usually filled by removing a layer of

cells around the pocket creating a larger void and a new front. The grid generator is restarted and cells are added

until the grid is completed. In some cases the background grid has to be modified in order to achieve a complete

grid. A grid quality check is then initiated and negative and skewed cells are reported and then corrected by

removing cells around the bad cell and refilling. As with the incomplete grid, sometimes the background grid
has to be modified in order to remove bad cells.
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USM3D. Once an acceptable grid has been generated, the next step is to compute the flow solution

using the Euler solver, USM3D. The solver, developed at NASA Langley and solves the time-dependent Euler

equations for an ideal gas using a cell-centered finite volume formulation. Spatial discretization is

accomplished by the use of Roe's flux difference splitting. The solutions are advanced in time by either an

explicit multi-stage Runge-Kutta scheme or an implicit Gauss-Seidel scheme. Local time stepping is used to

accelerate the convergence of the solution to a steady state by using a CFL number near the local stability limit.

The maximum time step for the explicit scheme is enlarged by the use of implicit residual smoothing. USM3D

supports boundary conditions commonly available to Euler solvers. The code is usually run on a Cray-type

machine, but can easily be run on other high-end workstations with sufficient memory and computing speed.

USM3D uses 44 words per cell of core memory and 26 la sec per cell per cycle for the explicit version of the

code and 180 words per cell of core memory and 64 la sec per cell per cycle for the implicit version of the code.

All computer times are for a Cray YMP.

Cartesian Unstructured Method

SPLITFLOW is an unstructured Cartesian code developed by LFWC for analyzing complex 3-D

geometries. SPLITFLOW generates cube-shaped cells that are aligned with the Cartesian coordinate axes.

Boundary geometry is defined by triangular faces, or facets. At boundaries, cells are "cut" to account for

volume and flux changes due to parts of the cells being inside of the solid surface. This feature allows

SPLITFLOW to handle extremely complex geometries, and little care need be taken by the user to prepare or

maintain the grid. This type of grid was used on all of the geometries presented in this paper.

Initial grid cell sizes are scaled from geometry facet sizes and are then refined or coarsened, at specified
iteration intervals, by the solver based on the user's choice of gradient adaption functions (Mach number,

pressure, etc.). The coarsening process uses statistical methods to look for low gradient regions in the flowfield

from which to remove cells, thus reducing grid density and computational requirements. The coarsening

process is limited by a grid smoothing algorithm which requires adjacent cells to be no more than one

"generation" apart (Figure 1). Further, cells are deleted by groups of eight and only if all of the child cells in

that group are flagged for coarsening. This is done to maintain the data structure. The refinement process
follows, also applying statistical methods, and searches for high gradients to determine where cells need to be

added. Grid refinement involves recursively sub-dividing each cell into eight cells which become "children" to

the initial cell. Since the code is "smart" enough to place cells where they are needed, the best initial grid is
usually sparse and the flowfield is used to determine where new cells should be placed. With a sparse initial
grid, flowfield information can propagate in fewer iterations, each of which take less time because there are

fewer cells. For example, a grid which is to be limited to 800,000 cells may be appropriately initialized to
50,000 -100,000 cells.

Another benefit of cutting boundary cells is that geometry changes can be made easily while salvaging

a developed solution. For example, if the user has a converged solution of an aircraft with undeflected control

surfaces, a new geometry model with deflected control surfaces can simply be substituted. SPLITFLOW will

recut, or "mark", the appropriate boundary cells and continue solving and refining on the new
geometry/flowfield; the cost-effectiveness of such a feature is clear.

SPLITFLOW includes a point implicit solver which typically brings about convergence in under 500

iterations. The amount of memory that is required to run the solver portion of SPLITFLOW is approximately
180 words per cell. The algorithm also includes automatic time step scaling based on the convergence of the sub

iterations of the point implicit scheme. The definition has a direct influence on attainable time step size.
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WING C TESTCASE

WingCisalowaspectratiofighter-typewing.A geometricdescriptionofthiswingisshowninFigure
2. WingC wasdesignedto havea largeleadingedgesweepandmeanaerodynamicchord. At thedesign
conditionof 0.85Machandfivedegreesangleof attack,thewinghasmoderateaft loading,mildshocksand
mild pressurerecovery.Theobjectiveof this testcasewasto evaluatehowwell eachmethodcanmodel
transonicflowswithshocks.Extensiveforceandpressuredatahasbeengeneratedforthisgeometryonalarge
scale9modelanda smallscalemodel1°.

TetrahedralUnstructuredMethodCaseAnalysis

The surfacegeometryfor this test casewasgeneratedfrom tabularairfoil sectionsandwing
characteristicdata.A discretepointdatafile wasconstructedandusedasinputtoGridTool.SinceWingChas
aroundleadingedgeandtip, morepatcheswereneededaroundtheseregionsto helpachievegoodresolution.
A totalof 14patcheswereusedonthewingsurfaceandouterboundaries.Twolinesourceswereplacedatthe
leadingedgeandslightlyaft of theleadingedgein orderto achieveadequateresolutionin thisregion.A line
sourcewasalsoplacedalongthetrailingedgeandalongthechordlineattherootandtip of thewing. Eight
pointsourceswereplacedat thecomersof theboundingboxto controlthespacingin thefar fields. The
resultinggridcontained47,390nodesand266,101cells.A plotof theuppersurfaceandsymmetryplanegrid
is shownin Figure3. Thecell volumesrangedfroma minimumof.1226E-08nearthetip leadingedgeto
.1026E+01at theouterboundary.Thetimeneededto generatethisgridfromtheinitial inputgeometrywas
fourhours.

Withthegridcompleted,aflowsolutionwasobtainedusingUSM3DataMachnumberof 0.85andan
angleof attackof five degrees.Threeboundaryconditionswereusedin thisWingC analysis,a far field,
symmetry,andsolidboundarycondition.Theexplicitversionof thecodewasusedin thistestcase.TheCFL
numberusedfor thisrunwassetto fourwithasmoothingcoefficientsetto onehalf. Thenormalexecution
procedureforUSM3Disto letthecodepickwhentouselowandhigherorderfluxdifferencesplitting.Forthis
case287cycleswereexecutedonlowerorderdifferencing,oruntil oneorderof convergencewasachieved.
Thesolutionthenranin higherorderdifferencinguntil2000totalcycleswerereached.At theendof 2000
cyclestheresidualhadreducedbytwoandahalforders.A plotof theresidualconvergenceisshowninFigure
4. USM3Drequires44wordspercellofmemoryregardlessof whatplatformchosentorunthecode.However,
thecodeperformancedependson theplatformchosento runthecode.OnaCrayYMPthecodeexecutesat
26gsecondspercellpercycle.Ona HP755workstationthecoderunsat around2901asecondspercellper
cycle.Forthiscase,thetotalsolutiontimewas1.7CrayC90hoursor 11g secpercellpercycle.

CartesianUnstructuredMethodCaseAnalysis

Thegeometryfor theWingCtestcasewasdevelopedfromthesurfacegridusedin theaboveanalysis.
ThequadrilateralcelldatabasewasconvertedtoafacetedsurfacethatwascompatiblewithSPLITFLOW.This
conversionprocessfromdiscretedatato a facetedgeometryfile requiredarounda half anhour. Thefacet
modelcontained10,970facets.Thegeometrywasa half-wingmodelwith aplaneof symmetry.After the
facetedgeometryhasbeengenerated,thetimerequiredto startSPLITFLOWisaroundtwentyminutes.The
initial grid consistedof 225,281cellson 18gridlevels.Theinitial gridsizewaslargedueto theextremely
curvedtrailingedge.A plotof theinitialgridatthesymmetryplaneandtheuppersurfaceofthewingisshown
in Figure5. Thefacetedmodelrequireda half hourto generateandtheinputandjob file for SPLITFLOW
requiredanadditionaltwentyminutestoprepare.

Startingwiththisgrid,a flowsolutionwasobtainedusingSPLITFLOWataMachnumberof0.85and
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anangleof attackof fivedegrees.Threeboundaryconditionswereusedin thisWingCanalysis:a far field,
symmetryandtangentflow forthesurfaceboundarycondition.SPLITFLOWhasautomaticCFLadjustment.
In thiscasetheCFLnumberwaslimitedto30.Thegridadaptionoccurredevery50iterationswithafinalgrid
consistingof 445,521cellson20grid levels. SPLITFLOWrequired4.8CPUhoursona CrayC90.Grid
generationrequired0.32hoursoutof thattotal.

Adaptiverefinementof thegridwasbasedongradientsof Machnumberandpressure.A cutting plane

through the 70 percent span location shown in Figure 6 reveals the resolution of the grid near the multiple
shocks on the upper surface of the wing.

Solution Comparisons

Figure 7 show comparisons of surface pressures from USM3D, SPLITFLOW, TEAM, and test data.

The pressures predicted by TEAM, USM3D, and SPLITFLOW are almost identical except for minor

differences near shocks. Both unstructured solutions compare well with the test data along the lower surface

and ahead of the shocks. Aft of the shocks there is shock induced separation which Euler codes cannot model.

The lack of adequate resolution near the stagnation point is the most likely cause of USM3D not being able to

match the stagnation pressure shown in the test data. At the 70 percent span station, the solution from USM3D

shows the most difference when compared to TEAM and SPLITFLOW. This is due to inadequate grid

resolution at this station. As one moves closer to the tip, the grid used in USM3D becomes finer and yields a

better solution, as seen at the 90 percent station. Table I contains a comparison of the computed forces and

moments and experimental data. USM3D shows good agreement with TEAM on drag and pitching moment

and only slight difference on lift and normal force. USM3D compared well the test normal force. SPLITFLOW

predicts a higher drag than either USM3D or TEAM, but is in good agreement on the normal force.

ARROW WING BODY TEST CASE

The second geometry used in this study was an arrow wing body configuration II A schematic of this

geometry is shown in Figure 8. The wing on this configuration has a round leading edge and was designed for

efficient supersonic cruise. It has both leading and trailing edge flaps. The tip of the arrow wing body

configuration is closed by a flat plate. The body has a circular cross-section with a straight centerline. A

deflection of 8.3 ° was imposed on the entire trailing edge flap. The leading edge flaps were kept in the faired
or zero deflection configuration. The flow conditions for this case were chosen to be a Mach number of 0.85

and an angle of attack of four degrees. At these conditions the wing is essentially shock free.

Tetrahedral Unstructured Method Case Analysis

The starting geometry for this case was taken from an existing TEAM structured grid. The surface

mesh, which consists of discrete point data, was used as input to GridTool. A total of 115 patches were required
to completely cover the configuration, sting and far field boundaries. The outer boundaries were located 12

spans from the body. Particular attention was paid to the leading edge, wing-fuselage and wing-flap

intersections. Even though care was taken to preserve the rounded character of the leading edge, toward the tip
the leading edge of the input geometry becomes relatively sharp, the effect of which is reflected in the

unstructured grid solution. Sources were placed along the centerline of the body, wing leading and trailing

edges, and along the tip. An additional source was placed just aft of the leading edge in order to help add points

in that region. Some difficulties were experienced near the tip where the cell sizes become extremely small
compared to the characteristic length of the wing. Although no negative cells were found, there existed some

highly skewed cells near the leading edge in the tip region of the grid. The final grid consisted of 57,788 nodes
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and307,677cells.A plotof thesurfacegridisshowninFigure9. Thecell volumesrangedfrom0.246E+07
neartheouterboundaryto0.288E-06nearthewingtip leadingedge.Thesetuptimefor thisgridwas24man
hours.

As withWingC, onlysymmetry,far andsolidboundaryconditionswereusedin thissolution.The
numericalparametersusedin this runwereaCFL of 4 andsmoothingcoefficientof a half. A threestage
explicitschemewasusedthroughoutthisrun.Thecodeswitchedfromlowerorderdifferencingto higherorder
differencingafter181cycles.Thefirst attemptto runthisgridfailedshortlyafterswitchingto higherorder
differencing.Thepressureanddensityapproachedzeroin thesmallcellsthatwerearoundthewingtip leading
edge.A modificationtothecodewhichsetthesecellstofirstorderallowedthecodetocontinuetorun. A total
of 461cellsweresetto first orderafter2000cycleshadbeenexecuted.After2000cyclestheresidualhad
reducedby twoanda quarterorders.A plotof theresidualconvergenceis shownin Figure10. Thetotal
solutiontimefor thiscasewas2.5CrayC-90hours,or 10_tsecpercellpercycle.

CartesianUnstructuredMethodCaseAnalysis

Thegeometryfor theArrowWingBodytestcasewasdevelopedfromabaselineIGESfile. Themodel
wasmodifiedto definea full span8.3degreetrailingedgedeflection.Themodelcontained34,034facets
definingonehalfof theaircraft.Theinitialgridconsistedof 27,737cells.

A SPLITFLOWflowsolutionwasobtainedataMachnumberof 0.85andfourdegreesangleof attack.
Threeboundaryconditionswereusedin thisArrowWingBodyanalysis:a farfield,symmetryandtangentflow
forthesurfaceboundarycondition.Thegridadaptionoccurredevery40iterationswithafinalgridconsisting
of 169,749cells.A pressurecoefficientcontourplotofthesymmetryplanegridandsurfacegeometryisshown
inFigure11. Inthiscase,theCFLwaslimitedto8.0. SPLITFLOWrequired0.69CPUhours on a Cray C90.

Grid generation required 0.11 of that total.

Although the solution was run to 197 iterations, the data shown in Figure 12 shows that the force and

moment data were converged within engineering accuracy (assuming a data uncertainty band of +/- 0.05) at

approximately 100 iterations. The grid at that point consisted of 60,000 cells. The CPU time at 100 iterations

was 0.24 Cray C90 hours.

Solution Comparisons

Figure 13 show comparisons of surface pressure coefficients from USM3D, TEAM, SPLITFLOW and
test data. The effect of the flap defection can be seen at the inboard span station. The leading edge peak suction

pressure from USM3D agrees better with the test data than the TEAM results, due to insufficient grid resolution
in the TEAM grid. USM3D and SPLITFLOW agree well except at the 80 percent span station. The USM3D

pressures generally agree with the test data except aft of the flap deflection. The SPLITFLOW pressures show
similar behavior to the TEAM results in the region aft of the flap break. At the tip the results are less

encouraging. In this region there is a small vortex that is not picked up by any of the codes due to the inviscid
nature of the computations. The peak suction predicted by USM3D is much higher than TEAM or

SPLITFLOW. Both TEAM and USM3D agree with the test data on the lower surface. On the upper surface

aft of the first 10 percent, both USM3D and TEAM show similar behavior. The SPLITFLOW results show

good agreement at the leading edge but show less agreement with test data or TEAM results especially near the

trailing edge. Table II shows a comparison of computed forces and moments for all codes and test data. Only

normal force and pitching moment numbers were available in the wind tunnel report. The normal force

predicted by USM3D is higher than the test data and the normal force computed by TEAM. SPLITFLOW
shows good agreement with TEAM on lift and normal coefficient. SPLITFLOW predicts a higher drag and

lower pitching moment than either USM3D or TEAM.
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NASA2D-CDNOZZLETESTCASE

Theobjectiveof thistestcasewasto assesseachcode'sabilityto correctlymodelflowsinternaland
externalto a2D-CD12nozzle.A schematicof thenozzlechosenis shownin Figure14. Thenose-forebody
sectionof themodelfollowedasmoothexternaltransitionfromacircularcrosssectionattheconicalnosetoa
superellipticalcrosssectionatfuselage26.5.Themaximumexternalcross-sectionalareaof41.17in2occursat
fuselagestation26.5.Thecross-sectionalareaandtheexternalgeometryremainedconstantfrom fuselage
station26.5to fuselagestation55.05. Forthisstudyonlythesectionfromfuselage26.5to theexit of the
geometrywasmodeled.Thenozzlegeometryhasstraight,parallelinternalsidewalls.Thenozzle-to-throat
arearatioof 1.25yieldedadesignexitMachnumberof 1.6andnozzlepressureratio(ratioof thelocaltotal
pressuretothefreestreamstaticpressure)of4.25.ExtensivetestsweredoneonthismodelatNASA,butonly
onecasewill beexaminedhere.Anattachedexternalflow testcasewaschosenforthisstudy.Thefreestream
Machnumberwas0.6 zerodegreesangleof attack,andanozzlepressureratioof 4.0.

At thetimethispaperwaswritten,(February1995)resultsfrombothSPLITFLOWandUSM3Dwere
notavailable.Gridshadbeengenerated,butflowsolutionswereprovingtobeachallengingundertaking.Both
USM3DandSPLITFLOWarestill underdevelopmentandappropriateboundaryconditionsfor modeling
propulsiontypeflowsarebeinginvestigated.

CONCLUDINGREMARKS

Theuseof unstructuredmethodscansubstantiallyreducethetimerequiredtogenerateEulersolutions
oncomplexconfigurationsascomparedto structuredgridmethods.Twounstructuredmethodswereappliedto
threetestcasesto assesstheir strengthsandweaknesses.ThetetrahedralmethodUSM3Dshowedgood
agreementandrobustnesson thetwo externalflow testcases.SPLITFLOW,theCartesianunstructured
method,convergedin fewercyclesthanUSM3Dandshowedthebenefitsof adaptivegridrefinement.

Thesetuptimeforthetwocodesshowedthemostdifference.SPLITFLOWrequiredtheleastamount
of timeforproblemsetup. Thisisdueto thefactthatthegridgeneratorisanintegralpartof thesolver.Only
thesurfacemeshneedstobeinputtothecode.If IGESgeometryisavailabletotheengineerconstructingthe
SPLITFLOWinputfiles,thetimeto setupaproblemisontheorderof ahalfanhour. If discretepointdatais
usedthenthesetuptimecanrunintoanumberof hours.Thisis incontrasttoUSM3Dwhichrequiresthefull
volumegridtobeinputto thesolver.Dependingonthecomplexityof thegeometrythisgridgenerationtime
canrunfromafewhourstoafewdays.Forwingalonecases,thegridgenerationtimeisontheorderof hours.
Forfull configurationaircraft,thegridgenerationtimecanbeontheorderof afewdays.

Whenthesolversareexamined,comparisonsareharderto arriveat. Thememoryneededto run
SPLITFLOWisontheorderof 180wordspercell. Thiscanvarydependingonthewaythecodeis initialized.
ForUSM3D,thememoryiseasiertodeterminesincethegridgeneratorisaseparatecode.Usingtheexplicit
optionin USM3D,the memoryrequiredfor executionis 44 wordspercell, usingtheimplicit optionthe
memoryincreasesto 180wordspercell. Sincegrid generationtimeis anintegralpartof SPLITFLOWthe
executiontimein termsoftimepercellpercycleisdifficult toquantify.

A convergedsolutionisachievedinUSM3Dwhentwoordersof residualreductionandtheforcesand
momentshavestoppedoscillating.A similarsituationexistsfor SPLITFLOW,but theprimaryconvergence
criteriais forcesandmoments.Solutionsarestoppedwhentheforcesandmomentshavereachedasteadystate.

On a wingalonetestcasebothunstructuredmethodsshowedsimilarresults.Bothmethodswere
showntohavetheabilityto modelexternalflowfieldswithgoodaccuracy.Furtherdevelopmentofthesolvers
isrequiredtotreatthenozzletestcaserepresentativeof acombinedexternal/ internal flow-field.
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Table I. Forces and Moments for Wing C

Wing C

Mach = 0.85 c_= 5.0 °

CL CD CN CM

USM3D 0.5407 0.03854 0.5420 -0.07792

SPLITFLOW 0.5374 0.04026 0.5389 -0.06813

TEAM 0.5650 0.03995 0.5653 -0.07782

TEST 0.540

Table II. Forces and Moments for Arrow Wing Body

Arrow Wing Body

Mach = 0.85 _ = 4.0 °

CL CD CN CM

USM3D 0.2748 0.01747 0.2812 -0.1253

SPLITFLOW 0.2610 0.02484 0.2683 -0,0857

TEAM 0.2666 0.02071 0.2674 -0.0947

TEST 0.276 -0.106

393



I

Typical Smooth Grid

Sudace
Bounda_

eneration 'T'

eneration "i+2"

.._ Refined GridNot Allowed .v

Figure 1. SPLITFLOW cell development

Figure 3.

TIP

\

R = 2.6

r = 2.38"
c)r = 7%

/ / b_t2i"==106426

\
ROOT

_,= 0.3
Ot = -5.79"

(t/c)t = 11%
Cr in = 12.14
MAC in = 8.642

Figure 2. Schematic representation of Wing C

-_ __t"-_ I \/ \

Symmetry plane and wing surface triangularization from Vgrid

394



1.-01

1.2 l

m

1e-03

n-

le-04

I e-05 , , _ , ,
0.0 500.0 1000.0 1500.0 2000.0

Cycles

Figure 4. Residual history from USM3D for Wing C test case

Figure 5. Initial symmetry plane grid from SPLITFLOW

Figure 6. Grid and solution from SPLITFLOW at the 70% span station

395



-1.6

-I .2

.0.8

0A

0.8

1,2

1.6
0.0 0.2 0.4

-- USM3D

..... SPLITFLOW

TEAM

I * Upper Test

L • Lower Test

0.6 0.8

X/C

E_=0.1

1.0

-1.6

-1.2

-0.8

-0.4

_" 0.0

0.4

0.8

1.2

1.6
0.0 i , i ,0 2 0.4

YJC

-- USM3D l

..... SPLITFLOW_

TEAM ]

• Upper Test]

, [ • LowerTest ].

0.6 0.8 1.0

Eta = 0.3

-1.6

-1.2

.0.8

.0.4

r._ O.0

0.4 i

0.8

1.2

1.6
0.0 0.2 0.4

-- USM3D

..... SPLR'FLO¥

TEAM

* Upper Test

• Lower Test

0.6 0.8

X/C

Eta=0.5

1.0

-1.6

-1.2

.0.8

.0.4

_) 0,0

0.4

0.8

1.2

1.6
0.0 0.2 0.4

-- USM3D |

..... SPLITFLOV_

TEAM 1

• Upper Test I

I • Lower Test] ,

0.6 0.8

X/C

1.0

Eta=0.7

-1.6

P,

-1.2

-0.8

.0.4

0.0

0.4 '

0.8

1.2

1.6
0.0 0'.2 0.4

l_ us.3o /

SPLrITLOW I

TEAM 1

Upper Test I

, , Lower Test I ,

0.6 0.8

YJC

1.0

Eta=0.9

Figure 7. Pressure distributions on Wing C at M_ = 0.85 and (_ = 5.0 ° using USM3D, SPLITFLOW, and
TEAM compared to test data

396



Figure8. Schematicrepresentationof Arrow Wing Body configuration
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Figure 11. Pressure Contours from SPLITFLOW for Arrow Wing Body case at M_ = 0.85 _ = 4.0 and
_TEF : 8"3°
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ABSTRACT

An analysis of the grid generation process from the point of view of an applied CFD engineer

is given. Issues addressed include geometric modeling, structured grid generation, unstructured grid

generation, hybrid grid generation and use of virtual parts libraries in large parametric analysis

projects. The analysis is geared towards comparing the effective turn around time for specific grid

generation and CFD projects. The conclusion was made that a single grid generation methodology
is not universally suited for all CFD applications due to both limitations in grid generation and flow

solver technology. A new geometric modeling and grid generation tool, CFD-GEOM, is introduced

to effectively integrate the geometric modeling process to the various grid generation methodologies

including structured, unstructured, and hybrid procedures. The full integration of the geometric

modeling and grid generation allows implementation of extremely efficient updating procedures, a

necessary requirement for large parametric analysis projects. The concept of using virtual parts

libraries in conjunction with hybrid grids for large parametric analysis projects is also introduced to

improve the efficiency of the applied CFD engineer.

1. INTRODUCTION

Geometric modeling and Grid Generation are typically the most labor intensive tasks of a

typical Computational Fluid Dynamics simulation. Factors which separate "good" tools from

"bad" tools from the perspective of an applied CFD engineer include:

. The ease/difficulty in obtaining a suitable surface definition for the particular grid generation
scheme employed.

2. The ease/difficulty and the amount of time necessary to create an initial grid.

. The ease/difficulty and the amount of time necessary to modify the initial grid both in terms

of changing the number of grid points/distribution as well as the geometry, especially
important for conducting parametric studies.

. The amount of CPU required to run the Geometric Modeling/Grid Generation software as
well as the amount of disk space required to store and re-create a model.

5. The applicability and efficiency of the CFD methodology for the particular grid created.
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Eachof thesefactorsmustbeconsideredby theCFDengineerregardlessof thetypeof grid
generation/geometricmodeling or CFDmethodemployed.

In thecommercialworld thebottomline is thecostto completeasimulation.Costmanifests
itself mainly in the form of manhoursandcomputerequipmentrequired. The overall time to
completea problemfor a givenmethodologywill alwaysbe relatedto theskill of theCFDengineer
in using the availabletools as well asthe computerequipmentavailable. Thus, evaluatingand
comparingmethodologiescanbe quite subjective. Additionally "comparingmethodologies"can
oftenbeconfusedwith "comparingsoftwaretools." A poorly writtensoftwaretool employinga
givenmethodologytendsnot only to speakpoorlyof the software,but alsoof themethodologyin
general. This paper evaluatesgrid generation/geometricmodelingtechnologyin the areasof
structured,unstructuredandhybrid grids. The focusis on comparingthestrengthsandweaknesses
of each methodology. Efficiency examplescomparingmethodologiesare conductedusingthe
currentsoftwaretool, CFD-GEOM, developedat CFDRCwhichcombinesthegeometricmodeling
andvariousgrid generationmethodologiesin oneintegratedsoftwarepackage.Thepaperis divided
into 8 additional sections:GeometricModeling, StructuredGrid Generation,UnstructuredGrid
Generation,Hybrid Grid Generation,Parts Libraries, Applied Comparisonof Various Grid
GenerationMethodologies,CFD-GEOM:CurrentStatus,andConclusions.

2. GEOMETRIC MODELING

The definition of the surface for complicated geometric configurations is often one of the

most laborious tasks in beginning the grid generation process. The surface definition is typically

specified as a set of curves which interpolate to form a surface. For simple surfaces such as surfaces

of revolution these interpolants are rather straightforward. However, for the generic three

dimensional surface the problem is more difficult. For complicated surface definitions, most

organizations use a CAD/CAM tool, which have the specific tools necessary for generating their

geometries of interest.

The market is flooded with CAD tools used for design and manufacturing, however, the

ability to transfer a CAD geometry to a surface geometry suitable for CFD grid generation is more

limited. Two types of grid generation procedures are typical for CFD: structured and unstructured.

The structured grid has been the historical mainstay of CFD while the unstructured grid is more

common in structures applications. Specific strengths and weakness of each gridding procedure will
be discussed later. However, the ability to transfer CAD geometries from any CAD/CAM system to a

CFD grid generation system, either structured or unstructured, is crucial.

CAD tools can often be very specialized for specific applications and can be very large

programs with hundreds of options. There is some attraction to incorporating a grid generation

procedure into a CAD tool. However, in most CAD tools a significant amount of overhead makes this

approach somewhat impractical due to memory requirements and CPU considerations. The closest

tool to such a procedure is Icem-CFD a, however, the incorporation into CAD is not direct. A transfer

procedure from the CAD tool (DDN) to the grid generation tool (Mulcad or Hexa) is required.

Other approaches use IGES 2 files as a starting point to create the grid. In this manner one can create

402



his geometrywith anyCADtool andimportthegeometryinto thegrid generationsystem.As long
as the grid generationtool can supportCAD transfer without information loss this is a viable

approach, although two tools must be learned by the CFD engineer. The point of view held at

CFDRC is that the grid generation tool should support basic CAD-like geometry creation functions,

while allowing users to import geometries from any CAD system adhering to industry wide CAD file

protocols (such as IGES). In this manner a CFD engineer does not necessarily need to learn a

complicated CAD package to construct and grid simple geometries, however, if necessary he may.

Additionally the grid generation tool should be able to manipulate or clean a geometry created using

a CAD package to make it more suitable for grid generation purposes.

To properly facilitate CAD data transfer without information loss the grid generation system

must understand the language of CAD. In modem CAD systems this requires using NURBS (Non-

Uniform Rational B-Splines) 3. NURBS have become a CAD industry standard for geometric

definitions in CAD/CAM and Computer Graphics. NURBS have replaced the methods of Bezier 4,

Coons 5, and Gordon 6 surfaces. NURBS have gained widespread popularity in the CAD community

mainly for their ability to represent a wide range of surface types exactly. For example NURBS can

express Bezier, Coons, and Gordon surfaces exactly as well as conic sections, quadratic surfaces and
surfaces of revolution.

The CAD industry has also become heavily involved in Solid Modeling and Parametric

Design principles. Solid Modeling 7, a technique developed in the late 1970's and early 1980's,

contains information about the closure and connectivity of volumes of solid shapes. It is becoming

an increasingly important part of computer aided design of solid physical objects for design, analysis,

manufacturing, simulation and other applications. The advantage of a solid modeling technique over

surface modeling is it's ability to form closed and bounded objects more closely related to physically
realizable shapes. Solid models can also distinguish between the outside and inside of a volume, thus

allowing mass property analysis to determine volume, center of gravity etc.

Parametric design is a design system which allows the user to select a predefined set of

geometric constraints which can be applied to the geometry being created. Such a system can

determine the positions of geometric elements specified by the predefined combinations of these

geometric constraints. This system may also have an equation solver which allows a set of

engineering equations to be used to set the values of dimensions based on either engineering

parameters or values of other dimensions. In general the parametric design system allows the user

to change specific parameters or constraints and quickly, if not automatically, obtain a variation from

the previous design. This system is in stark contrast to the traditional CAD system which requires

manual specification of each geometric entity within a model with no linking between the entities.

From the applied grid generation perspective a user must be able to take his CAD model and

generate a grid. This requires data exchange from the CAD to grid generation system. This is

identical to the need to transfer models across different CAD packages. The CAD industry has

developed several standards of data transfer to support data exchange across CAD systems. The

Initial Graphics Exchange Specification (IGES) 2 was the first such standard. IGES can handle a wide

range of geometric primitives including NURBS. Initial IGES releases do not support parametric
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designor solid modelinginformationalthoughthesecapabilitiesare plannedin future releases.
Other newer data exchangestandardsinclude PDES/STEP8. PDES(ProductData Exchange
Specification)is an emergingstandardfor the exchangeof productinformationamongvarious
manufacturingapplications.Theneutralexchangemediumfor PDESproductmodelsis theSTEP
(Standardfor theExchangeof ProductModelData)physicalfile format.

Theability to beginwith anygeometricdata(from anyCAD source)andobtain a grid is a

must for any grid generation system. When possible the parameters from the CAD package used in

the design (ie. parametric design parameters, entity linking or solid modeling information) should be

carried over from the CAD to grid generation system. The ability to perform this type of data

transfer is only possible if industry wide standards are supported and adhered to by the CAD

industry. As these standards develop they should be supported by the grid generation community.

Currently NURBS are the highest level of surface grid generation supported by the standard CAD

data transfer protocols and as such must be supported within the grid generation system.

3. STRUCTURED GRID GENERATION

The use of structured grids for CFD calculations is the historical mainstay of the CFD

community. Viscous computations using structured grid methods are well established and the most
advanced physical models are typically incorporated into structured codes. However, from the

applied viewpoint, the grid structure often causes complications which are not physical in nature but

are either geometric or related to the structure of the grid. This has led to unstructured grid CFD

research where theoretically grid generation is easier. In practice the use of structured CFD grids,

when used intelligently, can often be more efficient than using current unstructured techniques,

especially when parametric analysis computations are the goal. This is possible since geometric

information is inherently linked together in a structured grid through the grids structure. If small

changes are made to the geometry (or grid distribution/density), the structured grid can be

automatically and instantaneously updated if algebraic grid methods are used. In unstructured grids,

these small changes require re-rurming of the unstructured grid generation procedure, a task which is

trivial in terms of human labor but certainly not instantaneous. These types of issues will be the focus

of the section entitled Applied Comparison of Various Grid Generation Methodologies later in this

paper. In general a structured grid is defined as a grid which has a distinct i,j,k indexing. Four types

of structured grid generation are typically used: Algebraic, Elliptic, Hyperbolic and Advancing

Layers�Advancing Normal. Each of these techniques are most effective when object oriented multi-

block grid generation is employed.

Algebraic grid generation is the most efficient means of grid generation in terms of

computational speed and memory required. Algebraic grid methods rely on transfinite interpolation

procedures to obtain a grid when the boundaries of the grid have been specified with a user-described

distribution. The algebraic functions then interpolate to obtain a surface or volume grid. Many

different interpolant procedures have been used to obtain a desired grid. These include the standard

transfinite interpolant 9, Erickssonl°, Hermite orthogonalll among others with hybrid approaches

blending the best features of each method. In all cases these methods are extremely fast (essentially

instantaneous even on the smallest current workstations) and require very little memory. As such
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very fine grids canbe createdvery quickly. Typically thesemethodsareusedin a multi-block
patchedprocedure.In thismannertheCFDengineerde-composestheentireCFDdomainof interest
into patches(or blocks)andusesthealgebraicmethodsfor eachblock. Hecanthencombinethese
blocksor keepthemseparatedependingon theapplication.This methodof grid generationrequires
morehumaneffort thanothermethodsto obtainaninitial grid,however,thetaskcanbemademuch
easierwithgraphicalCAD-likesoftwaretools. Onceaninitial grid is constructed,smallmodifications
canbe madeanda new grid createdinstantaneouslydueto the geometriclinking. The ability to
instantaneouslyupdatea structuredgrid with minor modificationsis dependenton the software
design,however,it is possibleandwill bedemonstratedin Section7.

Elliptic grid generation was developed to "automatically" obtain a smooth internal grid

distribution. Elliptic methods 12J3 rely on the solution of elliptic partial differential equations to

obtain a smooth internal grid distribution. The user may specify controlling parameters which effect

the grid clustering and grid ortbogonality both internal and at the boundaries. Typically these

methods work within a single patch or block. Thus, a user must still define the grid topology as with

the algebraic methods, only now the solution of elliptic partial differential equations replaces the

algebraic functions. The main advantage of this method over algebraic methods is it can provide for

a smoother grid. However, in practice the user must play with the controlling parameters to obtain

the grid he desires. Additionally elliptic techniques are much more computationally expensive and

require much more memory usage than algebraic techniques. Thus, very fine grids can take a long

period of time to create and require a relatively large amount of computer memory when compared

to algebraic methods. In general the elliptic methods should only be used over an algebraic method

when the algebraic functions are not providing the quality of smoothness desired or needed for the

CFD solver. In practice this is a very small percentage of the time.

Hyperbolic grid generation is a grid generation technique based upon the solution of

hyperbolic differential equations. Hyperbolic methods 14 were introduced to automatically generate a

body-fitted orthogonal grid for external flow applications. The method uses an initial surface point

distribution along with cell volume and orthogonality constraints to solve a set of hyperbolic

differential equations to obtain the grid. In general the hyperbolic methods are one to two orders of

magnitude savings in computer time over elliptic techniques 15 however, they are generally less robust

than the elliptic techniques. They are also more restricted in the types of problems they can address

since the outer boundary of the mesh cannot be specified. Currently the hyperbolic technique is

generally used for Chimera applications16 where the grid systems of several objects are allowed to

overlap. For the hybrid grid generation techniques discussed below the hyperbolic system may be

useful if a control is provided to prevent grid overlapping of several objects. This is analogous to

setting a normal distance control. This requirement is the opposite of the Chimera philosophy to

allow or enforce overset grids. In the hybrid system the gaps would then be filled with unstructured

grid.

Advancing Layer or semi-structured grid generation 17,18 originated in the unstructured grid

generation community. It is used to obtain viscous boundary layer grids near boundaries.

Essentially the method "pops" a grid from a curve or surface in an automatic fashion based on the

normal vectors emanating from the surface grid. The method does this in a layered fashion building
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from thesurface. If a structuredquadrilateralsurfacegrid is usedthe resultinggrid is essentiallya
structuredhexagonalgrid nearthesurface,assuchit is labelledin this paperasa structuredgrid
method. The surfacegrid could alsobe an unstructuredtriangulargrid resultingin a prismatic
boundarylayergrid thathasa structurein thenormaldirection.Oftentimesthenearwall hexagonal
grid is sub-dividedto formtetrahedronsor thenumberof layersemanatingfromeachnormalvector
is unequalresultingin anartificially generatedunstructuredgrid. Thetrueunstructuredportionof
themethodresultswhenthis inner layer of semi-structuredgrid is mergedwith otherunstructured
grid methodsin an"automatic"fashion. Whenquadrilateralsurfacegridsareusedthis methodis
ideal for obtainingstructuredboundarylayer gridsvery quickly. The debateaboutwhetherone
shoulduseprismsor hexahedronsin theboundarylayerhingesontwo questions.First,is it easierto
obtaina controllablesurfacegrid usingaquadrilateralor triangularmethod,andsecondwhichgrid
typeis moreaccurateandefficientin termsof theCFDsolver. Theuseof NURBSfor surfacegrid
generationandits tensorproductdefinitionleavesthefirst questionopenwhilethesecondquestionis
still beingdebated/reviewedin theflow solvercommunity.

4. UNSTRUCTURED GRID GENERATION

A grid is said to be unstructured if the cells comprising the grid are not in any particular i,j,k

order. Unstructured grids typically consist of triangles in 2-D and tetrahedrons in 3-D, although this

does not have to be the case. Recently, unstructured discretization procedures have been extended to

include prisms, hexahedra as well as combinations of these elements.

Unstructured grid generation has been dominated by three methods: Delaunay or Voronoi-

basedl9, 20 techniques, modified quadtree/oct tee21, and the Advancing Front 22 methods. Each of these

approaches have been successfully applied for a variety of complex configurations. Delaunay

methods require an initial distribution of nodes throughout the domain which are connected to form

the unstructured grid. The points are connected to satisfy the Delaunay criteria to promote the

generation of isotropic (or equi-angle) elements. In 2-D the elements are triangles while in 3-D the
elements are tetrahedrons. By the very nature of the Delaunay criteria, the controlled creation of

stretched cells in boundary layer regions is problematic. The Delaunay method also has the

requirement that the points must be initially placed before they can be connected to form a grid. The
modified quadtree/octree approach is another commonly used procedure which is based on

subdivision algorithms to generate unstructured grids.

The Advancing Front Method is a method to both place points and create cells

simultaneously. In the advancing front method the type of ceils created can either by isotropic or

stretched. The type of cells desired is specified on a background grid which encompasses the entire

domain. Typically a set of Poisson equations is solved on the background grid 23 to control the cell

size, cell stretching and cell stretching direction. In 2-D it has been shown that high fidelity stretched

unstructured grids can be created with up to 20:1 base to height aspect ratios. In 3-D uni-directional

stretching has been achieved.

The use of either Delaunay, octree or Advancing Front methods can obtain fairly smooth

isotropic unstructured grids. Some general stretching can be achieved using Advancing Front
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methodology,however,for extremelystretchedceilsnecessaryto resolvenearwall effectsand shear
layers(1000:1baseto height ratio is typical) semi-structuredl8or layer17generationmethodsare
used.TheAdvancingLayer/AdvancingNormalmethodis typicallyexercisedto refineregionsof the
domainwhich requirehighly stretchedmeshfeatures.The grid generationprocessthenproceeds
usingeithertheadvancingfrontor Delaunaymethod.Thisresultsin a completelyunstructuredgrid
with semi-structuremeshcharacteristicsnearboundaries.In general the unstructured grid generation

methods are more computationally intensive than the structured grid generation techniques,
especially as the cell numbers become large.

Theoretically the unstructured grid generation techniques require less manual labor than the

structured techniques at a cost of CPU efficiency, i.e. algebraic vs. subdivision, subdomain removal,

Voronoi-based. For parametric design purposes where many grids/geometries must be re-created

over a period of time this trade-off may or may not be acceptable depending on the degree of the
design change.

5. HYBRID GRID GENERATION

The term hybrid grid is defined in this paper as a grid which contains different grid types in

different regions of a flow field domain. Generally the hybrid grid will contain a

quadrilateral/hexahedral or prismatic grid in near wall boundary layer regions and a

triangular/tetrahedral or adaptive cartesian grid 24 in inviscid regions. The appeal of hybrid grids is
that more accurate and advanced structured flow solver methodologies can be used in viscous flow

regions while the unstructured techniques can provide more flexibility in the gridding process. From

the point of view of the applied CFD engineer, the hybrid grid gives much greater grid creation

flexibility. When coupled to an object oriented grid generation software tool the CFD engineer can

use different grid generation procedures in different flow regions utilizing the strengths of the

different procedures and eliminating the weaknesses. The major drawback to using hybrid grids is
that the CFD code must become more general, either handling structured and unstructured domains

differently or handling multiple element grids in a purely unstructured fashion.

A significant advantage in using hybrid grids is that the grid can be separated into parts or

objects. This is analogous to the multi-domain structured approach only now any grid type may be
used in a particular domain. Since the flow field region is decomposed the individual domains can

be modified as long as the interfaces remain unaffected. The use of hybrid grids is a relatively new
development in the CFD world. It has enormous potential to speed up the turn around time for

parametric analysis CFD computations when coupled to the concept of a parts library. The use of
hybrid grids in conjunction with the parts library will be demonstrated in the next section.

6. PARTS LIBRARIES

An extremely important concept in the CAD design community is the use of Parts libraries.

Typically, a CAD engineer will comprise individual parts of a design and piece them together to form

the complete design. The concept of extending the parts library to include the grids is very attractive

for many CFD analysis projects. This allows the CFD engineer to construct a grid around an object,
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save the geometry and grid together in a library, and then piece the parts together in the final analysis

project. This type of system is very suitable for hybrid grid generation. The near wall boundary

layer grid can be stored with the geometry in a library, pieced together and then a general

unstructured grid generation algorithm can be used to fill in the gaps. The Parts library concept is

also extremely suitable in the Chimera method where the grids of each part are independent of one
another, and can also be used in the patched structured grid method as well. The use of the parts

library in the grid generation process is extremely suitable for parametric analysis.

The concepts of hybrid grid generation in conjunction with the use of Parts libraries for grid

generation is very new. Therefore, an example of the power of these concepts will be demonstrated

using a 3-element airfoil example. Figure 1 shows the base parts of the 3-element airfoil. Figure 2

shows two scaled versions of the slat and flap parts. Each of the individual parts is surrounded by a

structured grid, Figure 3, and saved in a library. The outer boundaries for each of the slat and flap

configurations, Figure 4, are identical so that they can be interchanged. Figure 5 shows the

unstructured grid that fills in the gaps for the baseline configuration. An Advancing Front

Technique with source controls 23 is used to obtain interface matching along the boundaries. Now if

any of the other slat or flap configurations is desired they can be automatically interchanged without

re-running the unstructured grid domain as shown in Figure 6. Additionally, for near wall O-grids,
like that of the flap, if one wishes to refine the structured grid in the normal direction one can without

any re-gridding of the unstructured part. In three dimensions where pure unstructured grid

generators require a fair amount of CPU, this use of the hybrid grid generation concept along with

the parts library concept saves a considerable amount of time for large parametric analysis projects.
Additionally if the slat or flap angles of attack are changed or if the geometry is such that the outer

boundaries cannot be efficiently made identical, only the re-solution of the unstructured domain is

necessary. In most cases no new user input, only the geometrical change, is necessary when re-

computing the unstructured domain. Figure 7 shows the grid resulting when the slat is pitched

upward at 20 degrees.

7. APPLIED COMPARISON

OF VARIOUS GRID GENERATION METHODOLOGIES

The grid generation methodology to use for a particular application will often be different

depending on the goals of the project. Often times CFD engineers are limited by the type of solver

they are using and by the types of grid generation tools available. The approach favored at CFDRC

is to use Hybrid grid generation along with Parts Libraries to maximum the efficiency of the applied

CFD engineer, especially for large parametric analysis projects. Each particular grid generation

methodology has particular strengths and weaknesses. This section will look at the various strengths

and weaknesses, with appropriate examples, of the following grid generation techniques: Algebraic

structured multi-block, Elliptic, Unstructured Advancing Front, Advancing Layer/Advancing Front

Unstructured, and Hybrid. When possible specific data (based on CFDRC experience) such as CPU
time and human effort statistics will be given for each of the examples provided. As is always the

case with human effort statistics they are very dependent on the user's experience level with a given

methodology, and as such are somewhat subjective. The use of these statistics should not be taken as

absolute but in relative comparison to one another.
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Algebraic Structured Multi-Block

The strength of the algebraic multi-block methodology is its CPU speed and limited memory

requirements. Very fine grids can be created very quickly. Additionally the ability to make small

modifications and obtain instantaneous grid updates is possible (and demonstrated using CFD-

GEOM) due to the linking between the geometry and the grid. The weaknesses of the algebraic

multi-block methodology are the increased human effort to obtain an initial grid (ie. setting up the

grid topology) and the possibility that the grid structure wastes ceils. The example chosen for

demonstration purposes is a grid of the B-1A Escape Capsule.

Figure 8 shows the multi-block structure of half of the B-1A capsule grid and the surface

grid. There are 22 grid blocks to control the grid clustering which are combined to form a single

composite block with blockages. The definition of the geometry was obtained from a Plot3D

surface point set and broken up into the various topological domains in approximately 4 hours using
CFD-GEOM. This includes creating additional geometry to form a topology and the topological

refinement process to easily refine the grid at a later date. The grid consists of 90x75x41 grid lines

comprising 263,440 cells. The final algebraic grid at the centerline is shown in Figure 9. Once the

initial set-up is complete small modifications to the geometry or grid distribution are essentially

instantaneous. For example using the CFD-GEOM software package the front spoiler can be rotated

(Figure 10) to any angle and the corresponding geometry and topology which are effected is

automatically updated in seconds (using an SGI Indy with R4600 processor). Although the initial

time to set-up the topological structure is sometimes intimidating, an experienced user can use the

advantages of the topology to easily and quickly modify the grid with instantaneous updating.

The strength of the elliptic method is the ability to obtain a smooth internal grid

"automatically," reducing the need of the CFD engineer to pay quite so much attention to the grid

topology. The weaknesses are that an initial grid is needed to begin the process (usually an algebraic

grid), the CFD engineer must play with some clustering parameters to obtain a suitable grid, and the

solution of the elliptic differential equations is CPU intensive and dependent on the grid size. An

elliptic method has been applied to the algebraic grid of the B-1A Escape Capsule for comparative

purposes.

Figure 11 shows the resulting elliptic grid obtained for the escape capsule. To converge
the final elliptic result (using an in-house CFDRC elliptic grid solver using the methodology of

Shieh 13) takes approximately an hour on an IBM R6000 workstation. To obtain the proper

clustering functions before obtaining the final result also takes some time. In general it takes 3 to 4

tries to find the proper clustering mechanism. In certain instances (for example at the capsule wing

tip) the clustering functions and surface distributions need to be locally refined which takes some

more time. For this particular case it took approximately 2 hours to obtain the proper clustering.

Additional time is necessary to obtain the initial guess. In this case the final algebraic grid in Figure

9 was used, although if an elliptic method was desired from the start, the set-up time could probably

have been reduced in half. The biggest disadvantage of this method is that to make a small geometry
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changerequiresre-computationof theelliptic equations(anotherhour). If the grid is increasedin
size thesecomputationalrequirementsincrease. If the sizeis increasedby ordersof magnitude
computermemoryrequirementscanalsobecomeanissue.Thus,thismethodbecomesinefficientif
aparametricanalysisor grid refinementstudyis required.

Unstructured: Advancing Front

The strength of all unstructured techniques is that the applied CFD engineer does not have to

set-up a grid topology, thus it is less user intensive. Once the geometry is defined the engineer

specifies some controlling parameters and engages the unstructured grid method. The weaknesses of
the unstructured method are the difficulties in controlling the resulting grid in both cell size and cell

stretching primarily due to the difficulty in creating adequate background grids and developing

controlling mechanisms for complex highly-curved geometries, and the high CPU and memory

requirements for the algorithm. Progress has been made in 2-D cases for generic grid control in both

cell size and stretching. Recent results show that stretching up to 20:1 aspect ratio 23 can be robustly

achieved for arbitrarily complex geometries in the advancing front algorithm, however this is not

nearly enough in boundary layers. In 3-D m-directional stretching control has been achieved and

generalized stretching for complex bodies is possible using the methods of Reference 23, however,

sufficient stretching in boundary layers will be limited as in the 2-D case.

For comparative purposes an unstructured Euler type grid has been constructed for the B-1A

escape capsule. The structured grids created for the capsule are somewhat stretched near the surface
in the normal direction. For the unstructured grid this was not attempted. The resulting unstructured

grid, shown in Figure 12, contains -245k cells and took -3.5 hours to complete on an SGI R4400

computer. Note that the grid is suitable only for Euler computations. With CFD-GEOM, the set-up

time to define the capsule surfaces beginning with the Plot3D surface grid took approximately 5

minutes while the iterations to obtain the proper clustering took approximately 15 minutes. The

strength of the method is the minimal set-up time, however, the CPU to obtain the grid is

considerable. Additionally as the grid is refined the CPU requirement increases significantly and if

the grid is refined by orders of magnitude the computer memory requirements become an issue.

Unstructured: Advancing Layer/Advancing Front

To combat the inability of the Delaunay or Advancing Front Methods to create a suitably

stretched viscous grid, several researchers 17.1s,_ have used an Advancing Layer or Advancing Normal

approach to create semi-structured grids near boundaries and then merged this in an "automatic"

way to an Advancing Front methodology when stretching requirements are reduced. The type of

grid typically produced using this method is shown in Figure 13. Sometimes the quadrilateral near

boundary elements are sub-divided to obtain a purely triangular grid.

The strength of this method, as in the pure Unstructured methodology, is the limited amount

of user set-up. However, the computational requirements are s011 significant. In Advancing Front

regions they are similar to the CPU requirements quoted above. In Advancing Layer regions the

CPU requirement is less extensive, although the memory requirements are similar to the Advancing
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Front requirements(muchlarger than for a structuredgrid) dueto the indirect indexingof the
createdcells. The biggestweaknessof suchan approachis if small changesare madeto the
geometry or grid refinement is required the algorithm must be re-engaged,a significant
computationalexpenseif aparametricanalysisis required.

Hybrid: Structured Algebraic/Unstructured Advancing Front

The use of purely Unstructured methodologies, such as the Advancing Front method, reduces

greatly the amount of work a CFD engineer must do to obtain an initial grid. However, the speed and

limited memory requirements with which algebraic (including Advancing Layer/Normal techniques)
structured grids require and the speed with which the grids can be updated is extremely attractive for

parametric analysis. Thus, the hybrid grid approach can take advantage of the best of the structured

and unstructured methodologies. Additionally the hybrid grid method is ideally suited for the Parts

Library concept described in Section 6. The near wall structured grids can be saved in a library with

the geometry and pieced together. Then the automated unstructured methodology is used to fill in

the gaps. A good example of this type of technique is given in Section 6, which demonstrates the

advantages of the Hybrid grid methodology along with the Parts library concept.

8. CFD-GEOM: CURRENT STATUS

CFD-GEOM is an interactive geometric modeling and grid generation software package with

fully integrated multi-block structured, unstructured and hybrid grid generation capabilities. CFD-

GEOM is targeted towards the CFD end-user; the main goal is to enable a non-expert user (in

geometric modeling and grid generation) to interactively create a moderately complex model

relatively easy. CFD-GEOM uses the Motif graphical user interface environment in conjunction with

the IRIS/GL and OPEN/GL graphics libraries to support compatibility across many different

workstation platforms.

The philosophy of CFD-GEOM is that a single grid generation methodology is not suitable

for all applications, as such different grid generation methodologies must be supported within the

same software environment. In addition the geometric modeling capabilities are entirely based on the

NURBS primitive allowing a CAD environment to develop geometry within the grid generation

software. The focus of the overall CFD-GEOM software design is to fully integrate geometric

modeling and various grid generation technologies into one data base. Thus, all geometric data,

structured grid data, and unstructured grid data share a common data base and as such are completely

linked together. The linking facilitates automatic database updating when any piece of the database

is changed. These changes can include geometry changes or grid (density/distribution) changes. For

example if a geometric entities shape is changed, immediately the effect of this change, and the

number of other entities which are affected, is noticed throughout the rest of the database. Since the

scope of the change in the database is known, only those parts of the database changed are updated.

This facilitates the ability to update the minimum amount of information necessary. This

communication throughout CFD-GEOM facilitates the instantaneous updating demonstrated in

Figure 10. Additionally this software design allows for easy implementation of new technologies into

the pre-designed data base.
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The CFD-GEOM environmentcurrently supportsNURBS basedgeometricmodeling
capabilities,algebraicmulti-blockstructuredgrid generation,multi-blockunstructuredadvancing
front grid generation,andhybridmulti-blockstructured/unstructuredgridgeneration. Eachof these
functionaloperationsis incorporatedintoa commondatabaseallowingchangesof anykind to be felt
immediatelythroughoutthe database. The functionalityof eachoperationresemblesseparate
softwarepackagesalthough they are fully integrated. For example,the geometricmodeling
capabilityof CFD-GEOMcanbeusedasa simpleCAD packageirrespectiveof thegrid generation
capabilitiesandthegrid generationcapabilities,bothstructuredandunstructured,can be used without

the geometric modeling capability through IGES. Additionally a set of CFD-GEOM models can be
stored into a virtual parts library and subsequently merged at wiU. This allows a user to create

separate geometries and grids and mix and match them to form a new model. CFD-GEOM also

filters all entity duplication between merged models, during IGES or Plot3D reading and at creation.

Specific geometric modeling capabilities within CFD-GEOM include: NURBS based toolkit

to interactively define points, (poly) lines, arcs, free-from curves and surfaces; NURBS curve creation

using arcs, splines, point-tangent, point revolution and point extrusion; NURBS surface creation

using ruled, extruded and revolved surfaces; Interactive NURBS curve and surface modification by

interactively modifying the control points and weights; Automatic intersection of curve and line sets

including multiple intersections; Automatic intersection of surface sets up to all available surfaces

simultaneously including multiple folded surfaces.

Specific topological and structured grid generation capabilities within CFD-GEOM include:

Edge creation composed of single or multiple curves; Face creation from a set of 4 edge sets or

directly on a NURBS surface; Block creation consisting of single or multiple faces sets; Block

compositing to form a single composite block from a block set; Topology editing to re-orient a

single block or to re-orient an entire connected block structure based on a single blocks orientation;

Automatic grid updating when mesh density/distribution is changed; Edge Linking by point number,

point distribution or both allowing the user to specify how changes propagate through the grid;

Boundary condition identifiers to allow the flow solver to identify the location and type of boundary

condition for a specified entity; Interactive definition/alteration of mesh point distribution; Multi-to-

one connectivity for 2-D and 3-D blocks.

Specific unstructured and hybrid grid generation capabilities include: Automatic 2D/3D

advancing front mesh generation; Source controls including point, line, curve, area and surface

sources; automatic or manually controlled stretched cartesian background grids for grid control;

General grid smoothing; Interfacing to structured mesh blocks for hybrid mesh generation.

Additionally certain operations can be completed on any entity including translation and

rotation with automatic database updating, duplication and translation, and duplication and rotation.

These functions in combination with the general curve and surface editor allow the user to make

changes in the geometry (or add to the geometry) with immediate database updating, a capability

specifically designed for large parametric analysis projects requiring a large number of small design

changes.

Figure 14 shows a multiple, differing diameter pipe intersection created within the CFD-
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GEOMenvironment.A key featureof CFD-GEOMis theability to arbitrarilyorganizegeometry
and/orgrid entitiesinto parts. Eachpartcanbearbitrarilymanipulatedandplacedwithin anyCFD-
GEOMmodel. For example,thepipesectiontear-off,shownin thelower left handcomerof Figure
14, canbe rotated180degreesandgluedbackto the mainmodelas shown. Other globalpart
operationsinclude translation,scaling, rotation and duplication. Additionally arbitrary shape
modificationscanbemadeby manipulatingNURBScontrolpointsor orderedmodificationssuchas
faceextrusionor rotationcanbecompleted.

9. CONCLUSIONS

Based on comparisons between the various structured and unstructured grid generation

methodologies it is apparent that one methodology is not universally suited for all problems. Couple

this conclusion with the fact that a particular flow solver capability may only be available for a certain

type of grid (ie. structured grid flow solvers are typically richer in physical models than unstructured

flow solvers) and it is apparent that a single grid generation methodology is currently insufficient for

CFD applications. Additionally, it is absolutely essential that the grid generation process incorporate

advanced CAD geometric modeling capabilities to aid the CFD engineer in large parametric analysis

projects. These realizations have led to the development of the CFD-GEOM geometric modeling and

grid generation software system. The design of CFD-GEOM incorporates full integration between

geometric modeling, structured grid generation, unstructured grid generation, and hybrid grid

generation which allows for automatic and efficient database updating and the development of parts

libraries. The software is specifically designed to aid the applied CFD engineer in large parametric

CFD analysis projects.
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Figure1. Thebaseconfigurationof the3-elementairfoil case

Figure2.Thescaledversionsof the slatandflappartscomparedto theoriginal

Figure3. Structured grid surrounding the slat and flap parts. Both geometry and grid are saved
in a library.

outer bounds),
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Figure 4. The common outer boundary for each series of slat/flap parts

415



,/
\

/ I , b\

Figure 5. The unstructured grid that fills in the gaps between structured grid parts

Figure 6. Interchanging of

unstructured grid
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Figure7. Exampleof slat rotationandunstructured grid re-computations with no additional

user input
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Figure 8. Multi-block topology of half of the B-1A escape capsule and the surface grid
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Figure9. Algebraicgridof theB-1A capsulecenterline

Figure10. An exampleof a geometrymodification(spoilerrotation)andimmediategrid update
usingCFD-GEOM'sstructuredgriddingcapabilities
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Figure11. Elliptic grid attheB-1A capsulecenteriine

Figure12. Unstructured grid of the B-1A escape capsule
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Figure 13. Type of grid produced from an advancing layer/normal type grid generator 25

Figure 14. CFD-GEOM interface with a sample geometry and grid

420



SOFTWARE SYSTEMS (1)

421



,!



N95- 28749

THE NATIONAL GRID PROJECT: A SYSTEM OVERVIEW

Adam Gaither, Kelly Gaither, Brian Jean, Michael Remotigue, John Whitmire,

Bharat Soni, Joe Thompson

NSF Engineering Research Center for CFS

Mississippi State University, MS

John Dannenhoffer

United Technologies Research Center

East Hartford, CT

Nigel Weatherill

University of Wales

Swansea, UK

INTRODUCTION

The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is

being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Compu-

tational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of

US industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of

time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids

to enable computational field simulations for applications in industry. [1]

A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms:

structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and

are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a

structured grid provides for trivial identification of neighboring points by incrementing coordinate indices.

Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and

hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured

grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and

neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera
(overset) grids are intersecting or overlapping structured grids.

The NGP system currently provides a user interface that integrates both 2D and 3D structured and

unstructured grid generation, a solid modeling topology data mangement system, an internal Computer

Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language,
and a grid/solution visualization system.

GRAPHICAL USER INTERFACE

Designing and implementing a consistent graphical user interface (GUI) is a key element in ensuring

that the grid generation process runs smoothly and effectively. For this reason, a great deal of thought has

been put into determining the requirements under which the GUI must perform, the design by which the

requirements are maintained, and the implementation through which the technology may be transferred to
the user.
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Requirements

Creatinganenvironmentfor usersto comfortablyinteractwith technologyis thekeypriority in creating
a usablegrid generationsystem.Ensuringthat theenvironmentis suitablefollowsfrom closelyadheringto
thefollowingrequirements:

• Consistency is perhaps the most critical requirement to maintain. This extends to the presentation

of the technology as well as the look and feel of the GUI.

• A logical organization of technology has been maintained to present the information in a familiar
manner to the user. This is accomplished by examining the function or process for which the GUI is

designed, and organizing the process into tasks and subtasks.

• Efficient use of screen real-estate is an absolute necessity. Because current technology allows only

a relatively small amount of two-dimensional screen space, careful consideration is given to the layout

of the GUI.

• Ease of use is the facet of the GUI that ensures user acceptability or, more often than not, if the GUI

is difficult or cumbersome to use, complete loss of information and inability to achieve user satisfaction.

• Tailoring the system for user interaction is a way to always keep in mind the technology that is

being presented and the platform on which it is implemented.

• Extendibility of the system allows growth with both the technology and the intended user audience.

It is a requirement from the initial design phase to allow for adaptability in every aspect of the system.

Design

Having established the design requirements for the grid system, it is imperative to adhere to these

requirements when completing the design phase. The design of the system can be thought of as consisting

of six physical components and a seventh more abstract concept. The six physical components are the menu

bar, the global actions, the global settings, the application palette, the message buffer, and the draw screen.

A picture illustrating the layout of these physical components is shown in Figure 1.

The menu bar is designed to logically present the tasks and subtasks required to perform a high level

process and can be found across the top of the GUI.

The global actions seen in the top right corner of the GUI are those top level functions that are required

to complete the given task.

The global settings are designed to be information holders and are found in the space directly beneath

the global actions. This global information consists of information that each task or subtask is going to

require to complete the higher level process.

Expanded beneath the global settings is the application palette. Each task in the menu bar is con-

sidered an application, and when the user wishes to open an application, this is the space designated for its

expansion. Expanding or opening a task allows it to become the active application. Because of the design

of the system, only one application may be the active application at any one time. The application consists

of actions and settings. The GUI is designed to be event driven, and therefore waits to be notified of an

event that has occurred in the system. Each event in the system travels through one pipeline, and an event

monitor polls the event at the end of this pipeline to determine which type it is. If the event is an application
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event,the eventmonitor notifiesthe activeapplicationthat an eventhasjust occurred. The notification
takesplacethroughthe useof a designated"handshake"routine. WhentheGUI is created,eachapplication
is forcedto registera routinethat will serveasits "handshake"routine. Oncethe GUI hasgiventheeventto
the"handshake"routine,it no longerhascontrol. It is thenup to the applicationto decidehowto proceed.

A messagebuffer is providedin the lowerright cornerof the GUI to providefeedbackto the user.
It is designatedto be non-obtrusive,just giving the usera textual indicationof the actionsthat arebeing
performedandthosethat havebeencompleted.

Thedraw screenmakesup theremainingportionof theGUI. This is thespacereservedfor all graphical
input andoutput. The draw screenis designedto behighly interactiveallowingthe userto interfacewith
geometriesandgridsvia themouseandkeyboard.All interactionbetweenthe userandthe GUI mustoccur
usingeitheror both theglobalandapplicationsactionsandsettings.The actionsaredesignedto respondto
a mousepresson the button, and to a keypressof the registeredmnemonicfor that action. The mnemonic
is registeredwhenthe GUI is createdand maynot be changed.All invocationsof action mnemonicsmust
takeplaceby typing the letter with thekeyboardwhile the mouseis insidethe drawscreen.Thesizeof the
drawscreenthat is shownis what the userseeswhenthe systemis initially invoked.A full screenfacility is
designedto allow the userto get a largerview of the itemsthat arebeingdisplayed.Interactionwith the
globaland local actionsis maintainedwhile in full screenmode,but any userinteractionwith the global
andlocal settingsmust becarriedout whenthe screenis displayedin its regularsize.This occursbecause
the globalactions,globalsettings,applicationactions,applicationsettings,and the messagebufferarenot
seenwhenthe drawscreenis full size.Thepageupand pagedownkeyson the keyboardareusedto toggle
betweenthe regularscreensizeandfull screensize.

As a moreabstractconcept,user interaction must alsobeaddressedduring the designphase. User
interactionincludesmouseinteractionand graphicaldisplay. Carefulconsiderationis madeto allow for
consistentbehaviorboth in tile mouseand in the interactionwith the draw screen.The mouseis ,forthe
exclusivepurposeof carrying out transformations and of acting as a pointer to a piece of information in the

draw screen. Any textual interaction is completed through the combined use of the keyboard and settings.

The graphical display is laid out in such a manner that user interaction is the primary focus. Several levels of

display quality are provided to facilitate the need for user interaction and for the production of high quality

pictures. These levels are maintained through the combined use of the resource file, and the view increase

and decrease actions in the global actions space. The resource file is a user editable file that contains X

Windows and Motif based descriptions of several components of the system. The user may either edit the

file outside the system, or inside the system with the use of the resource editor. Several views may be set

up and are each given a unique integer id. The views may consist of properties such as color, line thickness,

display quality type, etc. These views may be displayed by typing the view number in the draw screen space
and then pressing either the view increment or view decrement action. If there is no number in the numeric

argument setting, the current view number is either incremented or decremented depending on the action
that was invoked.

Implementation

The NGP system employs the above design requirements, and is implemented in C using X Windows

and Motif as the interface builder, and mixed-mode GL on the Silicon Graphics workstation as the graphics

language. As OpenGL[2] becomes readily available, the system can be easily ported and then will become
available for use on a variety of workstations.
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SOLID MODELING TOPOLOGY DATA STRUCTURE

ThefundamentalNGP datastructureis calledthe Grid TopologyModel (GTM)[3]. The GTM is based
on a BoundaryRepresentation(B-Rep)radial edgenon-manifoldsolidmodelingtopologydatastructure.J4]
B-Repdatastructuresareextensivelyusedin currentcommercialCADsystemswheregeometricconnectiv-
ities arean important aspectof geometricmanipulations.The datastructureprovidesexplicit connectivity
informationbetweenall geometricandgrid entities,andabstractstheuserfrom underlyinggeometricorien-
tations. This abstractionprovidesa setof algorithmsthat simplify the grid generationprocessby allowing
the userto ignoreorientationwhenbuildingmulti-volumeunstructuredgrids,multi-blockstructuredgrids,
or whenchanginggrid controlparameterssuchaspoint distributions.J3]

The fundamentalform of surfacethat is usefulfor grid generationis a non-manifoldsurfacethat can
beaccessedfrom N adjacentvolumesand K adjacentsurfaces.For structuredgrid generation,four-sided
surfacesmust beused.For geometrymodelingand unstructuredgrid generation,multi-sidedsurfaceswith
holes(trimmed surfaces)canbe used.The GTM providesthe capabilityto readin trimmedsurfacesand
providethe sametopologicaloperationsasfour-sidedsurfaces.Figures2 and3 showthe originalgeometry
andthe trimmed result.

TheGTM isdesignedusingasetof requirements formulated through interaction with the grid generation

and CFS practitioners in the NGP consortium. The following is a list of the basic goals met by the GTM:

• A foundation for general grid generation: Includes 2D and 3D structured, unstructured, hybrid

and chimera (overset).

• No grid point duplication: Grid points on shared geometries are not duplicated. Duplicating grid

points causes wasted memory and holes or gaps between domains due to numerical inaccuracies.

• Explicit adjacencies between volumes and surfaces: Adjacencies between geometries and grids

are explicitly defined. This enables multi-block point-point matching, point-point mismatching, full-

face interfaces and partial-face interfaces. Access methods are available to provide adjacency, grid and

orientation information to grid generators, elliptic smoothers, and CFS solvers.

• Abstraction from geometric orientations: The user does not have to keep track of block or surface

orientations when building a grid.

• Propagation of grid control information: The user has the ability to propagate grid control

information (number of points and point distributions) in a computational direction within a multi-

block topology. The system also verifies that the propagated information is consistent throughout the

grid.

• Geometry verification: The user is graphically prompted if the current geometry configuration is

ready to be used for grid generation. Gaps, holes or overlaps where surfaces do not meet (within a

user-specified tolerance) are indicated.

• Semi-Automatic Boundary Detection (Blocking): A set of algorithms detect bounded regions

for both structured and unstructured grid generation.

• Composite Edges and Faces: Composite edges and faces allow for partial-face matching in multi-

block structured grid generation.
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A hierarchyof topologyandgeometryelementsdefinesthe classesof informationcontainedin theGTM
datastructure.Eachlevelof the hierarchyrepresentsa levelof abstractionbetweengeometryandadjacency
elements(Figure4).[3]

All adjacentelementsin the GTM aredirectly accessiblevia pointers(Figures5 and 6). Searchingis
limitedto traversinga doubly-linkedcircularlist with lengthequalto thenumberof adjacentelements.Grid
generationapplicationsutilize the adjacencyelementsto storeand accessgrid pointsonsharedgeometries.
CADutilities utilizetheadjacencyandgeometryabstractionelementsto determinedegeneracies,orientations
andadjacency.[3]

GEOMETRY ENGINE

All geometryin the NGP systemis representedby Non-UniformRational B-Splines(NURBS)[5-9].
Someof thereasonsthe NURBSrepresentationis chosenfor the geometricaldatabaseareasfollows:

Unified Mathematical Model: NURBSallowonemathematicalform to representboth analytic
and freeform shapes.Thusthe systemcanrepresentsuchshapesas conicsections,quadrics(cones,
cylinders, spheres, etc.), and surfaces of revolution as well as free form sculpted surfaces with a single

homogeneous database. The ability of NURBS to represent both analytic and free form surfaces with

a single mathematical model is of particular importance because it simplifies coding of algorithms and

reduces maintenance requirements on the geometry engine. A single data type can be used to represent

all possible geometric entities within the system, and a single suite of evaluation and manipulation
routines can be used to interact with them.

• Generality: NURBS offer the user flexibility to design a large number of shapes.

• Efficiency: NURBS evaluation algorithms are reasonably fast and numerically stable.

• Geometric Interpretation: NURBS can be interpreted geometrically. This allows designers with

limited knowledge of the mathematics of curves and surfaces, but with a good knowledge of descriptive
geometry, to create desired shapes with ease.

• Local Control: The property of local control allows relatively small areas of a curve or surface to be

modified without affecting the entire spline,

• Affine Invariance: NURBS are invariant under affine, perspective, and parallel transformations (e.g.
scaling, translation, rotation, shear, etc.).

Geometry File I/0 Capabilities

Exchange of geometry data with third party CAD systems is accomplished in NGP via IGES files which

comply with IGES version 5.1 [10], but also includes the NASA IGES standard [11]. In addition to reading

and writing IGES files in ASCII form, files compressed with the UNIX /bin/compress utility or the gzip

utility can also be read. Other file formats which can be used for exchanging geometry information include

Gridgen database files [12] and formatted, unformatted, and binary Plot3D [13] files. Discrete curve and

surface data such as those in Plot3D files, Gridgen .dba files, and IGES entity 5001 are fitted with a linear

or cubic NURBS spline [8].

The Internal CAD System

Unlike other contemporary NURBS-based grid generation systems such as ICEM [14,15], NGP generates

surface grids directly on the NURBS patches [16]. This feature allows surface grids to retain a high degree
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of fidelity to the original geometrydata; however,it alsorequiresa high quality CAD model in order to
producegoodgrids. The modelshouldnot containanyunwantedgaps,overlaps,or intersectionsbetween
surfaces.Theprimaryfunctionof the internalCAD systemis to allowthe userto construct,modifyand/or
repair imported geometryin preparationfor meshgeneration. Modelsimported from traditional CAD
systemsgenerallyrequiresomedegreeof modificationin orderto makethem suitablefor usein the grid
generator.Themodificationsmaybeassimpleasdeletingunwanteddetailsor ascomplexasreconstructing
largeportionsof the model. In either case,the CAD systemprovidesthe userwith a rich set of tools to
accomplishthe task. In addition,manyconstructiontoolsareprovidedwhichenablecomplexobjectsto be
createdfrom scratch.

TheinternalCAD systemconsistsof nineindividual applicationsgroupedaccordingto thefunctionality
they contain.The buttons,toggles,andnumericfieldswithin eachapplicationarearrangedin a waywhich
givestheuservisualcuesto functionalitybygroupingfunctionstogetherwith their input and/or optionfields.
Theapplicationsareasfollows:Points, Vectors, Curves 1, Curves 2, Surfaces,Blocks, Utilities, Edit,
and GM Util.

Point Operations--The point is used in construction of vectors, curves, and surfaces, to designate end

points or control information. The point can be created in any application, but other useful operations are

grouped in the Points application. These operations include averaging of points, total distance between

points, angle between three points, and the closest point on a curve or surface.

Vector Operations--The vector is also used in construction of curves and surfaces and to designate slope,

direction, or axis information. The vector can be created in any application by two points or a point and

the components. The Vectors application allows the functions to calculate the normal and tangent vectors

on a surface or the tangent vector for a curve. A vector direction can also be reversed.

Curve Operations--The CAD system provides both curve construction and modification/repair functions.

The most used functions are located in the Curves 1 application while lesser used creation functions are

located in Curves 2. These curve functions consist of: 1) conic sections (circular arcs, circles, ellipses,

parabolas, and hyperbolas). 2) spline curves (interpolation through points), 3) basic curves (lines, quadratic
curves, and cubic curves), 4) averaging curves, 5) offset curves 6) splitting curves, 7) unioning curves, and

8) intersecting curves.

Surface Operations--It is generally necessary to modify an existing CAD model to correct for defects

before it can be used for mesh generation. The functionality outlined below attempts to minimize the

time and effort required to render a given set of surfaces usable for grid generation. Unlike the curve

functions, all the surface construction functions are contained in a single Surfaces application. The following

surface operations are available: 1) blending/ruled surface (two curves), 2) Transfinite Interpolation (TFI)

surface (four curves), 3) degenerate TFI surface (three curves), 4) sweeping (one curve along another), 5)

extruding (curve along a vector direction), 6) revolving a curve, 7) carpeting (projected TFI surface over a
surface network)[17], 8) averaging, 9) extending or extrapolating, 10)intersecting surface with surface, 11)

intersecting curve with surface, 12) splitting, 13) unioning, 14) smoothing (Smooths a surface according to

curvature [5]), 15) reparameterizing, and 16) surface from cross sections.

Most of the above operations are exact in that the result is computed directly from the NURBS form of

the given information. Exceptions to this are the carpet surface and surface from cross sections.

Utility Functions--The Utility functions are generic functions that can be performed on any NURBS
curve or surface. These can be grouped into three categories: 1) transformations (translations, rotations,
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scaling,and mirroring),2) projection,and3) extraction.

AUTOMATIC BLOCKING

One of the most labor-intensive tasks associated with generating a block-structured grid is the creation

of a framework of edges, faces, and blocks which together define what is known as the block structure. It is

not uncommon for the generation of this block structure to consume well over half of the labor associated

with any grid generation problem. Clearly, techniques for efficiently generating such block structures have

the potential to increase the utility of block-structured grids into arenas which today are treated with overset
or unstructured grids.

Basic Approach

The basic idea behind the automatic generation of block structures is to shift the user paradigm from

one which is prescriptive to one which is descriptive.

In a prescriptive process, the user has a set of low level tools which prescribe exactly how the problem is

to be solved. Examples of these low level tools include drawing a line in space to serve as an edge of some

block, generating an edge which is constrained to lie along a certain input surface, and connecting four edges

into a face. While control at this level is certainly very powerful (and sometimes indispensable), it is clear

to see that the labor associated with such an approach grows very rapidly, especially in configurations with
multiple interacting components.

Alternatively, a descriptive process describes what the grid should look like. Example descriptions i,iclude

the fact that the grid should wrap around the wing leading edge, that the inboard portion of the wing grid

_+hould lie on the fuselage, and that the store grid should lie within the wing grid. With this approach, the user

could employ a divide-and-conquer approach, where the grid in the vicinity of each component is described

separately, and the automatic blocker worries about interacting them to achieve an overall block-structured

grid.

Tile key to being able to describe a block-structured grid is the development of a block-structuring lan-

guage of some sort. In the current work, a graphical language composed of objects called cubes, wraps,

attaches, holds, rulers, and spacers is used. (More details on the specifics of this language can be found in

another paper in these proceedings [18].)

Integration with NGP

As described above, the NGP system is composed of a large number of applications which execute

independently, but which share the data which describes the configuration and grid. A key to integrating

an automatic blocker into such a system is determining how and when the blocking procedure should be

executed and on which data the blocker should operate.

An overall view of the grid generation process suffices to answer the first question:

* define the configuration, including any repair (to fill gaps, etc.) and augmentation (such as generating

a far-field boundary) which is required to define a water-tight domain;

• develop a block structure, including specification of required number of grid points in each region, any
user-specified spacings, etc.;
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• generatethe grid on the block structure, enforcing any grid controls specified above; and

• visualize and inspect the grid and either loop back to one the steps above to repair it or output it for

use by a flow solver.

Clearly, an automated blocker should be executed after the configuration is defined but before the grid is

generated.

The answer to the second question is not as straightforward. It is useful to think about two independent

topologies within the grid generation process:

• the first is the topology of the configuration, which was essentially prescribed by the interrelationships

of the surfaces and curves which define the configuration. The topological information contained here

is generally of the form "the west edge of surface A is coincident with the north edge of surface B", or
"curve C is formed by the intersections of surfaces D and E". This topological information is crucial

for determining the structure and connectivity of the inputs.

• the second is the topology of the block structure, which prescribes the interrelationships of the edges,

faces, and blocks which together define the block structure of the grid.

While there are certainly some correspondences between these two topologies, one in general does no¢ want

the configuration topology to constrain the block structure topology to any great degree. So in essence,
the automatic blocker's job is start with an original (configuration) topology and to create a new (block

structure) topology.

This is accomplished with the following procedure:

1. if the current topology is not a block-structure topology (that is, one generated in step 3 below by a

previous execution of the automatic blocker),

• then, save (in a file) a copy of the current (configuration) topology

• otherwise, restore the (configuration) topology which was previously saved (in the file);

2. provide graphically-driven commands for the user to create the blocking objects (cubes, wraps, attaches,

holds, rulers, and spacers) which describe the block structure;

3. create a new (block structure) topology within NGP which corresponds to the edges, faces, and blocks

of the automatically-generated block structure; and

4. remove the original (configuration) topology from the system. Note that this step does not delete the

curves and surfaces which define the configuration, but rather the topological information on which

the block-structured grid generator will execute. (That is, we only want the block-structured grid

generator to execute on the new (block structure) topology.)

Note that the first step, which involves the saving and restoring of the original (configuration) topology,

is needed so that the automatic blocker always executes on a configuration topology.

One final note: it was stated above that control at the very detailed (low) level is sometimes indispensable

for the generation of a suitable grid. This control can still be exercised within NGP by using the low-level
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toolson the new(blockstructure)topologybeforethegrid isactuallygenerated;theonly potential problem
whichonerunsinto whendoingthis is that theselow level "tweaks"will be lost if the automaticblockeris
re-executed(sinceis will againstart with the "saved"configurationtopology).

STRUCTURED GRID GENERATION

Thestructuredgrid generationcapabilitiesin NGParebasedon the GTM datastructure.Thisexpedites
thegenerationof both2Dand3Dsystems.Theuseof the topologicalentitiesof thesystem(i.e. edges,faces,
and blocks)to managethe grid informationfor eachdomain,allowsthe grid points to bestoredonceand
beusedonasmanyadjacententitiesthat sharethesecommonpoints. Thesesharedpointsaredetermined
by the topologicalcreationof the facesandblocksin the domain.

TopologicalDefinition

All NURBSsurfacesareautomaticallyidentifiedastopologicalfaces.Other topologicalfacesarecreated
in a Right HandedSystem(RHS)from the wireframedescriptionautomatically,throughthe connectivity
providedby the GTM datastructureor the boundingcurvescanbemanuallyselected.A recursiveDepth
First Search(DFS)is usedto find all possiblenon-degeneratethreeandfour curvecyclesin a setof curves.
Thesefacesdonot haveanygeometryassociatedwith themother thanwhichcurvescomposetheboundary.

Thetopology-basedblockingalgorithmalsousestheconnectivityinformation provided by the GTM data

structure to detect O-grid and H-grid blocks. A DFS algorithm is also used to find all possible three and

four surface cycles that have valid end caps or the faces can be selected manually. Once a topological block

has been detected, the surface orientations are flipped until a valid RHS is detected.

With the topological mapping of the edges, faces, and blocks, partial face matching is allowed by the

construction of composite edges and faces. Composite edges are obtained by the concatenation of a series of

edges into a single string of grid points, and composite faces are generated by the topological "hnking" of
the sub faces into a single consistent set of faces.

Point Distributions

With the domain decomposition done in conjunction with the GTM, setting the number of points and

setting spacing requirements is simplified by the propagation abilities implied by the data structure. The

number of points applied to an edge of a face is automatically propagated to the opposing edge of the face.

Through the connectivity the number of points are propagated to all other edges that lie in the same com-

putational direction. Point distributions can be set on a single edge or propagated to a series of selected

edges at the appropriate endpoints. The system also allows the user to specify interior distributions on an

edge at selected points specified by the user, or by the detection of discontinuities. The topological mapping

also allows spacings to be matched at vertices of connecting faces in a 2D system or for connecting blocks in
a 3D system.

Surface Grid Generation

Three types of surfaces are present in the grid generation system, NURBS surfaces, Four Curve Surfaces

(FCS), and Composite Faces.

NURBS Surfaces--All meshes generated on NURBS surfaces are calculated in the parametric space of

the underlying geometry to ensure the accuracy of the grid generation process. [16] Transfinite Interpolation

(TFI) with arclength based interpolants is used to calculate the grid points in parametric space.
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Four Curve Surface--TFI is used to generate the free form mesh for a FCS. This mesh can be projected

onto a network of NURBS surfaces, thus creating a grid carpet.[17] Figure 7 depects a typical carpet grid

spanning over surfaces patches of a shuttle canopy.

Composite Face--A composite face surface grid is created by the logical mapping of the grid points of

the surface grids that compose the face into a single set of points.

Any modification of the edges automatically marks the adjacent faces as "dirty" and are regenerated. If

any of the sub domains of the composite face are changed, the composite face surface grid is automatically

updated to reflect the alteration.

Volume Grid Generation

Volume grid generation is done on the blocks throughout the field using the 3D TFI routine. Each block

is gridded individually, sharing common face, edge, and vertex points between blocks. Volume grids can also

be generated through the use of Hypgen.

Hyperbolic Grid Generation--The hyperbolic grid generation algorithm is used to generate a 3D volume

grid by marching away from an initial surface definition with a given initial step size and a stretching
function in the normal direction. This is accomplished by solving the 3D hyperbolic grid generation system

of equations (two orthogonality relations and one cell volume constraint).[19] Solving this system of equations

allows for nearly orthogonal grid generation with excellent clustering control, and can generally be generated

in orders of magnitude less computer time than elliptic methods. The method does not, however, allow

outer boundary location to be precisely specified, and any discontinuities of the original surface tend to be

propagated into the volume field.[20]

Hyperbolic grid generation is available in NGP through the use of the NASA Ames developed Hypgen

hyperbolic grid generator. In cooperation with NASA Ames, Hypgen has been integrated into NGP as a
subroutine to the overall structured grid generation. The system now allows for several hyperbolic gelds to

be generated at once, or several grids in series, if different control settings are required for each block. Once

the hyperbolic grid has been generated, the information from the block is stored in the same data structure

as the rest of the system, including the five faces, eight edges, and four vertices created by the hyperbolic

grid.

Elliptic Grid Smoothing

Elliptic smoothing is available in both the 2D and 3D systems in the form of surface and volume smoothers.
FCSs are not smoothed as a single entity in the 3D system, but are smoothed in the volume smoothing.

These faces are smoothed in two ways. First, if the face is shared by two blocks, a "sandwich" volume

between the two blocks is created and that volume will be smoothed to keep the face updated with the

interior. The second form of smoothing is performed if the FCS is a boundary face. The user sets the face

to a sliding point condition, which will allow the points to float in accordance with the volume grid.

2D Elliptic Smoothing--To achieve slope continuity between regions, edges shared by two regions are

smoothed by extracting the points for the edge and a strip of points from each adjacent face. Only the

interior of the "sandwich" is smoothed, thereby adjusting the original edge to provide better continuity

between faces. Vertices completely enclosed by regions are smoothed using a similar approach to receive

continuity at the abutting of regions in the interior of the field grid.

Surface Elliptic Grid Smoothing--For 3D surface grids associated with NURBS surfaces, two smoothing
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techniquesareavailable.Thefirst beinganalgebraicadaptivemethodto uniformly smooththe arclength
distributionof the grid in theparametricspaceof the surface.This techniqueis usefullywhena surfacewith
an initially estrangedparameterizationis encountered(seeFigure8).

The secondmethodof smoothingemploysthe elliptic solveron the parametricvaluesof the NURBS
Surface.Oncethe parametricgrid hasbeenadjustedby the elliptic solver,the parametricvaluesare re-
evaluatedto givethe newX,Y,Z points. Boundaryconditionsapplicablefor the NURBSsurfacesmoothing
areasfollows:Fixed,NeumannOrthogonality,or GrapeOrthogonality.

Volume Elliptic Grid Smoothing--To achieve slope continuity between blocks, faces shared by two blocks

are smoothed by extracting the points for the face and a plane of points from each adjacent block. Only

the interior of the "sandwich" is smoothed, thereby adjusting the original face to provide better continuity

between faces. Edges and Vertices completely enclosed by blocks are smoothed using a similar approach to

receive continuity at the abutting of blocks in the interior of the field grid.

UNSTRUCTURED GRID GENERATION

Unstructured grid generation follows the same steps as the structured grid generation. First the boundary

curves are specified, the surface grids are calculated, then the volume grids are calculated. The only difference

between structured and unstructured is that the domain does not have to be decomposed. The user only

has to determine a vahd boundary of curves for 2D, or surfaces for 3D, prior to starting the grid generation
process. In 2D, the user can manually pick boundaries and specify them, or use an automated feature that

will detect the inner and outer boundaries of a configuration. In 3D, a set of fully connected surfaces is all
that is needed.

Support is available for single and multiple domain 2D and 3D unstructured grid generation, parametric

surface grid generation and multi-curve surface creation (where only curves are needed to build an unstruc-

tured 3D surface grid). Currently, both the Delaunay and Advancing Front methods are used for both

surface and volume generation. These methods differ only in the point insertion criteria since both use the

same boundary recovery technique as described in [21]. The points are automatically generated using the

boundary point spacings to define the interior distribution and number of points. Boundary integrity is im-

posed by triangle and tetrahedra transformations. The implementation of the unstructured approaches are

well documented in [21,22]. Figure 9 shows a Delaunay unstructured grid on region of the trimmed gasket.

Figure 10 is an Advancing Front solution on the same region. Using these methods provide extremely efficient

grid generation for very large problems. Most grids for super-computing scale solutions can be generated
interactively on mid-range engineering workstations.

2D Grid Generation

2D unstructured grid generation entails that the user specify planar curves that form an outer boundary

and any number of inner boundaries. Currently, these curves must be on the XY plane. Once the geometry is

built, the user must build loops to identify the outer and inner boundaries (a single button push). Once the

boundaries are identified, the user must indicate the number of points on each boundary, point distributions,
point sources and/or curve sources in the field.

Surface Grid Generation

To retain the accuracy of grid points on a surface, unstructured surface grids are calculated in the

parametric space of the underlying geometry. [21] The generation of an unstructured grid on a surface is
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definedby two independentvariablesU andV. This allowsthe grid to becomputedin a square2D space
then mappedbackinto arbitrary 3D spaceby evaluatingthe UV valuesinto XYZ values.This mapping
is dependenton the shapeof the surfaceandits underlyingparameterization.For degeneratesurfaces(a
surfacewith oneor moreedgesthat collapses to a point) it is necessary to modify the shape of the parametric

space.

Parametric Problems on Surface--Unfortunately, the parametric distribution on the underlying surface

may not be optimal for grid generation. Currently NGP uses a mapping technique developed at McDonnell

Douglas as part of their in-kind contribution to NGP. However, these mapping functions cannot solve all of

the problems with parametric skewing in the grid. The ultimate answer (yet to be implemented) is to iterate

between physical space and parametric space as it is done in the structured grid generation system.

Sources

Point sources and curve sources control the size and density of grid points in a specified area or volume°

Sources are available both on surfaces and in the volume. A source specified on a surface effects both the

surface and the volume grid. The sources can be specified directly from a solver to enable grid adaptation

through the paradigm. Point and curve sources are associated with vertex and edge topology elements

respectively. A user-specified number of point sources can be placed on a curve (in parametric or physical

space) in the same manner grid points are placed on an edge.

Source effects through boundaries--Currently, a source placed near a boundary has no effect on the

boundary. Many problems are caused by this including rapid change in element size and extremely skewed

elements. To offset some of the effects of the problem, boundary elements have priority over point source

elements. This ensures that the boundary grid is consistent adjacent to geometry (for at least the first

element width). However, this is only a temporary fix, the obvious answer to this problem is to let the effects

of a source "pass through" the boundary. In 2D, the source would effect both boundary grids (edge grids)

and any multi-domain regions on the other side of the boundary. In 3D, the source would effect edge grids,

surface grids, and any other multi-domain region within the sphere of influence of the source.

Multi-domain Unstructured Grids

In some problems it is necessary to define multiple regions, surfaces and/or curves within a field that

must have grid points associated with it. Tools are available to the user that allow surfaces or curves in the

interior of a grid domain to be marked as "transparent". This allows the grid generation algorithm to fix

points on the original surface or curve, while building tetrahedra or triangles on both sides.

Surface Defined by Arbitrary Curves in Space

Another feature of the 2D unstructured grid generation is the ability to build a 3D curved surface from

a set of curves in space. This is extremely useful for capping open boundaries with an arbitrary surface

definition where otherwise the original geometry would have to be cut to enable capping with four sided

surfaces. Another useful feature for this type of surface creation is building planes of symmetry where a

complicated geometry (such as an airplane) needs to only include half the geometry. Instead of making the

outer boundary out of tens (or hundreds) of small surfaces, the user can simply define a few large surfaces

for the outer boundary, and an arbitrary surface for the symmetry plane. The only restriction is that the

multi-curve surface definition can only be created if the surface is singular (non-overlapping boundaries).
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VISUALIZATION

Overthe pasttwodecades,significantprogresshasbeenmadein thelevelsof physicalrealismthai :an be

incorporated in the numerical simulations of fluid flow. At the same time, slow but steady progress has been
_nade in increasing the range of geometrical complexity which can be accomidated. This has been achieved

through a combination of grid types, including block-structured, unstructured, and hybrid grids.

Currently the vast majority of labor hours in a typical CFD study is consumed in the grid generation
phase. This is primarily because the closed-form solutions do not exist for flow fields around complex con-

figurations and numerical techniques have to be used, thus requiring grid generation techniques to discretize

the given domain. The process of generating a grid can be thought of as a set of iterations cycling through
the following steps:

• Specify: The various "inputs" needed to generate a grid are prepared in this step. Examples of

typically required inputs are grid topology, stretching factors, and numbers of points in various regions.
By its very nature, this step is interactive.

• Generate: The actual grid points, their locations, and their interconnections are generated in this

step. Because of its compute-intensive nature and its relatively long computation time, this step is
usually performed in a batch mode.

• Evaluate: The user then needs to determine if the grid meets the requirements set by the expected

flow physics and the flow solver which will be used. As with "specify", this step is interactive in nature.

Much effort has been expended in reducing the total time needed to generate grids. Some of the efforts

has been centered on seamlessly integrating the above steps, resulting in the production of grid generation

systems such as EAGLEView [24], GRIDGEN [12], GRAPEVINE [25], and ICEM [14,15].

Current grid evaluation techniques fall into two groups. The first involves the stand-alone computation

of "grid-quality" measures, allowing the user to assess the local goodness of the grid. The second set of

grid evaluation techniques is aimed at producing visual representations of the grid and possibly its quality

measures. Unfortunately, to date insufficient effort has been focused on techniques for the rapid and effective

interactive evaluation of grids in their various stages of generation. Such interactivity is essential for providing
information about the grids in a way which can enable the user to correct or improve the grid with the
ava[table grid tools.

Hence, the goal of the present grid visualization system is two-fold: first, to provide a suite of techniques

for effectively assessing the quality of block-structured, unstructured, and hybrid grids; and second, to ensure

that the techniques can be used during the grid generation process as an aid in assessing the validity of the
operations performed thus far.[26]

Design Considerations

The design of the techniques presented here was driven by two considerations: what questions would the

user like the system to answer, and which visualization tools convey the answers to those questions most
succinctly.

The questions which the user is likely to ask include:
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• Hasthe grid beengeneratedin the correctregionin space?

• Are thereparts of the grid wherethe grid pointsareeither unacceptablycloseto or far from each
other?

• Are there local areasof the grid whichhaveproblems?If so,whereare they andmorespecifically,
whatarethe problems?

• What arethe causesof the problem(s)andhowcanit (they) be fixed?

• What is theoverallqualityof thegrid andis it valid to progressto the nextphase(i.e.,surfacegrid to
volumegrid to field solution)?

The selectionof an appropriate set of visualization tools was guided by examining those used in other

systems and identifying weaknesses. The major shortcomings identified included:

Information overload: Many grid systems are not discriminating about what is displayed. Wire

frame displays of grids, even those which employ advanced techniques such as depth-cueing and motion,

are extremely hard to decipher.

Information deficit: The current systems do not "point out" to the user the problems which exist

in a grid. Many CFD projects have been sabotaged by bad grids which did not get discovered until

after the flow solver engineer labored intensively over the problem.

Lack of context: There are really three problems here. First, most current techniques do not give

the user an effective frame of reference; once the user is alerted to the problem, it is hard to determine

exactly where the problem is and how it interacts with the configuration. Second, they do not show
the interrelationships between the various grid quality measures which may be locally important. And

third, the techniques which are used separate the display from the discrete nature of the grid cell data.

Iso-surface plots of grid quality only convey that there is a problem, but not why there is a problem.

Difficult to learn: Because most systems are nonintuitive, they have an extremely long learning

curve.

Visualization Hierarchy

Analysis of the above questions shows them to be hierarchical in nature, thus leading naturally to a set
of visualization tools which are also hierarchical. The following sections describe a specific hierarchy of grid

visualization and analysis tools used to not only demonstrate the quality of a grid, but to allow the user to

specifically isolate the area or areas of the grid that are causing problems. Making up the hierarchical tree

of evaluation are qualitative tools which allow individuals to determine the basic overall quality of a grid by

inspection, quantitative methods to flag areas of numerical interest, and grid browsing techniques to step

into and through the grid and view the areas of interest. This visualization hierarchy is intended to act as

a three-stage process for determining the quality of a grid, with each level portraying a more localized and

detailed set of information.

Qualitative Evaluation--The qualitative evaluation stage is intended to assess the overall placement of

grid points, both for block-structured and unstructured grids. Since at this initial stage in the analysis, only

grid points (and not their connections) are important, a visualization tool called a point cloud was developed.

This visual display is created by placing a small point on the screen at each grid node. An example of an

unstructured point cloud is shown in Figure 11.
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The simplicity of this display technique offers two distinct advantages. First, because of the absence of

grid lines, the screen is relatively uncluttered, especially as compared with previous visualization techniques;

this is very important for unstructured grids which heretofore have proven difficult to visualize. Second,

the interactive speed of pans, zooms, and rotates is high enough so as to make "motion" of the display an

effective means of extracting the three-dimensional nature of the grid.

Because this technique is fast, and because it has been included "on line" within the NGP system, any

deficiencies which are discovered with this tool should be fixed before continuing on with the grid generation
process.

Quantitative Evaluation--The next, more in depth, evaluation stage is quantitative evaluation. Here,

the objective is to elicit from the system quantitative measures of grid quality. Of course, there is no single

measure of quality but rather a set of mutually interacting measures such as skew and stretch. The relative

importance of each of these measures can only be assessed in the context of the flow solver which is to be
used.

The need to present complex, mutually-interacting data is not unique to grid visualization, or even to

scientific visualization as a whole. A particularly clever solution to this problem, the weathermap, has been

developed by meteorologists. On one screen, this can convey information such as the general weather patterns
as well as the location of critical weather areas.

By analogy, a grid weathermap can be used to tell the user "at a glance" what the overall quality metrics

of a grid are and in particular which areas of the grid need improvement. This is done in the present work

by the superposition, on the graphics screen, of:

node-based grid quality measures- Certain grid quality measures are node-based, that is, they

are defined to be valid at a given node. Examples include the ratio of maximum-to-minimum volumes

of elements attached to a given node or the number of edges incident at a node. Specific examples

are described below. Nodes whose quality measure fall outside some user-specified tolerance band are

displayed as a color-coded symbol (the color indicates which quality measure is out of bounds). In

addition, it has been found to be useful to connect neighboring nodes which exceed the threshold with

the appropriate grid lines.

cell-based grid quality measures - Other grid quality measure are valid for a grid cell. Examples

include the skew of a cell; again specific examples are described below. The cells whose grid quality

measures exceed the user-specified thresholds are drawn directly. Using this technique, not only are

"out of tolerance" areas of the grid highlighted, but by showing the shape of the offending cell(s), the
user is better able to determine the cause of the problem.

the configuration - This gives the user a sense of context, that is where the problems are in relation

to each other and to the critical parts of the given geometry. This too aids the user in isolating the
cause of the problem.

It is a specific strength of the design of the weathermap technique to allow users to both adjust the tolerance

of the given measures as well as add any new measures which are appropriate to a specific field solver.

Grid Browsing and Querying--Once an area has been identified as being critical, methods are needed to

view and analyze the behavior of the cell and the nodes in that region. This gives the user a method for

understanding the problem and hence its cause. Many techniques have been tried, but most are confusing.
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Current techniques generally do not give the user a direct three-dimensional view of the data, but rather

require the user to mentally assemble a three-dimensional view from a series of two-dimensional slices.

The visualization tool which was developed here to browse block-structured grids gives the user an

actual three-dimensional view of an i, j, or k-plane of grid points by constructing a three-dimensional model

of the grid cells adjacent to the selected plane. This is accomplished by superimposing opaque, lighted

representations of the bottoms and sides of the appropriate cells, thus creating an image which looks similar

to an egg carton. By viewing into the cells, the user can get a realistic view of the shape of the cell aud its
size relative to the neighbor. With the addition of motion parallax (via interactive zooming, panning, and

rotating), the three-dimensional nature of the cells is even more apparent.

An additional difference between the current and traditional techniques is that the new technique au-

tomatically extends the grid plane in the current block logically into its neighboring blocks. In this way,

the user gets a direct sense of the entire grid, that is not a block-by-block snapshot. Of course, sometimes
the user wants to examine a block which has been graphically disconnected from its neighbors. In order to

accomplish this, the user has the ability of exploding the grid; this is analogous to the exploded (or assembly)

view which is often found in service manuals.

A similar visualization technique is applicable to unstructured grids. The difficulties here are the lack

of grid planes; so instead, one must substitute a plane in physical space to select the cells to display. Also,

determining which face to not show so that a user can look into the cell is not as easy as it was in structured

grids. For these reasons, the e99 carton has not yet been implemented for unstructured grids.

For both block-structured and unstructured grids, the user can query the system for information through

a simple graphical pick. The information returned to the user consists of the identity and attributes (location

and quality metrics) of the picked entity, as well as the identity and attributes of all entities connected to

it. This operation can be applied recursively to form progressively larger shells. The numerical information

returned by the querying mechanism has proven to be extremely useful in debugging some of the grids which

have been generated to date.

SUMMARY

The various components of the NGP system have been presented and can be summarized as follows:

The user interface is designed to be easily customized, extended and ported to a variety of workstation

hardware platforms. The entire interface environment can be modified by the user either interactively

through the interface, or through "resource" files. New applications can be added with minimum

effort. X-windows/Motif is used to enhance portability due to its availability on several types of

hardware platforms. The same global metaphors are used for user interaction throughout NGP to

ensure consistency between applications.

The data structure is based on a Boundary Representation (B-Rep) radial edge non-manifold solid

modeling data structure for both surface and grid topology. All geometry and grid connectivities

are explicitly defined. The user is abstracted from the underlying geometry orientation, and a set of

algorithms is provided that simplifies grid generation, surface interrogation and geometry construction.

The Computer Aided Design (CAD) system uses a Non-Uniform Rational B-Spline (NURBS)

geometry representation. Geometry can be imported into the NGP via the Initial Graphics Exchange

Specification (IGES), discrete XYZ's or can be created by the internal CAD system. Geome_r'/read

into the NGP system is converted to a NURBS representation. CAD tools are available within the
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system that allow the user to build or modify points, curves and surfaces. An important feature of

the CAD system is the ability to lay a "carpet" surface over several surfaces to fix defective geometry
definitions having gaps and overlaps between surfaces.

The automatic blocking system provides a suite of tools for quickly generating the set of edges,

faces, and blocks which define the framework for a block structured grid. This block structure is

automatically generated given just an abstraction of the configuration, simple blocking commands

(such as wrap a grid around the wing leading edge), and other descriptive information (such as the

number of points in various regions and any reguired clusterings). Block structures generated with this

technique generally require about an order of magnitude less labor to generate than is required by the

traditional constructive techniques used in other block structured grid generators.

The structured grid generation system enables the user to create both 2D and 3D structured grids.

Surface grids are calculated in the parametric space of the underlying NURBS. Both surface and volume

grid generation are available for 3D, and planar grid generation is available for 2D. Automated face and

block detection algorithms allow the user to concentrate on building the blocking structure around a

complex geometry without the burden of having to define face-to-face and block-to-block orientations.

Elliptic smoothing across domains is available on the surfaces and in the volume.

The unstructured grid generation system enables the user to create both 2D and 3D unstructured

grids using both Delauney and Advancing front methods. All surface grids are created in parametric

space on the NURBS. 2D grid generation uses wire frame geometry while 3D grid generation uses

surface geometry. Automated loop detection is available for 2D grid generation and surface trimming.
Surface and volume grid smoothing and optimization options are also available.

The visualization system provides diagnostic feedback on the quality of the grids and selected CFS

solutions calculated on the grids. A number of viewing options are available for both structured and

unstructured grids. Plane sweeping through multiple blocks, egg-carton and weathermap options are

available for structured grids. Point cloud and weathermap options are available for unstructured grids.
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Figure 2: Untrimmed geometry of gasket.

Figure 3: Trimmed geometry of gasket.
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Figure 7:101x41 carpet grid over network of shuttle surfaces.
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Figure8: Originalgrid andalgebraicadaptiononcanopy/fuselageconfiguration

Figure9: Delaunay unstructured grid on gasket.
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Figure 10: Advancing front unstructured grid on gasket.

Figure 11: Unstructured pointcloud on inlet configuration.
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SUMMARY

This paper describes a new three-dimensional structured multiple-block volume grid generator called
3DGRAPE/AL. It is a significantly improved version of the previously-released and widely-distributed program

3DGRAPE, with many of the improvements taken from the grid-generator program 3DMAGGS 1. It generates
volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-hand-side terms are
designed so that user-specified grid cell heights and user-specified grid cell skewness near boundary surfaces
result automatically, with little user intervention. Versatility was a high priority in this code's development, and
as a result it can generate grids in almost any three-dimensional physical domain. Improvements include added
kinds of forcing functions, improved control of cell skewness, improved initial conditions, convergence
acceleration, the ability to take as input the output from GRIDGEN, and a simple but powerful graphical user
interface(GUI).

INTRODUCTION

The original program, 3DGRAPE 2 ,3, of which 3DGRAPE/AL is an updated version, is a batch-type
program. It reads in pre-defined input data, generates the grid, and writes it out. For those boundary surfaces
which are of interest (i.e., the body) it expects to read X,Y,Z coordinates of surface grid points which the user has
pre-defined using other software. Other boundary surfaces of less interest (i.e., the outer boundary) can be found
by the program itself using simple analytic shapes. The grid can consist of multiple blocks, and the program is
capable of finding its own intemal block-to-block boundary surfaces. Volume grid points are found by
numerically solving the Poisson equations. The Steger & Sorenson (S&S) Right-Hand-Side (RHS) terms (i.e.,
forcing functions) in those equations are of a type which allows the user to choose the desired cell height on a
read-in boundary, after which the program automatically finds the actual numerical values for the RHS terms
which yield the desired cell heights. In the process the RHS terms attempt to give local near-orthogonality in the
region of those same read-in surfaces. The cell heights the user requires may be of any magnitude (limited only
by the precision of the computer), appropriate for both viscous and inviscid aerodynamic flow modeling. The
input data is ordinary text, with required formatting. The output grid may be any of three formats, including the
commonly used PLOT3D 4 formats.

All the features described above for the original program are preserved in the new program, and a
significant suite of new features is added. Those new features include:

• Grid quality is enhanced by re-formulated Steger & Sorenson (S&S) control terms in the Poisson
Equations. The user may specify arbitrary angles with which lines are to intersect boundaries, rather than
that specification being limited to 90 ° everywhere. The treatment of sharp comers which transverse
boundary surfaces (e.g., a grid wrapping around an airplane fuselage which has a strake) is improved
using this capability.

• Another improvement to grid quality is the addition of Thomas & Middlecoff (T&M) clustering terms for
cases where all six faces of a block are read-in, as found in GRIDGEN and 3DMAGGS. The user can
choose either the Steger & Sorenson terms (as in the original code and improved as described above), the
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Thomas& Middlecofftypeterms,or a blending between the two which gives good cell-size and
skewness control at both the boundaries and the interior.

• Grid quality is evaluated by computing and printing maxima, minima, medians, and averages of cell
heights and non-orthogonality, at boundaries and in the interiors of the blocks of the finished grid.

• Initialization is improved by Trans-Finite Interpolation 5 (for cases with six fixed boundary surfaces). In
some cases grids initialized thusly can serve as the final grid, in others this improved initialization speeds

convergence.

• Erlich's Ad Hoc Method for computing locally optimum relaxation parameters is available for the code's

SOR solver. This also can accelerate convergence

• When installed on CRAY computers the code is vectorized in all three coordinate directions, allowing the

longest possible vector length in each block. This, too, accelerates convergence.

• The grid generation iteration schedule can be divided into pans. Parameters which effect convergence
(such as relaxation rates), as well as the type of clustering terms used and their associated decay rates, are
adjustable with each part. Intermediate solutions and restart files can be written after each part. Thus, in
practical operation, as much can sometimes be accomplished in one run with this program as in multiple
runs with other grid generators.

• An input filter called PREGRAPE/AL, taken from 3DMAGGS, is supplied as a companion program. It

inputs the output from the GRIDGEN 6 code, which contains blocking strategy and surface grids, and
turns that into input for 3DGRAPE/AL.

• Required cell heights and skewness at read-in surfaces can be specified by the user at each point from a
file. One possible application of the ability to specify the skewness at each point is in hypersonic flow
where in the exit plane near the shock the flow is aligned with the shock and so should be the grid, while
in that same face near the body the grid should be aligned with the body surface, and the angles are

blended in-between.

• A complete grid generated elsewhere can be read-in, and the elliptic solver can be run a few steps to
smooth the grid.

• A Graphical User Interface, coded in FORTRAN-77 and calling the IRIS Graphics Library, allows the
user to watch selected grid surfaces while the grid solver is iterating. A full suite of transforms and other

features is included.

The code is written in FORTRAN-77. It can be installed as an ordinary batch program, and in that form it
should run on almost any computer. Alternately, on a Silicon Graphics Inc. (SGI) workstation it can be installed
along with its graphical user interface. The GUI is also written in FORTRAN-77, and calls functions in the IRIS
Graphics Libra_j. For compiling on a CRAY supercomputer there is a vectorized batch version.

THEORETICAL DEVELOPMENT OF THE POISSON EQUATIONS IN PHYSICAL SPACE

The original 3DGRAPE program, the 3DMAGGS program, and the new 3DGRAPE/AL program all
generate grids by iteratively solving the Poisson Equations in three-dimensions. A mapping is thus found

between the computational coordinates _,rl,_ and the physical coordinates X,Y,Z. The equations are typically

given in the computational space as

_xx -t- _yy "t- _zz----

Ylxx -t- rlyy -I-rlzz-" Q(_,Y_,_)

_xx + _yy "b _'?zz--R(_,YI'_)

(la)

(lb)

(lc)
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However,it isnaturalto applythemin thephysicalspace.It isnaturaltospecifythegridboundary

conditions by giving X,Y,Z at fixed values of _,rl,_ rather than to give values of _,rl, _ at fixed values of X,Y,Z.
The transformation of Eqs. l tO physical space proceeds as follows. Clearly, we must have

(2a)

(2b)

= _(x,y,z)
To effect this transformation we must also have

(2c)

x = x( ,rl, ) (3a)

y = v,c,rl, ) (3b)

z = z( ,rl,i
Differentiating Eqs. 2 and applying the chain rule gives

(3c)

_x _y _z

---- qx fly qz

;x ;y ,t_ 7

Likewise, differentiating Eqs. 3 and applying the chain rule gives

(4)

OX

dy
dz

x_

= y_

z_
We designate the 3 x 3 matrix in Eq. 5 as M, assume
by M - 1. This gives

.w

x_ x_ -_,-

Y_ Y_ drl

zn z; 2_.

that its inverse exists, and pre-multiply both sides of Eq. 5

(5)

M-1 = (6)

Substituting from Eq. 6 into Eq. 4 gives
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Weknowthat,ingeneral,if

_x _y _z

= TIx Tly ]]z

_x _y _z

A_= B_

f7)

(8a)

and if B -1 exists then

Therefore it must be true that

B-1Av=v

B -1 A=I

(8b)

(8c)

Pre-multiplying by B gives

Applying Eqs. 8 to Eq. 7 gives

A=B

_x _y _z

M-1 = TIx Tly Tlz

For this to be useful, we must find M "1 . It is known, in general, that

(8d)

(9)

A_I= Adj(A) _lo)
Det(A)

Where Adj(A) is the adjoint of A and Det(A) is the determinant of A. The adjoint of A is a matrix having as each
element the corresponding cofactor of A. Thus, from Eq. 9, we have

_x _y _z i_11_¢12_131

I /

lqx qy TIz = []t21 ]t22 ]t23_J

_x _y _z IT31]t32](33|

where _j is the ij-th cofactor of M and J is the determinant of M. By inspection of Eq. 11 we see that

(11)

_x = ]tl 1/J (12a)

_y-- ,Yl2/J (12b)
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_z = _13/J (12c)

/'Ix = 721/J 02a)

fly = 72z/J (12e)

riz = 7231J ozf)

(x = 731/J

_y-- _/32/J (12h)

_z = ]t33/J (120

Completion of the derivation of the transformed Poisson equations requires further differentiating the
metrics in Eqs. 12, substituting them into Eqs. 1, and collecting terms. This process is simple calculus, but very
lengthy and beyond the scope of this paper. The result is

+ 2 ( 1212r'_r I + (X13r'_; + (X23r'n;) (13a)

= _j2 (PF_ + QF n + RF;)
where:

and

3

(13b)

(13c)

THEORETICAL DEVELOPMENT OF IMPROVED S&S RHS TERMS

The distribution of points in the grid results primarily from the influence of the Right-Hand Side (RHS)
terms, or forcing functions. We are free to choose them as we please. In both new and old programs they are:

P(¢,ri,¢) = Pi(q,¢)e-a¢ + P2(rl,¢)e-a(_m_-¢)

+ P3(_, ¢)e -an + P4(_, ¢)e -a(nm_'-n) (14a)

+ Ps(_,rl)e-a¢ + P6(_,rl)e-a(¢m_,-¢)
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Q(_,TI,_) =

+

+

Ql(rl, _)e -a_ + Q2(rl, _)e -a(_m_-_)

Q3(_, _) e-arl + Q4(_, _) e-a(rlm_x-q)

Qs( , TI)e-a; + Q6(_, TI) e-a(_m_-_)

(14b)

R(_,rl, _) = Rl(rl, _)e -a_ + R2(rl, _)e -a(_m_x-_)

+ R3( _, _)e -al] + R4(_, _)e -a(rlmax-l]) (14c)

+ Rs(_,rl)e -a; + R6(_,TI)e -a(_m_-_)

Clearly, these RHS terms P,Q,R are simply superpositions of other terms Pn,Qn,Rn for 1<__<6, multiplied

by exponentials which are at their maximum value, one, at the boundary surfaces and which decay with distance
into the interior of the block. The positive constant "a" in Eqs. 14 is set by the user, and determines the rate of
exponential decay in the size and influence of the RHS terms.

At this point we must introduce a nomenclature for the face numbers. It is seen in Table I. By examining
that nomenclature we see that at each of the boundaries the terms in P,Q,R having their subscripts equal to the
face number are non-zero, and the other terms in P,Q,R approach zero due to the behavior of their exponential
factors. At face 3, for example, Eqs. 14 reduce to:

P(_,T1, _) = P3(_, _) (15a)

Q(_,rl, _) = Q3(_, _) (15b)

R(_,rl,_) = R3(_,_) (,5c)

So then we can find the terms Pn,Qn,Rn at face n by considering each face in tum. At each point on each face

we:

• Assume that the Poisson Equations, Eqs. 13, are satisfied.

• Find values for all first and second partial derivatives required by Eqs. 13.

• Eqs. 13 reduce to a 3 x 3 set of linear equations in the three unknowns Pn,Qn,Rn. Solve them.

Having found all the Pn,Qn,Rn, for 1<_.6, we can calculate P,Q,R at all points in the grid from Eqs. 14.

However, finding values for all first and second partial derivatives at each face is not trivial. To further
illustrate this we must restrict our attention to a particular face. We choose face 3 to illustrate. On face 3 the

derivatives r_, r;, r_, r_, and can be found by differencing known boundary face points. The derivatives

_ are found by differencing the grid solution at the current time step, as described on page 78 of Ref. 2. If we

could find derivatives _rl we could then difference them to find derivatives _ and _.

We find derivatives _rl by adding additional equations which embody the user's requirements on cell

height and skewness. In the old 3DGRAPE method we added the three equations

r_ . r_ -- 0 (16a)

rlq. _; = 0 (16b)
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(16c)

As seen in Table 1, _ and _ vary over face 3, and 1"1varies along lines intersecting the face. Thus Eqs. 16a and
16b require orthogonality between the lines intersecting the face and the coordinate lines running over the face.
Eq. 16c requires that the cell height on the surface be the positive constant S.

It is at this point that the old 3DGRAPE method and the new 3DGRAPE/AL method differ. In the new
method we realize that when making grids about real-world configurations, with singularities and slope
discontinuities, it is sometimes necessary to have grid cells which are skewed in a specified way. Lacking this
ability, an inconsistency can develop which can either cause the elliptic solver to not converge, or result in an
unsuitable grid. And so Eqs. 16 are replaced by

r_. ?rl = r_. [r_ cos01

= • cos0 
(17a)

(17b)

(17c)

where 01 is the angle between the coordinate line intersecting face 3 and the line of varying _ on face 3, and 02 is

the angle between the coordinate line intersecting face 3 and the line of varying _ on face 3. For 01 and 02 equal
to 90*, Eqs. 17 reduce to Eqs. 16.

We now proceed to solve Eqs. 17 for _rl. Expanding, we have

x_xn + Y_Yn + z_zn = c_ (18a)

x;x n + y;yn + z;zn = c 2 (18b)

x_ + y_ + z_ = S 2 (18c)
where

CI and c2 are constants because 0 1, 02, S, and the points on face 3 are user-defined inputs. Equations 18 are

three equations in the three unknowns x_,yrl,zrl which are the elements of _. But because Eq. 18c is quadratic,
solving this set of equations is not straightforward. We will make an assumption about one of the unknowns and
solve, make that assumption about another of the unknowns and solve, and then make that assumption about the
last of the unknowns and solve. We will then select the answer which is "best."

The first assumption we make is that xrl is a constant. Terms involving x 11in Eqs. 18a and 18b are
brought to the right side of the equations, and then the equations are solved, yielding

Y_= xn_'22/_'12 + kl (19a)

Zq= Xrl'Y32/ _12 -I- k2 (19b)
where
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C 1Z_ - C2Z_,

-'Yl2

K 1 and k2 are constants. Then from Eq. 18c

Xrl ----

-b + 4b 2 - 4ac

2a
(20)

where

a = 1 + (722/7_2)2 + (732/7_2)2

b = 21--_2k1712 + k2732)

c = kl2 + k22- S2

The second assumption is that Yl1 is a constant. Terms involving Yrl in Eqs. 18a and 18b are brought to

the right side of the equations, and then the equations are solved, yielding

Xn = Ynq'12/722 + kl (21a)

Z_ = Y_'_32/'_22 -b k2 (21b)

where

ClZ_- C2Z _

_¢22

C2X _ - ClX _

_22

Then from Eq. 18c

Yrl --

-b + _/b 2 - 4ac

2a

where

a = 1 + ("/,2/722)2 + (732/722)2

b = 22_2 k1712 + k2732)

and c is the same as above, in Eq. 20.

(22)
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The third assumption is that zrl is a constant. Terms involving zrl in Eqs. 18a and 18b are brought to the
right side of the equations, and then the equations are solved, yielding

XT1= ZTI'Y12/ 732 + kl

Yn = Zrl722 / 732 + k2

where

(23a)

(23b)

Then from Eq. 17c

Cly_- c2y_

where

-b + qb 2 - 4ac

Zrl = 2a (24)

a-- 1 + ('Y12/'Y32) 2 + (']/22/']/32) 2

b- -232(k1712 + k2722 )

and c is the same as above, in Eq. 20.

In general, none of these three assumptions is strictly correct. However, it usually turns out that at least
one of them is close enough to correct for this method to generate suitable grids. It was said that we would
choose whichever of these three solutions was "best." However, Eqs. 20, 22, and 24 each include an ambiguous
sign from a square-root operation. Therefore, we actually have six solutions to choose from. Using each of the
six solutions we compute the Jacobian. If the coordinates in the block are right-handed (with the "handedness"
being a user-defined input) we choose the solution which yields the largest positive Jacobian. If the coordinates
in the block are left-handed we choose the solution which yields the largest negative Jacobian. The logic behind
choosing based upon the Jacobian is that Jacobians, as defined above, having large absolute values seem to be
present in grids which are more orthogonal, and, conversely, Jacobians having small absolute values seem to be

present in grids which are highly skewed. Thus the elements of _rl are found.

The foregoing is the analysis for face 3. The analysis for face 4 appears identical, differing only in some
of the difference formulas. The analyses for faces 1,2, 5, and 6 follow in a straightforward manner from the
foregoing example.

This formulation for the S&S RHS terms requires a lot of computation but most of it is done only once, at
the start of the iteration schedule. It was said, above, that having all values for the derivatives at the face, those
derivatives are substituted into Eqs. 13, yielding a 3 x 3 set of linear equations in the three unknowns Pn,Qn,R n.

Their solution shows Pn,Qn,Rn to be linear functions of the second derivatives _'_ which are found by
differencing at each time step. The coefficients in those linear functions are fixed for all computational time.

Therefore, the only computation necessary to find the RHS terms in each iteration is to re-evaluate _ , re-
evaluate the linear functions to get Pn,Qn,Rn at each face, and then use Eqs. 14 to re-compute the P,Q,R at every
point in the grid.
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Theeffectivenessof thismethodisseeninFigure1. Whenwrappingagridaroundasharpedgeit is
necessaryto causethelinesintersectingthesurfaceneartheedgetobendtowardtheedgeforbestresults.The
ultimateexampleof wrappingagridaroundasharpedgeisto wrapit aroundtheedgeof aflatplate.Figure1
showsawingwithazero-thicknessextensionin thespanwisedirection,andaC-Htypegridaroundit. Thus,it is
necessaryto wrapaC-typegridaroundtheleading-edgeof thatwinganditsflat-plateextension.Thiswouldnot
havebeenpossiblewiththeoldtypeRHSterms.

THOMAS AND MIDDLECOFFCLUSTERINGTERMS

Whenmakinggridsin regionswhereall sixfacesof thecomputationalcubearefixedit issometimes
advantageoustouseclusteringfunctionswherethespacingnormalto afaceisdeterminedbythespacingonthe
sidewalls.TheThomasandMiddlecoff7clusteringtermsareincludedhereforthatpurpose.However,the
ThomasandMiddlecoffclusteringterms

P = (I)(V_. V_) (25a)

Q = _P(Vrl. Vrl) (25b)

R = n(V . (25c)

where

¢25d>

G
1]]-= _rl. _rl (25e)

are given in the computational space, and to be useful here they must be converted to physical space. Applying

the definition of the V operator, illustrated by

V_ = _j 4" _yk "I= _

A

where j, k, and ] are the unit normal vectors, and reducing, gives

p = a,( ax+ + 2z)
q = _(rl 2 + 1"!2 + 1"12)

R = n(¢2x + _2y .4= _2z)

Substituting the metrics shown in Eqs. 12 into Eqs. 27, and expanding and re-grouping, gives

(26)

(27a)

(27b)

(27c)
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v-_(_. _)(_;. _;)-(_. _;)]/j_

R- n[(_. _)(_. _)-A. _.)]/J2

(28a)

(28b)

(28c)

These RHS terms generate good grids in many applications. An exception is the situation where the
opposing side boundaries, from which the T&M terms are calculated, have very different clustering
characteristics. In these cases instabilities in the Poisson solver can result.

It was found in the development of 3DMAGGS that S&S clustering terms tend to give the most-nearly-
orthogonal grids near boundaries, while T&M clustering terms give the best clustering in the interior of the
blocks. And so a blending between the two kinds of RHS terms was developed, and is included in
3DGRAPE/AL.

OPTIMUM RELAXATION PARAMETER

3DGRAPE/AL solves the 3-D Poisson equations using Point Successive Over Relaxation (PSOR). In
PSOR there is a relaxation parameter, _, which determines the rate of convergence and stability of the method.
In the old program the _ was fixed for all computational time. That option is still available in the new code as
well. However, the new code also has an algorithm to compute an optimum relaxation parameter at every point in
the grid using the method of Erlich. 8

That method requires the equations being solved, here Eq. 13a, to be represented as a difference equation
of the following form:

alfj+l,k,i + aerj,k+J,l + a3rj,k,l+l

a4fj-l,k,, + a5_j,k-l,l + a6rj,k,l-, = 19j,k,,

aorj,k, 1 -b

+

Applying standard central differences to
we arrive at the form of Eq. 29, where

(29)

all first and second partial derivatives in Eq. 13a, and collecting terms,

-2[ o_1_1 (X22 _33_-/

1211 j2p
al - + (3oh)

(A_)_ 2/,_

(X22 -t- j2__QQ (30c)

a2 - (Arl)2 2At I

(30d)
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(X22 j2Q

a5 = (Arl)2 2Aq

(30e)

(30t")

0{33 J2R (30g)

a6 : (-A_)2 2A_

The complex eigenvalues of Eq. 29 at each point, ignoring wave numbers above 1, are

1_ "-- _r + _i-" 2(Yala4c°s •
71; + afa_a_cos

Jmax + 1 kmax + 1 (31)

+ £ff3a6c°s lmax+ 1

where Itr and I.ti are the real and imaginary parts of It, respectively. It is required that Ig_[( 1.

Continuing with Erlich's method, as formulated by Steinbrenner, Chawner, and Fouts on pages 6-6 and 6-
7 of Ref. 6 (with typographical errors corrected), we let

A- g2 + g2 (32a)

B = g2_ It.t? {32b)

C = A 2 - B 2 (32c)

D = A 2 - B (32d)

E = 4C + D 2 (32e)

F = _ (32f)

Then

0}=
(3D + E) F _ - (3D - E) F _/-E+D + A 2 + 3 B 2 -4 A2B (33)

A2D

and the relaxation parameter o) is

{-(_- I/_-2 + 4_)/2 if D )0 /o} = _(_ + 1{_-2 + 4_)/2 if D(0 / (34)

This method can reduce the number of iterations required to achieve convergence. The {o so computed
can sometimes be a little too large, and so cause instabilities. Therefore, in the code, they are multiplied by a

limiting factor. The default value of this factor is 0.7, but a value of {).6 was found to be necessary in one of the
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sample cases. These co are dependent on the grid at its current time step, and so they are re-calculated each time

step. As can be inferred from the above, computing them requires a significant amount of computer time, so the
code has an option wherein they are re-calculated every n time steps.

CURRENT AND FUTURE WORK

Extensions and improvements to 3DGRAPE/AL planned for the near future, or currently in progress,include:

Adding cylindrical topology -- solving in p,0 ,x -- to improve solutions about cylindrical axes, just as use
of spherical topology is offered to improve solutions about polar axes.

Write a translator to translate input for the old program 3DGRAPE into input for the new program
3DGRAPE/AL. This will make datasets used in the old program workable in the new program. Also, the
latest release of GRIDGEN, Version 9, can generate input to the earlier 3DGRAPE program, and so this
translator will provide an alternate pathway between the two codes.

We will try again to build multigrid into the Poisson solver. We tried once before, but did not succeed.
We know that in grids produced by this code the cell size increases in an approximately exponential
fashion with distance from a boundary, but we cannot predict exactly what that rate of increase in cell
height will be. Therefore, although we know the desired distance to the Ist node away from the
boundary, we cannot say, exactly, what should be the distances to the 2nd, 4th, 8th, 16th, etc., nodes from
the boundary. But we need those distances to operate at the various multigrid levels. And so we
estimate. But those estimates are not accurate. Thus, there are inconsistencies between the equations
being solved at the different multigrid levels, and therefore it does not converge. But we are determined
to build in a multigrid capability if at all possible.

Optimize the code to run faster on SGI machines, such as ONYX. Portability to other platforms will be
preserved.

Write a GUI for PREGRAPE/AL.

Put in a new boundary condition wherein the angles of lines intersecting a fixed internal boundary is
mimicked across that boundary.

Make a version of the code which uses PVM to run the code in parallel on multiple platforms.
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_Anax

varying

varying

varying

varying
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lqmax

varying

varying

varying

varying

varying

0.
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Figure 1a. Wing With Flat-Plate Extension in Both
Spanwise and Downstream Directions.

Figure 1b. View From Outboard End Showing Portions of Two
Interior Grid Surfaces Wrapping Around Wing and Extension
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Figure lc. Close-Upof Grid SurfaceWrappingAround
LeadingEdgeof Flat-PlateExtension
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AUTOMATIC STRUCTURED GRID GENERATION USING GRIDGEN

(SOME RESTRICTIONS APPLY)

John R. Chawner and John P. Steinbrenner

Pointwise, Inc.

Bedford, Texas

OVERVIEW

The authors have noticed in the recent grid generation literature an emphasis on the automation

of structured grid generation. The motivation behind such work is clear; grid generation is easily the most

despised task in the grid - analyze - visualize triad of computational analysis (CA). However, because 1) grid

generation is closely coupled to both the design and analysis software and because 2) quantitative measures

of grid quality are lacking, "push button" grid generation usually results in a compromise between speed,

control, and quality. Overt emphasis on automation obscures the substantive issues of providing users

with flexible tools for generating and modifying high quality grids in a design environment. In support of

this paper's tongue - in - cheek title, many features of the Gridgen software are described. Gridgen is by

no stretch of the imagination an automatic grid generator. Despite this fact, the code does utilize many
automation techniques that permit interesting regenerative features.

INTRODUCTION

Gridgen [1] is a software system for generation of 3D, multiple block, structured grids. The system

is comprised of two codes: Gridgen (see Figure 1), an interactive program that provides capabilities ranging

from geometry model import through volume grid initialization and analysis software pre-processing; and
Gridgen3D, a batch program for volume grid refinement. Gridgen is a monolithic program in the sense that

it consists of a single process and a single graphics window. Gridgen's window, however, is repositionable
and resizable. Gridgen also manages its own non-overlapping windows inside the main window. User

interaction with Gridgen is directed through text - based button menus activated via the mouse or keyboard

"hot keys". A 3D, graphical image of the grid is always present and may be easily panned, zoomed, rotated,
and otherwise customized by the user.

The manner in which grids are constructed using Gridgen is is based on a hierarchical paradigm,
beginning with the geometry model, and proceeding to curve, surface, and volume elements as shown in

Figure 2. The geometry model, provided as input to Gridgen, serves as the foundation for the hierarchy.

The user constructs curves which are in turn used to build the topological surface and volume components.

The grid for each of the hierarchical components is an implicit but separate part of the component. The

result of maintaining a distinction between the geometry model, the hierarchical components, and the grid

allows changes to be rapidly propagated either forward or backward throughout the grid system.

Users operate Gridgen in much the same manner as a product designer operates a computer aided

design (CAD) system. After importing the geometry model (database), the user draws curves (connectors),

assigns a number of points to each connector, and distributes those points along the connector using a

variety of distribution functions. The connectors are then selected as the boundaries of surface grids

(domains). Transfinite interpolation (TFI), elliptic partial differential equation (PDE), and hyperbolic

PDE methods are available for controlling the distribution of grid points on the domains. The domains are
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thenselectedasthe boundariesof volumegrids (blocks).Again,TFI, elliptic PDE, and hyperbolicPDE
methodsareavailablefor grid point controlwithin the blocks.Finally,the usersetsboundaryconditions
andexportsformatteddata for the chosenanalysissoftware.

Fromthe descriptionaboveit shouldbe apparentthat grid generationusingGridgenis a user-
in - the - loop task. Therefore,oneof the goalsof the softwaredesignhasbeento automate as much of

the grid generation minutia and bookkeeping as possible so that the user may concentrate on topology

and grid quality. This is made possible through Gridgen's data hierarchy. The data hierarchy maintains
the inter-relationships between the 1D, 2D, and 3D grid components (connectors, domains, and blocks,

respectively) so that the user's changes may be propagated up or down the hierarchy automatically. Some

of these automation tools are described in the following sections.

EXAMPLE GRID

Gridgen's automation features will be demonstrated in the context of grid generation for an external

automotive shape. This bluff body, described in Reference [2] and illustrated in Figures 3, 4, and 5, was

the subject of a wind tunnel test that studied its wake structure relative to the base slant angle. This
vehicle was also used as the basis for an evaluation of computational fluid dynamics (CFD) software for

automative shapes (Reference [3]). The blocking system and surface grids created using Gridgen are shown

in Figure 6.

DATABASE

Database is Gridgen's term for the geometry model of the object on and around which the grid

is to be generated. Gridgen's database capability is based mathematically on nth degree, rational, Bezier
curve and surface geometry. The database also includes relational data such as grouping, color, names,

etc. Since Gridgen is dedicated to the generation of hexahedral grids, the user's CAD software may be

used to create the database. Gridgen can import the database from several industry standard file types,

including those listed below.

• PLOT3D (bilinear surfaces)

• Patran V2.5 Neutral 1

• IGES 2

The bilinear database surfaces for the bluff-body grid were created from the drawings and tabular data

in Reference [2]. The surfaces in this particular database were stored in two files: one containing the five

surfaces for the fore- and mid-bodies, and one containing the four aft-body surfaces.

Gridgen offers several methods for placing grid points on the database including curves that may

be drawn directly on the surfaces ("Line on DB" and "Curve on DB" segment types), projection of curve

grids, and projection of surface grids. More importantly, Gridgen automatically maintains the adherence

of grid components to the database. This relationship between the grid and the database is maintained via
the database entity name. Each entity in Gridgen's database has a unique name and every grid component

1Packet types 32 and 33
2Entities 000, 100, 102, 104, 106, 110, 116, 124, 126, 128, '21'2, 308, 314, 402, 406, 408
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that adheresto the databasesavesthe nameof the entity and the databasecoordinates(seeFigure 7).
The utility of this feature is explained in the following paragraphs.

Gridgen provides several commands that allow changes to be made interactively to the database.
The entire list of database commands is listed below.

• Import • Export * Examine * Name

• Group • Ungroup • Reduce • Copy
• Delete • Translate • Scale * Rotate

• Intersect

When the shape modification commands (Translate, Scale, and Rotate) are applied by the user, all

of the grid elements adhering to the modified entities (as determined by the data stored in Figure 7) are
also modified automatically.

Changes to the grid based on parametric variations of the database can also be made in a "hands

off" mode. As before, let's assume that a grid for the 40 ° base slant has already been created and that we

wish to create a grid for the 20 ° base slant. Recall that Gridgen associates grid components with database
entities via the entity name. Our goal, therefore, will be to create a database for the 20 ° base slant case and

have Gridgen think that it's the same as the 40 ° configuration. In order to accomplish this it's important

to understand Gridgen's convention for naming database entities. For IGES files it's simple: Gridgen uses

the names stored in the file. For PLOT3D and Patran files, which don't contain entity names, Gridgen
constructs the name from a text string of the form basename-type-number where

basename is the basename of the file from which the entity was imported,

type is a descriptive term for the type of entity (e.g, psurface for a parametric surface),
number is the sequence number of the entity in the file

Since the user knows that a variation of the base slant angle will require new several aft databases, the

database files can be created ahead of time and named aftxx.net where the xx is the base slant angle, ie

aft40.net. When the baseline 40 ° case is first generated we copy the 40 ° database file to a generic file

cp aft40.net Aft.net

Then, the baseline grid will be generated with references to database surfaces called Aft-psurface-n and

the grid is saved to a Gridgen file. In order to generate grids for the other base slant angles the following
steps can be used.

1. Copy the 20 ° database file to the same generic name used for the baseline case, ie.

cp aft20.net Aft.net

2. Import into Gridgen the database files Body.net and Aft.net.

3. Import the Gridgen file that was created for the 40 ° case.

Since Gridgen doesn't notice a difference between the current and previous database configuration (ie, a

database entity called hft-psurface-1 has been imported and there are grid references to that entity) the
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grid is automatically regenerated in terms of the new database through the simple act of importing the
files. Therefore, with a little forethought, the user can parametrically change the shape of the database

without requiring significant grid rework. An example of this is shown in Figure 8 which shows how the

40 ° grid was changed into the 20 ° grid simply by importing a new database file.

CONNECTORS

The one dimensional grid element in Gridgen's data hierarchy is the connector. Each connector

consists of three sets of information: the 3D curve shape, the number of points on the connector (dimension),

and parameters describing the distribution of grid points along the connector.

The shape is defined interactively by how the user draws the connector. Each connector is made

up of one or more segments where a segment is a primitive curve type including those listed below.

• Line (a 3D polyline)

• Curve (a 3D cubic Bezier curve)
• Akima Curve (a 3D cubic Bezier curve with slopes defined via Akima's method)

• Line on DB (same as a Line but constrained to lie on a database surface)

• Curve on DB (same as a Curve but constrained to the database)
• Akima Curve on DB (same as an Akima Curve but constrained to the database)

• Circular Arc

• Conic Section

Mathematically, the segments are represented by cubic, rational, Bezier curves. This underlying similarity

allows the segments to be converted with a single Gridgen command from a Line, to a Curve, to an Akima

Curve, and even to a generalized Bezier segment as shown in Figure 9. The Bezier segment affords the

user the opportunity to edit the slope point of the Bezier control polygon. This flexibility is provided so

that the Gridgen user can create connectors with the desired shapes. Editing control points is only one of

Gridgen's connector modification commands which are listed below.

• Add Segment • Insert Segment • Erase Segment • Edit Control Points
• Translate • Stretch • Rotate • Project onto DB

• Split • Join

The user assigns a number of grid points (called the dimension) to each connector by either typing

a numerical value or by graphically picking a series of existing connectors and using the sum of their

dimensions for the current connector.

The distribution of grid points along the connector is defined by several parameters, some of which

are shown in Figure 10. Breakpoints are locations along the connector at which a grid point will lie and at

which the grid point spacing will be explicitly defined by the user. Breakpoints also divide the connector
into subconnectors. In each subconnector the user controls the number of grid points (subject to the total

connector dimension), clustering at each breakpoint, and distribution function type which may be selected

from this list:

• hyperbolic tangent • monotonic rational quadratic spline

• geometric progression • copied from other connector(s)
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Althougheachof the threeattributesof a connector(shape,dimension,distribution) arespecified
separately,they areall coupled.This allowsthe userto changeanyoneof the attributes and the other
twowill beupdatedautomatically. This coupling of the connector's attributes allows the user to edit the

grid without reworking the whole connector which can make the user much more efficient since creating

connectors is the most labor intensive task in Gridgen. This connector updating process occurs whenever

the database is modified (as described in the previous section). As will be shown in the following sections,

changes to the connectors are propagated automatically up the grid component hierarchy to domains and
blocks.

DOMAINS

Surface grids (domains) are created by the user's selection of the connectors that comprise the

domain's perimeter. 3 Any number of connectors may be used on the perimeter but they must be

arranged into four edges such that opposite edges have the same number of grid points (ie, the domain

must map into an I > J computational rectangle). Once the domain perimeter has been defined Gridgen

will automatically create the surface grid points by applying an algebraic grid method called transfinite

interpolation (TFI). This method uses the known grid point data _' = [ x y z iT on each connector (obtained

from each connector's grid point distribution) to interpolate _' at each interior grid point. Furthermore,
when Gridgen detects that all of the connectors used to bound the domain lie on the same database surface

the TFI algorithm will be applied automatically in the parametric space of the database surface. In this

case, parametric TFI uses boundary data of the form ff = [ u v iT where u and v are the parametric (domain

space) coordinates of the database surface (see Figure 7). This interpolation yields (u, v) coordinates at each

interior grid point which are then evaluated in terms of the database surface resulting in _"= [ x y z iT.

Parametric TFI ensures that the surface grid points will adhere to the database without any need for
projections.

This same type of auto-TFI logic is applied when connectors that belong to domains or the domains
themselves are modified. Domain modification commands include those shown below.

• Translate • Stretch • Rotate • Project onto DB

• Split • Join

The new connector shape change is used to re-TFI the domain surface grid automatically using

whatever TFI method was last applied to the domain by the user. This type of modification, where

changes propagate up Gridgen's data hierarchy (see Figure 2) is called forward editing.

Surface grid quality (smoothness, clustering, orthogonality) can be improved by application of

Gridgen's elliptic PDE techniques. Specifically, Gridgen solves Poisson's equation using an explicit, point-

wise, successive over relaxation (SOR) algorithm with optimal relaxation factors ([4]) subject to user

selected control functions. The elliptic PDE method is quite flexible and allows the user to apply a wide
variety of attributes, some of which are listed below.

3Gridgen can also create a domain by applying a hyperbolic PDE technique to a connector.
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• ControlFunctions
- LaPlace(smoothness)
- FixedGrid (smoothness)
- Thomas-Middlecoff(clustering)[5]
- Sorenson(orthogonality)[6]
- nilgenstock-White(orthogonality)[7] [8]

• BoundaryConditions
- Fixed
- Float
- Ortho

• SurfaceShape
- free
- fixed
- database

• NumericalSolution
- relaxationfactor

Oneof the mostimportant elliptic PDE attributesis the surfaceshape.This attribute in combi-
nationwith the control functionsallowsthe grid points to redistributethemselvesin orderto obtain the
desiredgrid qualitieswhilealsoadheringto the desiredshape.Of course,the mostimportant shapethat
usersneedto maintainis the shapeof surfacegridsconstrainedto thedatabase.Therearetwo techniques
with which Gridgencanmakegrid points adhereto the database.As wasthe casefor TFI, if Gridgen
determinesthat thesurfacegrid pointslie on the database,theelliptic PDEswill besolvedin theparamet-
ric space(u,v) of the database and the model space coordinates will be obtained from the known surface

shape _"= f(u, v) (parametric technique). The second technique for keeping grid points on the database is

a simple projection (conventional technique). Each domain being run in the elliptic PDE solver maintains

the database entities to project onto, and the projection orientation (which is computed automatically

by Gridgen). The advantage of the parametric elliptic PDE technique is that it's much easy to set-up

(no additional attributes) and it's much faster (no projections). Fortunately, Gridgen has automated the

application of the database surface technique. Specifically, when Gridgen detects that all of a grid point's

neighbors (those points used in the finite differences for solution of the elliptic PDEs) lie on the same
database surface the code will automatically apply the parametric technique, thus making the calculation

much more efficient. When domains span multiple database surfaces, only those grid points that lie on or

near the seam between the surfaces will require projection. Of course, grid points may migrate across the

seam from one surface to another. Figure 11 shows a surface grid that has been created on the surface of

the bluff body database spanning two forebody surfaces with notations as to which grid points are solved

parametrically and which are solved conventionally.

It is often the case that the precise shape of a surface grid's perimeter (the connector) is not known

by the user. This is especially true for connectors shared between two domains. Even when shape isn't

important the requirement for smooth variation of grid lines across the connector is required. Rather than

forcing the user to choose between 1) manually fine-tuning the connector's shape or 2) being stuck with

something inadequate, Gridgen's elliptic PDE techniques provide a boundary condition that allows the

connector shape to float subject to the elliptic PDE solution. The float boundary condition treats the grid

points on a connector shared between two domains in the same manner as interior domain points; they

move subject to the elliptic PDE solution. When the solver is done the original connector shape is replaced

by a new shape defined by the refined grid points. An example of this feature is shown in Figure 12.

The user may also defined sub-domains which, as the name implies, are subsets of a domain.

Subdomains may then be used with the TFI and elliptic PDE methods to restrict the effects of the methods

to a small region of the grid. Subdomains may be thought of as templates that fit over the domain grid and

define the region to which changes should be made. Each subdomain saves its own unique combination of

elliptic PDE attributes. When grid modifications require re-application of the PDE methods (see previous

sections) the user may simply invoke the PDE method without resetting attributes.
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BLOCKS

Volumegrids (blocks)arecreatedby the user'sselectionof the domainsthat comprisethe block's
perimeter.4 Any number of domains may be used on the block's perimeter but they must be arranged

into six faces such that opposite faces have the same number of grid points (ie, the block must map into

an I > J x K computational parallelepiped). Once the block perimeter has been defined Gridgen will

automatically create the volume grid points by applying TFI.

Block modifications, including copy, translate, scale, and rotate, will result in automatic propagation

of changes down Gridgen's data hierarchy (backward editing) to the domains and connectors.

Gridgen has also automated one of the most cumbersome aspects of multiple block grid generation:

interblock connectivity detection. As a result of Gridgen's data hierarchy, the code automatically detects

and maintains both full- and partial-face interblock connections simply by noting that the same domain is

used in two blocks. Changes to a domain's grid points by the PDE solver, for example, are automatically

transferred to both blocks that use that domain. Changes to a domain on a block's perimeter will propagate

up Gridgen's data hierarchy and cause automatic re-TFI of the volume grid points. Also, when the

boundary conditions are exported for use with the analysis software the connectivity data is formatted and

exported specifically for the chosen analysis software.

Gridgen also offers an interactive tool for re-dimensioning (changing the total number of grid points)

the entire blocking system. This feature allows the user to select any connector in the blocking system

and change its number of grid points. That change is propagated automatically throughout the system to

maintain dimensional consistency (ie, maintain I × J domains and I > J x K blocks).

MISCELLANEOUS

One final automation feature deserves mention. Gridgen can import "raw" grid points (from a

PLOT3D grid file, for example). When this is done, Gridgen automatically creates connectors, domains,

and blocks, from the raw grid data. Therefore, the user may then avail him/herself of all of Gridgen's

commands, including analysis boundary condition setting and file export. Conversely, the Gridgen user

may export the grid points from any connector, domain(s), or block(s) to a PLOT3D file for use in other

applications.

SUMMARY

Various features within Gridgen have been described and their unique automatic aspects have been

emphasized. These features contrast sharply with the fact that Gridgen is not an automatic grid generator. 5

It is not the intent of this paper to diminish the many published and unpublished works on automatic

grid generation. Indeed, the successful application of CFD in a design environment often depends on

configuration - limited procedures that may be applied rapidly and easily by the CFD novice. Instead,

this paper and Gridgen itself have been motivated by the desire to emphasize grid quality and software

4Gridgen can also create a block by applying a hyperbolic PDE technique to a domain.

5We define an automatic grid generator as one which will create a suitable grid given a geometry model and little or no

user input.
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flexibility. Theseemphaseshaveled to the developmentof a visually based,3D, interactiveapplication
environmentthat automates much of the low level grid maintenance tasks, freeing the user to apply his/her

judgement as to grid suitability. Gridgen's ability to automate much of the process is directly attributable

to its data hierarchy in which the curve, surface, and volume grids are maintained as secondary components

of connector, domain, and block topology components.
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f'igure 1: The Gridgen screen.
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Figure 3: Schematic of a bluff-body, external automotive shape used for demonstration of Gridgen's au-

tomation features. All dimensions ill millin]eters. Adapted froln Reference [2].
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Figure 4: Detailed schematic of tile various base angles for tile bluff body, in Figure 3. All dimensions in

millimeters. Adapted from Reference [2].
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Figure 6: A 15 block grid containing 520,000 grid points was created for the bluff body. A close-up of grids

on the surface of the body is also shown.

Body-psurface- 1 Body-psurface-5

x = 0 _ x=822

y =188 Y = 288

_--- z = 194.5
z=0

u=0.0 u=0.7

v--0.667 v = 1.0

Figure 7: Gridgen maps grid elements to the database via the entity name allowing the underlying shape

to be easily changed.
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Figure8: Thegrid for the 40° base slant angle (left) was changed to the 20 ° base slant (right) simply by
importing a different database file.
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Figure 9: Gridgen's unified geometric foundation allows segments to be easily converted from one type to

another. Note that the control points for all three segments are the same.
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Figure 10: Terminology used in the distribution of grid points along a connector.
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Figure 11: The surface grid on the upper forebody spans two database surfaces (the vertical lines extending

beyond the grid are the boundaries of the surfaces). The filled circles denote grid points that are projected
onto the surfaces. All other points are maintained on the surfaces parametrically.

Figure 12:
solution.
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The connector between two surface grids may change shape according to the elliptic PDE
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ABSTRACT

ICEM CFD is a CAD based grid generation package that supports multiblock struc-

tured, unstructured tetrahedral and unstructured hexahedral grids. Major development

efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral

unstructured grid generation capabilities. The modules added are: a parametric grid gen-

eration module and a semi-automatic hexahedral grid generation module. A fully auto-

matic version of the hexahedral grid generation module for around a set of predefined

objects in rectilinear enclosures has been developed. These modules will be presented and

the procedures used will be described, and examples will be discussed.

INTRODUCTION

The ability to accurately create a computational grid about geometrically complex configura-

tions is becoming increasingly important in the analysis world. With ICEM CFD computational

grids can be employed to treat complex geometric topologies. ICEM CFD embodies full CAD

tools for creating geometries or importing geometry from various CAD systems. Computational

grids, including boundary conditions can be generated for over 25 different CFD flow solvers

and structural analysis codes 1. (Figure !).

Existing methods for multiblock

structured computational grid gen-

eration codes are generally very

time consuming. Current codes

also require high level of user

expertise in order to achieve opti-

mal usage. Since the rapid con-
struction of suitable multiblock

structured computational grids is

still one of the pacing issues in

CFD applications, additional func-

tionality has been added to ICEM

CFD. They are ICEM COMAK for

parametric multi-block mesh gen-
eration and ICEM HEXA for semi-

automatic hexahedral mesh

GEOMETRY ANALYSIS CODES

Figure I: Positioning of lCEM CFD between the
geornetr 3' and analysis codes.

generation. In addition, the fully automatic hexahedral grid generation module called ICE-

PAK will be presented. ICEPAK has been developed in coorporation with Fluid Dynamics

International (fdi) 2 to support thermal management of electronic enclosures. For ICEPAK

fully automatic grid generation is possible, because the geometry representation is
restricted.
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PARAMETRIC GRID GENERATION USING ICEM COMAK

ICEM COMAK is a parametric multi-block grid generation tool which is an extended option of

ICEM CFD's structured grid generation code. Once the mesh of a given configuration is created.

using COMAK (COnfiguration MAKer) it is possible to replay the construction process in order

to get a mesh of the same topology with geometric differences. It offers two modes; the Specifica-

¢3

Parametric Geometry_

_| Creation with any |

_,_ CAD System J

+ I

_SurfaceGeometry_
definition of a

configuration

InitialStep I IParametric Grid Generation

CreateSurfaceObjects

Define Block

Decomposition

Save/Edit iCommand File

Generate MESH

with Boundary Conditions

READ NEW
SURFACE OBJECTS

I AUTOMATIC REGENERATIONof BLOCK DECOMPOSITION

GENERATE MESH
WITH BOUNDARY CONDITIONS

>_

Figure 2: Structure qf ICEM COMA K, the parametric grid generator
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tion Mode and the Replay Mode. In the Specification Mode the user has a set of tools allowing

him to interactively create, manipulate, group and manage geometric entities. The user's actions

are stored into a command file. In the Replay Mode, when the user wants to create a mesh around

a different object with the same topology, it is only necessary to break the object geometry into

parts like the original. Then the user can replay the commands to create the new multi-block struc-

tured mesh associated to the new CAD geometry, where sets of geometrical entities can be differ-

ent. The boundary conditions are set-up automatically. These features allow one to perform very

efficient geometric trade studies.

In Figure 2, the structure of ICEM COMAK is shown. CAD systems such as I/EMS from Inte-

graph or Pro-Engineer from Parametric Technology Corporation are modelers that can create

geometries using a parametric approach.

During the initial step or the specification mode, the geometry from the user's CAD system is

input in IGES format to the ICEM COMAK environment. The first step is to put surfaces into

object groups. The user then composes the computational block structure. During this operation

the session commands are recorded in a command file. The file created is saved. After the points

along block edges are distributed, the computational grid is created. The boundary conditions for

the analysis are also created during this session. User then translates the mesh into the flow solver
format of choice.

To perform the parametric mesh calculation for a similar geometry with the same topology but

with geometric differences, the user goes back and names the objects in the new geometry with

the same object names. After the new IGES file is created, the ICEM Manager grabs this IGES

file and writes the CAD data into the object database and initiates ICEM COMAK. COMAK

reads the new object files and automatically regenerates the computational grid by updating the

computational topology with the new geometry and translates the mesh into the flow solver for-

mat. The replay mode can be treated as a continuous loop for computational grid generation in

batch mode on modified geometries.

The ICEM Manager is written in TCL/TK 3 a programming system for developing and using

graphical user interface applications. It is an easy to use scripting language for controlling and

extending applications. The following sample script illustrates the execution of a series of com-

mands in the ICEM Manager to support the automatic replay mode as it is described above. In this

example it creates an input for the structural analysis code ANSYS from Swanson Analysis Sys-
tems, Inc.

# This script shows how to run a complex command from within the manager,

# The actions it performs are:

# 1. Translates two IGES files into DDN parts. The names of these parts

# and the IGES files are known beforehand.

# 2. Run a GPL program on each part. which extracts a set of Comak

# objects.

# 3. Run a Comak script to automatically generate the mesh.

# 4. Write an ANSYS output.

# To make this script available, you should put the following line in your

# -/.iceman init file:

#

# if [file exists user app script,tcl] { source user app script,tcl }
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#

# The rest of this file is the contents of custom_script.tcl, which

# should be in the directory you run icerncfd from.

proc user_app_script (what} (
global env ddn_path confname geoname partname s2u_path ansys_out-

put_path

global partname sheetname

if {($what == "all*) t I (Swhat == "prepare')} {
# First remove all the existing DDN pads and the Comak objects.

set p [glob -nocomplain parts/* objects/$confname/$geoname/']

if{Sp!="}(
eval exec/bin/rm -f $p parts/.ddn_directory \

objects/$confname/SgeonameLddn_directory

}
update_partlist d 1

# Set up the IGES directive file.
exec/bin/echo "CONVERT, NAME > _directive_tmp

exec/bin/echo -deflne,CREATE_310_PART=l >> _directive_tmp

# Convert all the parts in the iges directory to DDN parts.

# If any of them have "name" in their fllename, run them through

# the gpl program.
set names ""

foreach if [gtob iges/*] {

# Convert the part to IGES,

set dn (file tall (file rootname sir}}
set command "$env(ICEM_ACN)/iges/iges_post i=iges/$pf name=$dn \

o=parts/Sdn I=iges list Iogit=yes d=_directtve_tmp"
runcom $command igesJlst

if [string match *name* $dn] { lappend names $dn }

}

update_partlist d 1

# Make a DDN command file that runs the GPL program and then exits.

set restart [open ,restart.trap w}

puts $restart "F.5.13.53. [pwd]"

puts $restart "F.5,13.3.kim 1_g pl"

puts $restart "F.4.7.y"
ctose $restart

foreach pf $names{

# Run the GPL program.

set_part partflle parts/Spf
if {$partname == "'} ( error "No part" }
set command "$ddn_path db=parts pn=\"$partname\" sn=l \

i=.restart.tmp (get ddn_defautts]"
runxcom USER_APP_GPL $command "" 0 0

update partlist d 1

}

# Now move all the parts to the Comak directory.

foreach pf (glob parts/*] {

if (string match *name* $pt'J continue
exec/bin/cp Spf objects/$confname/$geoname

}
update_partlist k 1

# Clear out the old domains,

set dams [glob -nocomplain mulcad/$confnamel$geoname/domains/']

if {$doms != ""} { eval exec/bin/rm -f $doms }

}

if0 {
if {($what == "all') I I (Swhat == "comak')} {

set extras ""
# Now run the Comak job. These key sequences are the commands that

the
# user would type in to Mulcad to perform the indicated actions.

{ 52)}Run the key.cmd file. }

{ nnnDon't modify parameters. )

( )]yExit comak. )
( 03yy]Update topology. )

{ !253yMesh generation, }

{ ]]}Back to the top. }

{ 96yExit mulcad. }

}{
append extras [lindex $xx 0]

}

unselect_part
catch {exec/bin/rm -f (glob mulcad/$confname/$geoname/parts/tesn "]}

update_parttist m 1

set partname TEST1

set sheetname 1

set key (send_keyboard_events "ICEM 3.1 GRAPHICS" 5 $extras]

app_mulcad
exec/bin/rm -f $key

}
)

if {($what == "all") II ($what == "comak")} {

unselect_part

catch (exec/bin/tin -f (glob mulcad/$confname/$geoname/parts/testl *]}

update_partlist m 1

set partname TEST1
set sheetname 1

#I,1.12).)

set extras (16 5,2,),) ).) y 10.3 Y Y n ) 1 1.2. I, 12 ] 5.3)

app_mulcad Sextras

)

if {(Swhat == "all") II ($what == "output")} {
# Convert the structured domains into an unstructured one.

set dams (glob mulcad/SconfnamelSgeoname/domains/*]

set topofile mulcad/$confname/topotogy/topo_mulcad_out

set outflle $place/domains/struct_merge

runcom "$s2u_path -t $topofile -o $outfile Sdoms"

# Now run the ansys converter.

set topofile mulcad/$confname/$geoname/boco

set ansys mulcad/$confname/$geoname/transfer/ANSYS

runcom "$ansys_output_path -dam $ouffile -b $bocofile $ansys"

infomsg "Done with conversion."

}

}

# These lines create a new menu and add the above command to the menu

make_menu user_app "USER Application" ""

make_entry user_app "Whole script .......... user_app_script all .....

make_entry user_app "Prepare objects ...... user app script prepare ......

make_entry user_app "Run Comak ....... user app script comak ....

makeentry user app "Write output ...... user app_script output" ""
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Figure3 illustratestheapplicationof ICEM COMAK to full airplanevolumegrid configurations
4.Usingthespecificationmodethevolumegrid is calculatedfor theA320 aircraft.Thecommand
file isreplayedtocreatethesimilargridfor theA330 aircraft.Noticethedifferencesin thesizesof
theengineandthefuselagealsothedistancesof thepylonfrom thefuselageaswell asthe impact
on thecreatedgrids.

A320 Grid Using Specification Mode A330 Grid Using Specification Mode

Figure 3: Using ICEM COMAK, computational volume grid for A320 and automatic

generation of grid for the A330 (Courtesy of Aerospatiale).

SEMI-AUTOMATIC GRID GENERATION USING ICEM HEXA

ICEM HEXA is an object based semi-automated hexahedral volume mesher for creating multi-
block structured meshes or unstructured hexahedral meshes.

The user can define the initial block structure or, alternatively, HEXA will automatically initial-

ize the block structure around a given geometry. Blocks can be interactively adjusted to the under-

lying CAD geometry. Body fitted internal or external O-Grids can be generated by the system

automatically. Mesh sizes can be defined on the object surfaces or individually on the edges using

edge meshing options. The grid is projected onto the underlying CAD geometry with minimum

user interaction, with complete independence from the orientation of the patches and patch bound-

aries of the underlying CAD geometry.

Input to ICEM HEXA is CAD geometry, in the form of NURB surfaces, trimmed NURB surface

and NURB curves. CAD geometry is either created using ICEM CFD's CAD tool or translated

from any other CAD system using IGES or other translator formats. Surface meshes in STL (Ste-

reolithography) format or triangular surface meshes in PATRAN format can also be input as a sur-

face representation for mesh generation.

The following is an example of the grid generation process for a generic chemical processing

tank as shown in Figure 4. This configuration contains an inlet, an exhaust port, another cylindri-

cal port for chemical control and two petruding cylinders to the tank. These cylinders are utilized

for inspection and controlling the chemical process taking place inside the tank. Each of these

cylinders are connected to a smaller cylinders which they connect to pressure regulators. Since

this configuration contains many cylinder T-connections, it produces a moderately complex block

decomposition strategy for any grid generation system.
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Figure 4: The chemical processing tank

Figure 5." Block decomposition strategy

The system automatically initializes the blocking as seen in Figure 5.

Next the blocks are split interactively. During this process the blocks that will be

used for grid generation are also selected. After splitting of blocks, the block edges and

vertices are fit to the geometry with interactive manipulation. The edges of the blocks

can be associated to the curves taken from the CAD model. After the association is done,

vertices are moved onto the curves. The blocking structure is shown in Figure 6. After

the initial fit, blocks are split to provide control over the critical areas such as the control

ports.
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After the initial fit,

blocks are split further

to provide control over
the areas such as the

pressure ports. The sys-
tem starts to build inter-

nal index control for the

blocks as the split oper-

ation takes place. Block
indices can be used to

control which part of

the blocking are visi-

ble. Additionally, only

those parts of the block-

ing which are currently

visible are split during

the splitting operations.

I
Figure 6."Block edges of the inner block is

being fit to the curves.

Figure 7 illustrates the blocking structure created. This is only one of many possible

blocking strategies. The user may select a strategy that is most appropriate for the type

of analysis to be performed. Also seen in Figure 7 is the block edges are fit to the CAD
surface geometry.

(
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!

Figure 7." Blocking of the entire

geometo'. The block edges are fit to

the surface geomet_ automatically.
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The next step is to define the sizes of the grids on the surfaces of the geometry. The max-

imum length, initial height and the height ratio off the surface are defined on the object

surfaces. If it is necessary, the sizes can later be adjusted on the edges individually.

Figure 8: O-Grid generation around the sail and the rudders

Figure 8 shows the initial calculated grid. This grid contains many skewed cells since

every cylinder is fitted with a single block. To improve the grid quality O-grid generation
is needed. Built in tools allow the automatic O-Grid creation. First the blocks are selected

and then the faces of these blocks that the O-Grid should pass through. Using the scale fac-

tor parameter the distance between the internal block to the walls of the external block is

specified.

We will illustrate this feature on one of the control ports. Figure 9 shows the resultant

blocking structure after the O-grid is created. The interface of the blocks between the pres-

sure cylinder and the control cylinder are generated automatically by the system..

Figure 9: Surface and the cross sectional volume grid.
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Figure 10 shows the computational grid around the control port with O-Grids. Using this

approach the resultant computational grid skewness is 60% and above. The skewness on the

perfect rectangular brick is measured to be 100%.

Figure 10: Automatically created O-Grid around the control port.

THE FULLY AUTOMATIC OBJECT BASED GRID GENERATION USING

ICEPAK

ICEPAK is a CFD application for thermal management of electronic enclosures. This

very easy to use object based package combines model (geometry) generation, automatic

grid generation, flow solution with coupled thermal-flow simulation, and post processing

into a single environment. It will help the designer to reduce enclosure sizes, eliminate the

hot spots, meet noise considerations, increase component density into smaller areas and

optimize the locations of fans and vents.

Once the model has been defined using objects, the computational grid is generated auto-

matically. The user either defines the sizes of the elements for each objects, or selects to

have ICEPAK calculate the grid automatically based on the objects. A multi-block hexahe-

dral grid is calculated and is body fitted with o-grids around most objects. ICEPAK allows

generation of grids at varying levels of complexities. The rules governing each object

results in a prioritized O-grid methodology whereby each object is meshed individually as

tightly as the user specifications permit in order to resolve the physics of the solution.

Objects like blocks, cylinders, thin inclined walls, and wedges can be considered. The fol-

lowing example illustrates the automatic grid generation capability:

As shown in Figure 11, the cabinet is housing a vent, an opening, a box representing a

disk drive, 2 fans, one stack of vertical PCB's (4 in a stack), and a power unit. The

generation of the geometry is done by selecting objects and bringing them into the cabinet

and placing them using the mouse or entering the coordinates from the key board. Using

the mouse one can also resize the objects interactively. As the geometry is being build,

ICEPAK compiles the boundary conditions on each object. ICEPAK also monitors the
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information on each object for grid generation. Each Icepak object has a set of rules or

parameters associated with it which are used to guide the generation of the grid around the

object. User can selectively modify any individual parameter for any object and then

regenerate the computational grid automatically. Any parameter specifically modified and

toggled on will be enforced during the grid generation process. This procedure is used to

/'i",

l,'l_ l

;:L!)

Figure 11: Cabinet housing PCB' s, a disk drive, a power unit 2fans, vent and a opening.

selectively refine the grid around a particular object.

Shown in Figure 12 and Figure 13 are the result of the automatic grid generation process.

The plane goes through the middle of the cabinet where the griding of the disk drive and the

fans result in O-type grids. General grid generation guideline is to use the minimum count

option in conjunction with the maximum x, y, z size option and possibly the maximum ini-

tial height option. The maximum x, y, z size option limits the maximum length of any grid

element in the corresponding x, y or z coordinate direction.The maximum unit height spec-

ifies the maximum height of the first element layer generated around any object (PCB,

block, fan, etc.) in the grid. Surface grids on individual objects can be displayed. Thus, for

example, you could study the grid on the surface of all blocks in the model or restrict the

view to a single specific block. It is also possible to view the surface grid on all objects

simultaneously or display the entire mesh

Fully automated grid generation is made simple and fast with ICEPAK. User can generate

very complicated grids in minutes rather then weeks. Since the knowledge and the decision

making of grid generation process is build into the software, the user can concentrate on

other aspects of the analysis such as if objects have been put in the correct place, the solution

costs and post processing of computed results.
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Figure 12."Automatically generated O-Grid around the fans

Z

Figure 13." Fully automatic grid generation inside the cabinet housing
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CONCLUSIONS

Given the current trend towards more accurate and complete representations of complex

flowfield, it is important to have enhanced tools suitable for geometry modeling and grid

generation. The current interactive approach for geometry modeling and grid generation
allows the direct decision making needed to handle the wide variety of geometries possi-

ble. But the expense of the time of the application engineer is needed to be reduced further

by providing smart tools for grid generation. The added tools to the current ICEM CFD,

such as ICEM COMAK for parametric grid generation and ICEM HEXA for rapid grid

generation; will shorten the time for computational grid generation significantly.

The object oriented grid generation tool as implemented in ICEPAK is definitely the

new trend in computational grid generation. It is necessary to extend these capabilities to

cover a wide variety of shapes.
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ABSTRACT

The algorithms for volume grid generation using NURBS geometric representation are presented.
The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and

volume. This approach bridges the gap between CAD surface / volume definition and surface / volume grid
generation. Computational examples associated with practical configurations have shown the utilization of
these algorithms.

INTRODUCTION

Surface grid generation is the most labor intensive part of the overall complex three dimensional grid

generation process. Also, a significant amount of effort is required in changing the resolutions (grid sizes)

and / or the distribution of the grid while maintaining geometry fidelity. In the last few years, various re-

searchers have concentrated on utilizing the Computer Aided Geometry Design (CAGD) techniques [Ref
2,13,14] to expedite the overall surface generation process.

There are many approaches for representing sculptured geometry, such as rational or non-rational

Bezier, parametric form, rational or non-rational B-spines ..... etc. Among these representation, the Non-

Uniform Rational B-Splines (NURBS) has been widely accepted among these researchers. NURBS has

been widely utilized to represent and design geometry in the CAD/CAM and the graphics community due

to its powerful features, such as the local control property, variation diminishing, convex hull and affine in-

variance [Ref 1,2]. Also the geometry tool kits, such as curve/surface interpolation, data reduction, degree
elevation, knot insertion and splitting, are well-developed [Ref 2,3,4]. These properties have made NURBS

representation very popular in recent developments in CAD/CAM and hence in grid generation. For exam-

pie, in 1992, the scientists of NASA research centers formed a NASA IGES (Initial Graphic Exchange Speci-
fication) committee and defined a format named NINO (_ASA IGES NURBS QNLY) standard to encour-

age the CFD community to follow this standard with the NURBS definition for the geometry
communication between systems [Ref 5].

The development of the software based on NURBS representation package: CAGI (Computer Aided

Grid Interface) was initiated by authors [Ref 15] under the sponsorship of NASA Marshall Space Hight Cen-

* This work is sponsored by NASA Marshall Space
Flight Center.

t Graduate Student, AIAA Member
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tea'. The purpose of this paper is to present the progress realized in enhancing the NURBS based curve /

surface grid generation techniques into a 3D volume grid generation technique. To this end, various options

for generating 3D volume geometry-grid are discussed. A reparameterization scheme has been developed
to achieve desired distribution in physical space. Computational examples for modeling practical configu-

rations have been exercised using the volume options and the reparameterization scheme.

NURBS FORMULATION

A brief definition ofDetailed mathematical discussion on NURBS can be found in [Ref 2,3,4].

NURBS curve / surface / volume is presented as follows:

A NURBS Curve of order k is defined as :

n

w, d,
i=o (1)

C(O = .

Z w,lV':(t)
I=0

where the di i=O,..,n denotes the deBoor control polygon and the Wi are the weights associated with each

control point. N/k (t) is the normalized B-spline basis function of order k and is defined over a knot vector

T=Ti i=O,..,n+k by the recurrence relations as shown in equation (2).

s_(t)= (t- T,)Sf _(0 (r,+_- t)N_+_(t)
Ti+k-I - Ti q" Ti+t ' _ Ti+l (2)

N_(t){= 1 if Ti -< t < T_+_
= 0 otherwise

Throughout this paper, it is assumed that the knot vector has the form T= {0 ..... O, Tk ..... Tn, I ..... 11 with

the multiplicity k for the knot value 0 and I on both ends of the knot vector. If the knot vectors do not match

this format, the knot insertion [Ref 6,7] technique must be used to achieve the multiplicity of k on the ends

of the knot vector, and if the end knot values are not 0 and 1, the knot vector must be normalized by the last

knot value to match this format.

The NURBS surface is the extension of the curve from 1D to the 2D tensor product parametric surface and

is shown as equation (3).

S(s,t) = i_" J=' ' (3)

_" :" Wi, Nl:'(s) N/Ja(t)
i=e /=e

Where the a_j denotes the 3D control net and the _j are the weights associated with each control points.

Ntil(s), N_(t) denote the normalized B-Spline basis functions of order kl and k2 in the I and J directions,

respectively.

The formula for 3D NURBS volume is defined analogous to NURBS surface and is a 3D tensor product form

written as equation (4).
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V(s,t,u) = _=0j_, I=0 (4)

_ Z W,,, N_l(S)N._(t)N_(u)
i=O j=o t=e

The dijl form the 3D control volume and the Wj)k are the weights associated with each control points. And

N_t(s), NJ2(t) and g_3(u) are the normalized B-spline basis functions of order kl, k2 and k3 in the I, J and

L directions (Instead of using I, J, K, this paper uses I, J, L to denote the three directions), respectively.

3D NURBS CONTROL SURFACE

NURBS has been used to model geometry in CAD/CAM for a long time. Manipulation tools such

as "knot insertion" and "degree elevation" are used to increase the flexibility of manipulating the entire

geometry. The famous algorithms for knot insertion are "Boehm" algorithm [Ref 6] and "Oslo" algorithm
[Ref 7]. Both knot insertion and degree elevation are fundamental and powerful tools and are very frequent-

ly used in modeling the NURBS geometry. The curve and surface interpolation [Ref 8,11] techniques are
also used to transform the discrete geometry to B-spline definition. These algorithms have been used as

basic tools in modeling the NURBS geometry. Also, it has been shown lRef 8,9] that many geometries can
be represented analytically with a very concise control polygon (control net). For example, a NURBS circu-

lar arc can be defined with only 3 control points. Instead of storing the surface grid points, one can store the
associated control polygon (control net or volume for the surface and the volume) with the associated

weights to reduce the memory load, and this has been considered as one of the features of the NURBS repre-
sentation.

The algorithms to construct NURBS representation for ruled surface, extruded surface, surface of rev-

olution .... etc. along with analytical geometries with appropriate data reduction algorithm are well devel-

oped and well documented in the CAGD literature. These algorithms have been enhanced and incorporated
in the CAGI system [Ref 15]. The application of these algorithms to practical CFD related grid configura-
tions is demonstrated in Figures 1~4. Figure 1 shows four NURBS control patches and their surfaces. This

multiple-duct engine is created first by reading the curve profiles, interpolating these discrete data set to

NURBS curves, then performing the data reduction [Ref 10] to reduce the redundant control points, and then
finally, by using the NURBS revolution [Ref 3,4,13] algorithm. Similar procedures applied to create the

single rotation propfan shown in Figure 4. The teapot shown in Figure 2 is modeled by three NURBS control

nets, while the missile configuration with four fins shown in Figure 3 is generated by the eight control nets.

3D NURBS CONTROL VOLUME

The widely used technique to algebraically generate the three dimensional volume grid is by utilizing

the transfinite interpolation algorithm based on the bounding surface grids. The ultimate objective of the
present research effort is to explore various NURBS control volume options applicable to three dimensional
grid generation. In this paper progress realized in the development of ruled NURBS volume, extruded vol-
ume, volume of revolution and composite volume are discussed.

Ruled NURBS volume.

The easiest way to form a 3D NURBS volume is the ruled NURBS volume. The algorithm is de-

scribed as followed: Given two NURBS surfaces, the first step to form a ruled volume is making the knot
vectors of the surfaces be in the same range of [0-- I ]. Next, considering the I direction of both surfaces, use

the degree raising technique to raise the low degree of the surface. This procedure will yield a new knot

vector and new control net. If the new knot vector differs from the other knot vector, then perform knot
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insertionalgorithm to merge them into one final knot vector. Then these entire procedures must be applied
to theJ direction of both surfaces again. After this step, the two NURBS surface will have the same orders

and the same knot vectors in both I and J directions. This means the resolutions of control net of both sur-
faces will be the same. Therefore, one can connect the corresponding control point together to form the 3D

NURBS volume. In other words, the orders and knot vectors of the final volume in I and J directions will

be the same as those of the surfaces after degree elevation and knot insertion, and the order in L direction
will be set as two with knot vector set as (0,0,1,1). Figure 5 shows a 3D "apple-like" NURBS volume

formed by this algorithm.

While defining the NURBS ruled surface, the IGES defines a variable named "DIRFLG'" as a direc-

tion flag to control the direction of how the surface will be connected. If DIRFLG is 0, then the surface will

connect the points on the same direction of the two curves, otherwise, the direction of one of the curves will
be reversed. Similar to this definition, it is possible to set two flags as "DIRFLG_F' and "'DIRFLG_J" to

control how the directions of the two surfaces will be connected. This increases the flexibility of generation

options.

IGES defines the extruded surface as a surface formed by moving a line segment (called generatrix)

parallel to itself along a curve(called directrix). In other words, given a NURBS curve, one can generate
another curve by exta'uding the given curve with a distance ¢t along a vector V. Similar to this definition, the
NURBS extruded volume is defined as: given a NURBS surface, a new surface can be generated by extrud-

ing the given surface with a distance ¢t along a vector V. Mathematically, this new extruded surface can be

described as _ = d_ + aV with the same orders, same knot vectors as those of the given surface. After this

step, the algorithm of "ruled volume" can be applied to these surfaces to form a final NURBS volume. Fig-
ure 6 shows a 3D NURBS extruded volume.

Volume of revolution.

IGES also defines the surface of revolution entity as the surface which is formed by rotating a given

curve (called generatrix) with respect to an arbitrary straight line (axis of revolution) from a starting angle
( not necessarily zero) to an ending angle. Compared to most of the literature which discussed the full revo-
lution (rotation angle is set to 360°), this definition is more general and useful in grid generation. The
NURBS volume of revolution discussed in this paper is the extension of the surface of revolution, and it is

formed by rotating a given NURBS surface with respect to an arbitrary line as the axis of revolution from
a starting angle to an ending angle. This general algorithm can be stated as follows: First step is translating

[ rotating the axis of revolution by proper transformation matrix so that it is coincident with the Z axis. Also,

apply this transformation matrix to the given NURBS surface so that the entire surface can be kept in the

same position as the axis of rotation. It is assumed that the surface is defined as NURBS with the control

net d_/, order kI and k2, weights _j and two knot vectors. Next, for each control net a_j (on the generatrix
i= 0,..,m, j= 0,..,n), construct the control volume dijl 1=0 .. p at each j-th cross section according to the

starting and ending angle by utilizing the circular arc algorithm. In other word, this approach constructs the
NURBS control net at eachj constant plane by revolving the control polygon d/j with respect to L direction
and then "stacks" them together to form a final NURBS volume. Figure 7 demonstrates this approach. The

procedure for generating the NURBS circular arc can be referenced in [Ref 9,13] and the p (for the last di-
mension of control volume) is determined by the sector angle (equal to the difference between ending and

starting angle). For example, if the angle is less than 90 °, p is equal to 2. If the angle is in the range of 90 °

~180 °, p is equal to 4, if in the range of 180 o -270 °, p is 6, if it is greater than 270 °, p should be 8. For the

section angle 0, the weights are set as (in each J constant plane, J=0,..n) WiJp = wij, wij cos(O/p), wij,
wucos(OIp) .... i=O,..,m ( repeat wij, wijcos(OIp) with total p+l terms). The knot vectors in directions of/
(s) and J (t) are the same as the ones of the given surface while the knot vector in direction L (u) is determined

according to the circular arc procedure. For example, when p = 2, the associated knot vector is set as
(0,0,0,1,1,1), for the case ofp = 4, the knot vector is set as ( 0, 0, 0, I/2, 1/2, 1, 1, 1), for the case ofp = 6,

the knot vector is set as (0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1,1,1) and the last case when p = 8, the knot vector is (0,
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0, 0, .25,.25,.5,.5,.75, .75,1,1,1).Also,settheordersin I and J be kl and k2 (as the ones in original

surface) while set 3 as the order in L direction. Since the NURBS has the translate and rotate invariant prop-

erty, one can apply the inverse transformation matrix to the control volume (without altering the weights and

knot vectors) back to the original coordinates. Figure 8 shows a 3D NURBS control volume developed by
this approach.

Several complex circular pipes can be constructed by using the combination of the aforementioned

approaches. Figure 9 (a) and (b) are formed by first building a NURBS surface, then extruding it with a

desired distance to form a cylinder pipe, extracting the last cross sectional surface from this cylinder pipe and
then performing the volume of revolution algorithm to create those turning portions, and again extracting the

last cross sectional surface and using the ruled surface algorithm to form the last pipe. Last, the composite
method should be performed to construct the entire volume pipe.

Composite volume.

A composite NURBS volume is defined as a volume consisting of lists of constituent volumes. The

compositing procedure is stated as follows: Suppose two constituent NURBS volume VI and I/2 form a com-

posite volume. Assume that I/1 has control volume dl [O:ml , O:nl , 0:11], weight Wt [O:ml , O:nl , O& ], three

knot vectors knoti)l, knot_j)1, knot_l)l and orders k_t)l , k_.l)l, k_l)l while V2 has control volume d2 [O:m 2 ,

O:n2 , 0 :12], weight W2 [O:m2 , O:n2 , 0 :12], three knot vectors knot_i)2, knot_j)2, knot_l)2 and orders k_i)2 , k_.l)2 ,
k_l)2. There are many combinations when two volumes are joined together. For example, one may join the
volumes in/direction with the interface of J, L surface, or join in L direction with the interface of/, J surface,

.. etc. Even though there are many cases, the procedure is similar. Take the case when joining in I direction
as an example, the first step is to perform the degree elevation to I/1 and I/2 so that these two volumes can

have the compatible degrees in I, J and L directions. If the two knot vectors in J direction for I/1 and V2 are

not the same, merging them together by setting the final knot vector as { knot_j)1 to knot_j)2 }, then applying

the knot insertion to I/1 and V2 in J dimension. Same procedure should be applied to L direction if knotl)l
and knotl)2 are not the same. After this step, I/I and V2 will have the same degree in three directions, and

the number of control points and knot vectors in J and L directions will be the same. The second step is to

adjust the knot vector knoti)2 so that its In'st knot value can be the same as the last knot value knotib.
Shifting the knot vector will not change the original NURBS because the basis function is a "normalized"

basis function. The third step is to build up the final knot vector by joining the two knot vectors into one

knot vector and set that knot value at the joint point to have the multiplicity equal to (order - 1). For example,
if the knot vector knoti)l is [0, 0, 0, 1, 1, 1] and the knot vector knoti)2 is [2,2,2,3,3,3], adjust the second
knot vector by shifting - 1 to each value. Thus, the knoti)2 becomes [ 1,1,1,2,2,2]. Suppose the final order

of these two volumes in I direction is three, then, the final knot vector should be [0,0,0,1,1,2,2,2] (one may
notice the interior knot 1 has multiplicity of (order- 1)=2). The fourth step is to match the weights. This step
can be illustrated as the following pseudo code.

for (L=0; L<=/I; L++)
for (j--0; j<=nl; j++)
{

let factor = Wl[rnl ,j, L] / W2[O,j, L] ;

for (i=0; i<=m2; i++)
W2li, j, L] = W2[i,j, L] *factor ,

}

The last step is to build up the final control volume and weights by throwing the d2[O:O, O:n2, 0:12] and
W2 [0:0, O:n2,0.12] away and jointing the others as one control volume and weights.

REPARAMETERIZATION PROCEDURE

As discussed earlier, it is clear that the NURBS representation is defined in a paramea-ic form. Take

a curve as an example: any value t in parametric space will result in a point C(t) in the physical space. This
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property leads to some advantages and disadvantages. In perspective of numerical grid generation, the most
conspicuous contributions for NURBS are that it provides a very easy and intuitive way for changing topolo-

gies, resolutions and the distributions of a surface grid. The surface grids generated in grid generation tools
often have different topologies - such as O type, C type and H type grid or even unstructured or hybrid grid.

Generating a 3D surface from these different topologies may require repeated applications. However, by

using the 3D NURBS control polygon and weights the re-mapping and redistribution can be achieved by
re-establishing the associated distribution mesh (network of parametric values). Figure 10~ 11 demonstrate

the examples of the redistribution process. In these example, the structured and unstructured (hybrid) grid

is generated just by constructing the associated hybrid distribution space. The other advantages are dealt
with the resolution and distribution. Due to this parametric property, evaluating the same NURBS irrforma-

tion (same control points, weights, knot vector and the same orders) with different parametric mesh (includes
the different dimension of grid sizes) can yield a surface grid redistribution. This is accomplished by the

"reparameterization" procedure.

What makes NURBS so popular in CAD design is that it provides many stable geometry manipulating

properties. One of those properties is the local control property. The engineer can locally modify the

NURBS geometry by changing the NURBS information (such as the location of the control polygon,weights
or even knot vectors) without perturbing the entire geometry. However, this reshaping also changes the ef-

fect of parametric space on the distribution of points, often resulting in unacceptable distribution. This is
due to "bad parameterization"-- which means after changing any of the NURBS information (control poly-

gon, knot vectors or weights), the desired distribution in parametric space will not necessarily result in the
desired distribution in physical space (take equation (1) as an example, the evenly distribution in t (paramet-

ric space) doesn't result in evenly distribution in C(t) (physical space)). These situations are demonstrated

in Figure 12. The curve itself has been locally modified, yet one can also notice that the points on the modi-
fied curve are stretched towards the control point for which the weight has been increased. This has been

claimed as the disadvantage of the parametric NURBS. Several literatures [Ref 13,14] have shown their

approaches to overcome this obstacle and to obtain the desired distribution in the final geometry after any
modification. A new and more efficient algorithm for reparameterizating parametric curve has been devel-

oped as follows:

Consider a NURBS curve with resolution ni. Let

(1) 0 (i), i= 1.... ni be the unknown distribution which is used to generate the desired curve in physical space;

(2) t2(i), i=1 .... ni be the normalized chord length of the curve with desired distribution; and

(3) t3(i), i= 1.... ni be the normalized chord length of the curve evaluated at parametric values tt (i), i= 1.... ni.

Take Figure 12 as an example, if the designer would like to have the final curve as shown in Figure 12(c),

then t2(i) will be a ID array which contains the distribution packing towards two ends, and t/(i) are the para-
metric values which are to be determined such that the t3(i), the normalized chord length of final curve,

would be the same as t2(i) (or It2(i) - t3(i)l be minimized for aU i=l .... hi).

In order to obtain t3(i), the initial values of O(i) must be initialized. One can set o(i) as evenly distributed

initially, then evaluate the curve with these parametric values to obtain the final curve, then normalize the
entire chord length to obtain t3(i). Generally, the t3(i) will be different than t2(i). How to adjust 0 (i) to have
new t3(i) which is close to t2 (i)? The entire reparameterization procedure is described in the following com-

puter pseudo code:

for (i=1; i<(ni-1); i++)
{

fred the location ofj such that t3 [/'] <_ t2[i] < t3[j+l].

let ot=t2[O-t3 [J']; 15=t311+1]- t2[i];
t[/']=(tl[j+l]*ot + tl [./']'15) / (or + 15);
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Thefinal t[i] will be the desired distribution curve, and using this distribution to evaluate the NURBS curve

shown in Figure 12(b) (with the middle weight increased) will yield the result shown in Figure 12(c), which
has the distribution packing towards two ends.

This reparameterization algorithm can also be extended to find the desired distribution mesh for the

tensor product NURBS surface. The reasons which lead to the bad parameterizationproblems for the surface

may come from arbitrarily modifying the NURBS information (such as the control point, weights or knot
vector), or from significant difference of the arc lengths of two opposite boundaries. These cases are dem-

onstrated in Figure 13 and 14. From equation (3), one can understand what cause the problem shown in
Figure 14. There are only two knot vectors which control the distribution in I and J directions. If both of

the two opposite boundaries in I (or J) have different distributed requirements or have big difference in arc

length, the one single knot vector in I (or J) may cause problem. Similar to the reparameterization procedure
of the curve, the algorithm for the surface is stated as followed.

Instead of defining the three 1D arrays, three sets of 2D arrays (sl, 0 ), (s2, t2) and (s3, t3) must be
defined. Consider a NURBS surface with resolution ni by nj. Let

(1) (sl ( i,j ),tl (i,j ) ), i= 1.... ni, j= 1.... nj be the unknown distribution mesh which is used to generate the
desired distribution of the surface in physical space;

(2) (s2(id),t2(i,j)), i=1 ....ni, j=-I ....nj be the normalized chord length of the surface with desired dis-
tribution; and

(3) (s3 (i,j),t3 (i,j)), i= I ....ni, j= 1....nj be the normalized chord length of the surface evaluated at para-
metric values (sl (i,j), tl (i,j) ).

Take Figure 13 as an example. If the designer would like to have the final surface, as shown in Figure 13(c),

then (s2 (ij),t2(i,j)) would be a 2D array which contains the even distribution, and (sl (i,j),tl OdD would be

the parametric values which are to be determined such that the (s3(i,j),tz(id)), the normalized chord length
of final surface, would be the same as (se(i,j),t2(i,j)) or within certain tolerance.

Similar to curve algorithm, one can set (s1(id),tl (i,j)) as evenly distributed initially, then evaluate the surface

with these parametric values to obtain (s3(i,j),t3(i,j)). Most likely the (s3(ij),t3(i,j)) will be different than

(s2(i,j),t2(ij)). The procedure to adjust (sl(i,j),tl(i,j)) so that (s3(i,j),t3(i,j)) can be close to (s2(i,j),t2(id)) is
presented with the following computer pseudo code:

for (]=1; j<(nj-l); j++)
for (i=1; i<(ni-l); i++)
{

search the index of I, J such that (s2(ij),t2(i,j)) is located within the cell of (s3(l, J), t3(l, J)),
(s3(l+l, J), t3(l+l, J)), (s3(l, J+l), t3(l, J+l)), and (s3(l+l, J+l), 0(1+1, J+l)) ;

let (s2(i,j),t2(i,j))= (1 -cx)( 1-_)(s3(l, J), t3(l, J)) + (1-ot)_(s3(l, J+ l ),t3(l, J+ l )) +
ot(1-_3)(s3(l+ l, J), t3(l + l, J)) + cxf3(s3(l+ l, J+ l ), t3(l+ l, J + l )) and solve for ct and 13;

new (s(i,j),t(i,j))= ( 1-or)( 1-_3)(Sl (1, J), t/ (I, J)) + ( 1-oOf3(Sl(1, J+ 1),0 (i, J+ 1)) +
_x(1-_3)(Sl(l+ l, J), tl(l+ l, J)) + otfA(s1(l+ l, J+ l ), tl(l+ l, J+ l )) ;

}

The final (s(i,j),t(i,j)) are then the desired distribution mesh in which to generate the desired surface grid
shown in Figure 13(c) and 14(d).

The reparameterization algorithm for the volume case is similar. 3 sets of 3D arrays should be used,

and instead of bi-linear interpolation, the trilinear interpolation should be used while adjusting the desired
distribution.

CONCLUSIONS

The grid generation algorithm associated with the ruled volume, extruded volume, volume of revolu-

tion and the composite volume based on the NURBS representation have been presented and demonstrated
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byutilizingpracticalconfigurations.Thedevelopment of the reparameterization scheme and its influence
to curve / surface / volume grid distribution is demonstrated by examples. These algorithms have been incor-

porated as modules in the CAGI system. The research associated with enhancing the volume options and
manipulations along with evaluation of the traditional transfinite interpolation algorithm based on NURBS

is underway.
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Figure1. 3DNURBScontrolnetsmodel

themultiple-ductengine.

Figure2. A teasetmodeledby3D
NURBScontrolsurfaces.

Figure3. 3DNURBScontrolpatchesmodel

themissile(withfins)geometry.

Figure4. 3DNURBScontrolpatchesmodel

thesinglerotationpropfan.

499



Figure 5. 3D NURBS control volume and its

volume grid for ruled volume case.

Figure 6. 3D NURBS extruded volume

and its volume grid.
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Figure 7. Illustration of volume of revolution. Figure 8. 3D NURBS control volume models

the missile configruation.
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(a) (b)

Figure 9 (a) (b). 3D NURBS circular pipes formed by the algorithm of

ruled volume, extruded volume and volume of revolution.

(10) (11)

Figure 10.3D hybrid pipe. Figure 11.3D hybrid teapot.
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(a) (b) (c)

Figure 12. (a) Original NURBS curve and its control polygon.

(b) Increase the weight in the middle control point, evaluated the curve with

even distribution in parametric space.

(c) Reparameterization example. The shape of the curve is unchanged, yet with

new distribution packing towards two ends.

Figure 13. (a) Original NURBS surface and its control net.

(b) Alter the weights and control points location and evaluated the surface with

even distribution in parametric space.

(c) Reparameterization example. The shape of the surface is unchanged, yet with

new distribution.
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(a) (b)

t
Figure 14 (a). A 3D control net models the missile configuration.

(b). 2D missile control patch for external flow simulation.

-_ k l I

(c) (d)

Figure 14 (c). 2D surface grid patch evaluated with even distribution in parametric space.

(d). Reparameterization precedure for a smooth grid.

503



.!



N95- 28754

GENERA TING GRIDS DIRECTLY ON CAD DATABASE SURFACES
USING A PARAMETRIC EVALUATOR APPROACH

Timothy D. Gatzke" and Thomas G. Melson'"

McDonnell Douglas Corporation
St. Louis, Missouri

ABSTRACT

A very important, but often overlooked step in grid generation is acquiring a suitable geometry
definition of the vehicle to be analyzed. In the past, geometry was usually obtained by generating
a number of cross-sections of each component. A number of recent efforts have focussed on
non-uniform rational B-spline surfaces (NURBS) to provide a single type of analytic surface to
deal with inside the grid generator. This approach has required the development of tools to read
other types of surfaces and convert them, either exactly or by approximation, into a NURBS
surface. This paper describes a more generic parametric evaluator approach, which does not rely
on a particular surface type internal to the grid generation system and is less restrictive in the

number of surface types that can be represented exactly. This approach has been implemented
in the McDonnell Douglas grid generation system, MACGS, and offers direct access to all types
of surfaces from a Unigraphics part file.

INTRODUCTION

Grid generation tools have progressed rapidly over the past decade with a proliferation of grid
generation systems. In order to shorten the time required for grid generation, these tools have
focussed on batch _, interactive 2,3,unstructured gri_ .5,6,and overset grid 7'8 methods. However,
all of these tools require a geometry definition in a particular format before grid generation can
begin. For the standard test cases such as a NACA 0012 airfoil or the ONERA M6 wing, this
geometry is readilly available. Alas, Computational Fluid Dynamics has progressed to the
complex configurations of today's and tomorrow's real vehicles and this geometry is primarily
generated within Computer Aided Design (CAD) systems.

Several popular CAD systems have developed along parallel paths. Due to the competitiveness
of the CAD industry, most of this development has remained proprietary. Coupled with the variety
of design needs, this has led to development of a large number of surface types. Attempts to
standardize data exchange such as the Initial Graphics Exchange Specification (IGES) 9 and
Product Data Exchange Using STEP (PDES) 1°still allow for user defined surface types which are
not common to all systems. As a result, today's CAD models are composed of a wide range of
surface types, complicating efforts to work directly on the CAD surface types.

In the past, geometry was usually obtained by generating a number of cross-sections of each

component. This either involved communicating the CFD engineer's needs to a designer, or

Principal Technical Specialist - Computational Fluid Dynamics Project

McDonnell Douglas Fellow - Advanced Integrated Mathematical Systems
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teaching the CFD engineer to use the CAD system. The time for this step is dependent on the
complexity of the CAD model and could take a few weeks for a full vehicle such as an F/A-18
aircraft. Other efforts have approached the problem of acquiring geometry by converting the initial
CAD surfaces to non-uniform rational B-spline surfaces (NURBS) 11 to provide a single type of

analytic surface to deal with inside the grid generator. However, for many surface types there is
no exact NURBS representation and so the surface must be approximated. This introduces the
additional step to convert surfaces to NURBS and the associated development cost for tools to
convert or approximate every surface type. This paper describes a more generic parametric
evaluator approach which does not rely on a particular surface type internal to the grid generation
system and is less restrictive in the number of surface types that can be represented exactly.
This approach has been implemented in the McDonnell Douglas grid generation system, MACGS,
and offers direct access to all types of surfaces from a Unigraphics part file.

UNIGRAPHICS AND LOFT DATA

The rapid development of CAD tools over recent years has led to current aircraft defined on a
wide range of CAD systems. Over the last three years, McDonnell Douglas has been
transitioning to the Unigraphics II CAD sytem. One of the important issues in this transition is
how to handle data from aircraft designed earlier on the legacy CAD systems. CAD systems have

been proprietary and their internal geometry representation, and the routines to work with
geometry have been closely guarded. As a result, each system has its own set of surfaces and
formats. A few of these may be common to all systems but a large number are unique to each

system.

Another driver towards a large number of surface types is the lofting process. Lofting is the

process of defining the external surface of a vehicle. This surface definition is then used for the
detail design of the vehicle. Manufacturability is a key concern which requires attention to surface
continuity and smoothness along with knowledge of manufacturing processes such as machining,
extrusion, etc. This has led to an entire set of tools separate from the basic CAD operations used

to design detail parts and generate manufacturing drawings. As an illustration of the magnitude
of this issue, between the McDonnell Douglas, Northrop, and Dassault lofting tools, there at least
71 different surface types. This number is continuing to increase as new surface types are
introduced to reflect new design and manufacturing proceses.

This makes porting CAD models between systems very difficult. It is prohibitively time consuming
to restrict the designer to surface types that are common to multiple systems. These unique
surface types were added to improve the design process and it would be a step backwards not
to use them. A second approach is to generate conversions of surfaces of one type to another.
The most common choice is NURBS since many surfaces, such as parametric bicubics, conic
surfaces, and surfaces of revolution can be represented exactly. However, many of these unique
surface types are procedurally rather than mathematically defined. An example of a procedural
surface is the Spine Controlled Dependent Fillet Surface with Functional Radius. In this surface,
circular elements lie in planes normal to a controlling space curve, called the spine curve. The
surface defines a fillet between any two supporting surfaces with the radius of any given element

defined by a function. The surface is a dependent procedural surface that conforms exactly, in
both position and tangency conditions with the supporting surfaces. The radius function can be
defined by any of three methods, the most common being interpreted as a function of percent of

arc length of the spine curve over the defined range of the fillet surface.
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PARAMETRIC EVALUATOR APPROACH

An alternate approach is to use a parametric evaluator lz13 for interogating analytic surfaces. The
basis for the parametric evaluator approach is defining a set of two-dimensional curvilinear
coordinates to represent each surface. In defining this coordinate system, each coordinate
direction can be restricted to the range from zero to one, such that any point on the surface has
an associated unique coordinate pair in this range. The parametric evaluator is the internal

module of the CAD system which takes a parametric coordinate and returns the physical
coordinates for the associated point on the surface. Parametric evaluators have been written as

stand-alone modules for several CAD and lofting systems including Dassault CATIA, EDS
Unigraphics II, McDonnell Douglas CADD/CALL and GOLD, and Northrop-Grumman
NCAD/NCAL. Having parametric evaluators for each surface type, all that remains is to write

tools that access these surfaces to operate on the unit parametric square. This is accomplished
through the Advanced Integrated Mathematical System (AIMS) software. This software,
developed by McDonnell Douglas, includes a variety of capabilities for surface interrogation,
intersection, etc. All of the dependencies based on the surface type are transparent to the user.
Internally, AIMS determines the surface type and accesses the appropriate parametric evaluator.

AIMS does make use of surface type information in specific cases. Operations on certain types
of surfaces may produce an exact analytic solution. For example, in intersecting a plane with
conic section there is an exact solution which will be a conic curve. AIMS will use this information
when appropriate to improve speed and/or accuracy transparent to the user.

To allow Unigraphics to access data from other CAD systems, a major effort was undertaken in
1991 by a group at McDonnell Douglas to implement AIMS into Unigraphics. As of Version 9,
in addition to its internal entity types, Unigraphics can access surfaces from CATIA, CADD/CALL,

GOLD, and NCAD/NCAL through AIMS and the appropriate parametric evaluator. Through AIMS,
Unigraphics can perform operations, such as the intersection shown in Figure 1, on surfaces from
other CAD systems without converting the surface to another type. Support for surfaces from
another CAD system would only require the development and linking in of a stand-alone
parametric evaluator for its surface types.

IMPLEMENTATION IN MACGS

The McDonnell Aircraft Computational Grid System (MACGS) 14'1s''6 is a general purpose
interactive grid generation system which has capabilities for geometry manipulation, and
generation of structured, overlapping, and unstructured grids. Implementation of AIMS into
MACGS eliminates the need to obtain a point definition of a geometry from the CAD system.
This is significant since acquiring a point definition geometry for a full aircraft configuration can
take up to two weeks.

Several options were considered in implementing analytic surfaces in MACGS. MACGS stores
the user created surfaces and grids in a working file. Storing analytic surface definitions in this
file as well was considered but this could require a lot of file space for a large CAD model. The
method chosen was to have two files open. In addition to the users working file, the user can
also open a Unigraphics part file. There are two ways that the analytic surfaces of the CAD
model can be stored in the Unigraphics part file. Surfaces which are created using Unigraphics
or read into Unigraphics from other CAD systems through IGES files or some other format are

stored in the Unigraphics file directly. The true LOFT surfaces are stored in a separate database
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and the Unigraphics part file will contain only a reference to these surfaces. Unigraphics user
functions are used to interrogate the part file to get a list of surfaces. Through AIMS, access to
these surfaces is transparent to the user whether they are stored in the part file, or in the LOFT
database which may reside on a different physical system and is accessed via the network. The
dashed surfaces in Figure 2, which were defined in the older McDonnell Douglas CAD system,
CADD, are accessed from the loft data base. The solid line surfaces reside in the Unigraphics

part file along with references to the loft surfaces. Since Unigraphics user functions are used to
access the Unigraphics part file, Unigraphics must be running on the grid generation platform.

The AIMS software is used to retrieve points along the edges of the surfaces which are used to
display the surfaces. The aircraft forebody configuration of Figure 2 is accessed from the
Unigraphics part file and displayed in MACGS as shown in Figure 3. The number of points
displayed on an edge is determined by a maximum chordal tolerance between the actual surface
and the straight segment between successive points. The user can generate structured or
unstructured grids on an analytical surface by specifying distributions of points along each edge
of the surface. Parametric coordinates along the edges of the surface are computed from these

distributions and a grid is generated in parametric coordinates. Then AIMS is used to compute
the corresponding physical coordinates of the grid points. Structured and unstructured grids
generated on an analytic surface are shown in Figures 4 and 5 respectively.

Often, there is a need to manipulate geometry 17. Doing this in the CAD system involves getting
a CAD designer involved or extensive CAD training for the CFD engineer. Building capabilities
to manipulate the analytic surfaces within the grid system would add another level of complexity
and increase the required user skill level dramatically. A simpler method is to use tools that
already exist in the MACGS grid generation system. MACGS capabilities include splitting,
combining, smoothing, etc., for surfaces in an interactive graphical environment. Since the user
is modifying the geometry for a discrete analysis, some degree of approximation is acceptable.

The capability to project user-created geometry or grids onto one or multiple analytic surfaces was
also incorporated using AIMS functionality. A point definition surface representation is used to
define grids and surfaces generated within MACGS and interpolation on a curve fit in each
direction is performed to redistribute points on the surface. This requires care by the user since
inappropriate operations can introduce variation from the original surface. To ensure that points
are precisely on the CAD geometry, the new grids can be projected back onto the original CAD
surfaces at any point. Figure 6 illustrates projection of a structured grid onto multiple analytic
surfaces.

COMPENSATING FOR ANALYTIC SURFACE PARAMETERIZATION

It is desirable to have grid distributions based on the physical arclength of a surface, rather than
its parametric coordinates. This is especially true for analytic surfaces. There may be a large
range of parameterizations for a given surface and the parametric coordinates are generally non-
linear with respect to arclength on the surface. Therefore some method is needed to assure that
the distribution in physical space satisfies the desired spacing, stretching, and smoothness
characteristics.

This same problem has been addressed for surfaces defined by a set of discrete points. When

interpolating between the discrete points, some type of fit is assumed, such as a bi-cubic spline.
The distribution of the discrete points can be thought of as the surface parameterization. For
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example, redistributing points on a surface defined by points clustered toward one edge or with
a pronounced variation in the distribution across the surface can yeild an undesirable result if
some method to base the distribution of points on arc length along the surface is not used.

This is accomplished for analytic surfaces by first calculating a distribution of points on the
surface, uniform in parametric space. The arclength distribution of these points is used to define
a mapping from the desired arclength parametric coordinates to coordinates based on the

parameterization of the surface. Since all physical points are generated by evaluating parametric
coordinates on the CAD surface description using AIMS, all points are guaranteed to lie on the
surface. The intermediate mapping affects only where they lie on the surface. Also, points on
the bounds of the parametric space will lie on the edge of the surface.

Generation of a uniform distribution of points is illustrated in Figure 7. Figure 7b shows the effect
of applying a uniform distribution in the parametric coordinates of the analytic surface. Note that
the spacing along the body is larger near the singularity than at the opposite edge. Figure 7c
represents the desired uniform distribution in an arc length space. To achieve this uniform
distribution, the point distribution in the analytic surface parametric coordinates shown in Figure
7d is evaluated to produce the more uniform grid of Figure 7e. This effect of the surface

parameterization can be even more pronounced for unstructured grids as shown in Figure 8.
Figure 8b shows the problem that the parameterization near the singularity can have on the
unstructured grid generation algorithm when compensation is not used. To overcome this
problem for unstructured grids, it is useful to generate the grid in a parametric space that more
closely approximates the shape of the surface, as shoen in Figure 8c. Figures 8d and 8e again
show the intermediate mappings that produce the surface grid presented in Figure 8f.

RESULTS

The initial implementation provides a useful capability to read surfaces and put a distribution of
points on the surfaces. There are still several issues which are being addressed. One of the
most important deals with trimmed surfaces. Currently, for a trimmed surface the entire

untrimmed surface is read. Trimmed surfaces can be very general in nature with multiple holes
and irregular shaped cut-outs. It is often not possible to come up with a single unit
parameterization of only the trimmed part of the surface. Therefore it is necessary to maintain
the analytic definitions of the surface trim curves so that the grid can conform to thes curves as
well as the shape of the surface. Future enhancements will also bring in the trimming information.
Another important related function is the ability to deal with analytic curves extracted from the
edge of a surface. These curves are necessary for constructing the edges of a single grid which
spans multiple surfaces.

Manipulations inside the grid generation system on a point-definition surface created from the

analytic surface, are based on a fit through the points. This is not generally a problem since the
fit through the surface points is smooth and deviation from the surface is usually small compared
to the spacing of points on the surface. When necessary, these surfaces can be projected back
to the analytic surface.

Another issue involves speed and memory requirements. Memory for the analytic surfaces is
allocated dynamically as the surfaces are accessed from the file. When working with a lot of

surfaces, there is a tradeoff between keeping everything in memory (and often hitting a memory
limit), and cleaning up memory after each operation (and paying a penalty for increased time to
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access the surface (sometimes across a network) each time it is needed.

For a model with a large number of surfaces, it is desirable to generate a grid spanning multiple
surfaces, rather than gridding each one and combining them. This can be accomplished by

generating a grid from edge curves and then projecting this grid onto the analytic surfaces.
However, the distribution of the grid points after projecting may not match the distribution of the

original surface, particularly when the surfaces have a lot of curvature. This is especially
important for the boundary spacing. This is generally not as critical for newer models developed
early in the design phase, since these often have fewer surfaces defining the geometry. But we
have observed that as the maturity of the design increases, the complexity of the surface
definition and the number of surfaces defining it increase rapidly. As a result, developing the

capability to generate grids across multiple surfaces directly is high on our priorities.

There were several benefits to implementing support for analytic surfaces using AIMS. First of

all, the package is very modular and was incorporated rather easily. Since memory for the
analytic surfaces is allocated dynamically within AIMS, no major changes to the MACGS data
structures were required. The biggest issues in implementing AIMS were related to the linker.
The interrelation between AIMS and Unigraphics is at times confusing because some AIMS
routines call UG routines and other UG routines call AIMS routines, and it took some effort to sort
this out. Secondly, AIMS is robust and users know they have the exact surfaces from the CAD
model. Also, the accuracy of operations such as projection are consistent with the equivalent

operations performed within the CAD environment.

CONCLUSIONS

Implementation of the AIMS routines into MACGS provides the capability to access any surface
in a Unigraphics model, regardless of type. This greatly simplifies the process of geometry
acquisition for CFD analyses. However, the amount of manipulation of the geometry within the
grid generation system depends on several things including the quality of the model (gaps,
overlap, etc.) and simplifications to be made to the geometry for analysis reasons. This approach
worked well due to the availability of a mature library for accessing surfaces and evaluating them

parametrically. This proved to be much simpler than converting a vast range of surfaces to a
particular type, such as NURBS, and making extensive internal changes to the grid generation

system to support this type.

.
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Figure 1. - Unigraphics Intersection of Surfaces from
Different CAD Systems Using Parametric Evaluators.
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Figure 2. - An Aircraft Forebody and Canopy Definition in Unigraphics.
(Dashed surfaces defined in legacy CAD system.)
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Figure 5. - Unstructured Grid Generated Directly on Analytic Surface.

Figure 6. - Structured Grid Projected onto Multiple Analytic Surfaces.
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d) Grid mapped to analytic

surface parameterization

Figure 7. - Structured Grid Generation:

e) Structured grid mapped

to analytic surface

Compensation for Analytic Surface Parameterization.

a) Analytic surface

d) Grid mapped to arc-

length parameterization

b) Structured grid using ana-

lytic surface parameterization

e) Grid mapped to analytic

surface parameterization

c) Grid generated in modified parametric

space approximating surface shape

0 Unstructured grid mapped

to analytic surface

Figure 8. - Unstructured Grid Generation:

Compensation for Analytic Surface Parameterization.
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GRID GENERATION ON TRIMMED BEZIER AND NURBS QUILTED SURFACES
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Seal Beach, California 90740-7644

SUMMARY

This paper presents some recently added capabilities to RAGGS, Rockwell Automated Grid Generation

System. Included are the trimmed surface handling and display capability and structured and unstructured

grid generation on trimmed Bezier and NURBS quilted surfaces. Samples are given to demonstrate the new

capabilities.

INTRODUCTION

As described in Ref. 1, RAGGS (Rockwell Automated Grid Generation System) provides an integrated

CFD (Computational Fluid Dynamics) environment where a user can 1) import a CAD (Computer Aided

Design) generated configuration or a geometry from other sources, 2) build a CFD grid directly on the im-

ported geometry, 3) set up flow solver input, 4) postprocess the flow solution, and 5) display the flow solution

data and geometry simultaneously. The program structure of RAGGS is depicted in Fig. 1. It consists of a

series of modules to handle various tasks in the CFD process: starting with a given geometry, usually input

as an IGES (Initial Graphics Exchange Specification) file, through construction of CFD geometry database,

domain blocking, surface grid generation, volume grid generation, flow simulation, to postprocessing of the

flow solution to obtain data useful for engineering design and analysis. A file containing the geometry data

read by RAGGS is referred to as a RASCAL (Rockwell Automated System for Computer Aided Lofting) file.

As shown in Fig. 1, each module is connected to the common database shown in the central hub. Through

the GUI (Graphical User Interface) module and/or grid file module, RAGGS enables user to quickly com-

municate with some state-of-the-art flow solvers, flow analysis software, and grid generators as listed in the

figure. The RAGGS surface grid generation is operated directly on the quilts of rational Bezier patches

and/or NURBS (Non Uniform Rational B-Spline), each of arbitrary order. This minimizes the interaction of

CAD/CFD groups and eliminates the need of re-constitution of the imported geometry, which often requires

hundreds of hours of manipulation to achieve a data format suitable for the grid generation software package.

This paper presents some recently added capabilities to RAGGS. These include trimmed surface/curve

handling and display, unstructured surface grid generation, and structured/unstructured grid generation

on trimmed Bezier and NURBS quilted surfaces. The materials presented in this paper are intended to

complement that given in Ref. 1.

GEOMETRY DATABASE

The coordinates of a surface in space can be described in terms of two parametric variables. A patch is

a mapping from a space defined by these two parametric variables to the three Cartesian coordinates in 3-D

space. The untrimmed domain of each patch is the rectangular region in parameter space, So < s < Sl and

to _< t _<tl, where usually So = to = 0 and sl = tl = 1. Additionally, by defining active and inactive regions,

trim curves may be used to further restrict the domain of a patch. These trim curves are nonintersecting

closed loops of Bezier curves or NURBS in the parametric space of a patch.

For a general configuration, aircraft or otherwise, there is no uniform parameterization which can describe

the entire surface. However, the surface can be described by a set of individually parameterized patches,
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possibly with trim curves. Any subset of these patches, having surface continuity, can be said to constitute

a quilt. Any configuration or any number of configurations can be completely described by a number of such

quilts. RAGGS uses such quilts of rational Bezier patches and/or NURBS, each of arbitrary order, to create

grids which lie exactly on the parameterized surface. These patches may have 3 or 4 sides and need not be

distributed in any type of uniform manner.

Rational Bezier Patch and NURBS

Bezier and NURBS curves in 3-D space are composed of a point which varies parametrically with a single

parameter. Surfaces are composed of a curve which itself varies parametrically in 3-D space according to

another parameter. Consider a such NURBS curve, of degree n, parameterized in t. The curve may be

written in terms of the B-Spline basis functions as follows:

K_

j=o
K,,

j=O

- the weight coefficients

- the control points

- the B-Spline basis functions

(1)

A knot vector is defined by the nondecreasing sequence t_,_,..., to, tx,..., tK,,, tK,,+l. The B-Spline basis

functions are defined by the following recursion,

t - ti-,,-1 b,£1(t ) + ti+_ - t b'_(t)
b_+l(t) = ti - ti-n-1 ti+l - ti-n

The basis functions have the property that

Kn

where, b°( t)= { 1 ti<_t<ti+l0 otherwise
(2)

_b_(t)=l (3)
j=0

For a rational Bezier curve, K_ = n, is equal to the degree of the curve, the parameter domain becomes

[0, 1], the knot vector becomes t-n, t-,_+l,..., to = O, and tl,..., tn, tn+l = 1, and the basis functions become

the Bernstein functions,

n!
(1- t)"-kt k (4)

b'_(t) - k!(n- k)!

If we let the weights, vj, and the control points. Cj. be interpolated functions of another parameter s,
Km

K,n Ewjiffjibm(8)

vj(s) = __wjib'_(s) gj(s) = K..

i=0 Ewjibm(8 )

i=O

Then Eq. (1) together with Eq. (5) constitutes a surface patch parameterized in s and t as follows:

Kn

__.vj( s)ffi( s)b'_( t)

= ,=oKn

__vj( s )b'_( t )
i=0

K,,, _ wjiPjibm(8)

.. m i=0

j=0 [i=o _ wjib_'(s)
L i=o

m

j=O ki=O .I

b'_(t) K. Km

E E wjifjibm( s)b_( t)

_ j=0i=0
K,, K,,,

j=0i=0

(6)
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with/_j beingthe control points and wi.i the weights.

with

For fixed t, Eq. (6) may be written as

gn

n j=oI_"J,bJ(t) K. ] b';'(_) '_,. .

,=oi,=o I
fi(_) = P(s, t) = L j=o j =

wjlb_'(t) bT'(_) _u,(t)bT'(_)
i=0 i=0

grt

ui(t) = y_wjib'](t)
j=O

gn

_,(t) = j=0
K,_

_wj,b'_(t)
j=O

Equations (7)-(8) define another set of curves parameterized in s for fixed t, i.e., for fixed t,

grn

_-_ ui( t )f_i( t )b'_ (s )

#(_1 = i=o
Km

__,_,,(tlbT'(,)
i=O

with ui being the weights, f_i(t) the control points, and b_(s) the B-spline basis functions.

(T)

(8)

(9)

In RAGGS, all the surface grid generators are formulated in the 3-D physical space, i.e., the grid points

are computed directly in terms of the three Cartesian coordinates, x, y, and z. These space points are

then placed exactly on the nearest quilted surface point by iterating for the patch number and parametric

variables. A key element in a formulation using discrete patches is the boundary data, which is a description

of how the parametric variables change as one crosses from the boundary of one patch to the boundary of
an adjacent patch.

Definition Of Active Region Of Patch

As mentioned before, a surface is descibed by a quilt of Bezier patches or NURBS, possibly with trim

curves. Each patch is parameterized in s and t. The untrimmed domain of each patch is so < s < sl and

to _< t _< h, where usually so = to = 0 and sl = tl = 1. Trim curves (if any) are nonintersecting Bezier
curves or NURBS forming closed loops in the parametric space of a patch.

t , • ,

Here, C_(a) is the ith parameterized trim curve, a is the parameter, and n is the number of trim curves.

The entire domain of an untrimmed patch is defined to be active. Patches which have trim curves have

both active and inactive regions. By convention, the active region of a trimmed patch is the region that lies
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on the left of each trim curve as a point advances along the curve. Here, left of a trim curve at a point Ci(a)

is the direction of the vector formed as the cross product (in the order specified) of the surface normal and

the tangent vector to the trim curve at Ci(a).

Patch Boundary Data

The patch boundary data is a description of how the parametric variables change as one crosses from

the boundary of one patch to the boundary of an adjacent patch. Boundary data for each patch is given in
terms of a series of parameter ranges for each side. Figure 2 shows a typical boundary connectivity between

two adjacent patches (in this case, patches p and q). For patch p, there may be data for ranges,

sb3 < s < sb, (11)

For each parameter range, an adjacent patch number and a connectivity matrix of six numbers are given. In

Fig. 2, we assume that a point has crossed the boundary at (sb, tb) with

tb = tl, so < sb < sx (12)

Then the boundary data for the side tb = tx and the range which includes sb will give the new patch number

q and the corresponding parameter values of the boundary point (tb, sb) on this patch q as follows:

sb = aH ax2 a13 tb (13)
a21 a22 a23

tb patch q 1 vatch p

where aij are the transformation matrix coefficients.

Trim Curve Boundary Data

Consider the trim curves of Eq. (10). Analogous to the patch boundaries, boundary data for trim curves

is given for a series of parameter ranges of the curve being crossed as follows:

abl < a < ab2

oh3 _< a <Oh, (14)

When crossing trim curve boundaries, the boundary data which includes the parameter range of the crossing

point ab will give the new patch and the corresponding trim curve on the new patch, and the parameter
value of the boundary point on the corresponding trim curve as folows:

I 1(1- b)
(ab)trim curve on patch q : al a2 _b trim curve on patch p

where al and a2 are the transformation matrix coefficients.
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Geometry Creation and IGES/RAGGS Interface

The basicmethodof geometryinput is throughIGESfiles created by any CAD system. The data in
the IGES file must be translated into surfaces in the form of NURBS and Bezier Patches. These are the

fundamental surface forms used by RAGGS. Translating the data into the RAGGS internal format may take

a number of different paths, depending on the type of data in the IGES file. A flow diagram of the process is
shown in Fig. 3. The processing of the IGES file yields four different types of information which are stored
for later use.

NURBS, entity type 128, contain the only type of surface data which may be used directly. The control

points and other data for these entities can be read directly from the IGES file. For other surface entity

types such as planes, parametric splines, surfaces of revolution, tabulated cylinders, and ruled surfaces, the

data must be converted into a NURBS or rational Bezier patch format. In all cases the parameter conversion

results in a surface which is mathematically equivalent to the original surface.

The second type of information used by RAGGS is information about curves. Curve entities may be in

the form of parametric splines, NURBS, or point data. The curve data may be used subsequently for trim

curves, surface generation, (surfaces of revolution, tabulated cylinders, ruled surfaces, etc.) or they may have
other uses. Surface generation using point data involves curve fitting. This may result in a surface which is

not exactly equivalent to the surface used to generate the points.

Trimmed surface data is the third type of information which is retained and processed for later use.

When combined with the surface and curve data, this data may be used to create the information necessary

to define the active and inactive domains on each patch. This allows the trimmed surfaces to be displayed
and to create grids which cross the trim boundaries.

Ruled surface information is the fourth type of data which is stored. This data is combined with the

curve data to create additional surfaces parameterized in the form of Bezier patches or NURBS.

A file containing the patch information and the related boundary data read by RAGGS is referred to as
a RASCAL file.

NUMERICAL TOOLS

Various numerical tools which are fundamental to our grid generations are described herein.

Projecting A Point On A (Trimmed) Surface

h point on a quilted surface may be identified by (p, s, t) with its position vector computed by/_(p, s, t).
p is the patch number. For a given patch number p, s and t are the patch parametric variables and/_ is a

Bezier patch or NURBS taking the form of Eq. (6). Let _" denote a space point. Then, the square of the
distance between/_ and _'is given by

d= [R(p,s,t)- r_. [/_(p,s,t)- r_ (16)

The projection of _'is defined to be the point /_ that minimizes d of Eq. (16).

A local maximum or minimum distance is found by taking partial derivatives of d with respect to s and
t as follows:

R," [_'- R] = 0 =- f(p,s,t) (17)

Rt" [_'- R] = 0 - g(p,s,t) (18)
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Here, the subscripts s and t denote the derivatives with respect to s and t, respectively. Applying Newton's

iteration method, we obtain

f, As +ftAt -- -f (19)

g, As + gtAt = -g (20)

where As and At are the changes in s and t, respectively. Eqtmtions (19) and (20) are solved for (As, At)

at fixed p. (s, t) are then updated as follows:

,Q+, _ { ,Q + D(IA*I - _) + _]*ig"(A*) if IA,I > _ (21)- s0 + As if IA*I ___e

F+ 1 { tQ + D(IAtl- e) + e]sign(At) if IAtl > e (22)= t Q + At if [At[ <_ e

Here, w is the relaxation factor, _ (typically, 0.02) is the cut-off parameter and the superscript Q denotes the

Q-th iteration.

During iteration, the patch number p is treated as a parameter and updated only if (s, t) is outside the

active region of patch p. When the calculated (s, t) is outside the active region, the patch boundary data
and the trim curve boundary data (if any) are used to find the adjacent patch to update p and (s, t) for the

next iteration. In the case of patch boundary, Eq. (13) is used. In the case of trim curve, Eq. (15) is used

to compute ab on the trim curve of the adjacent patch. The physical space point computed at ab on patch

p is projected onto the trim curve on the adjacent patch using the computed ab as the initial guess. The

corresponding (s, t) on the adjacent patch is determined by Eq. (10). Then the computed (s, t) is used to

continue the iteration.

Projecting A Point On A Curve And Distance Between Curves

Consider two parametrically defined curves, r_t) and ((r), each taking the form of EQ. (1). The square

of the distance between _t) and ((r) is given by

At any point ((r) on the second curve we define the separation between the curves as the minimum distance

d of Eq. (23). This is found by taking partial derivative with respect to t while fixing r as follows:

_'t(t)" [r-'(t) - ((r)] = 0 - f(t, r) (24)

Applying the Newton's iteration method, we obtain

ftAt -------f (25)

or

where At is the change in t.

At =
Ct•fi+ • ((r)]
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Along the curvestherearea seriesof extrema where the curves are locally separated by a maximum or

minimum distance. At these points, the partial derivative of Eq. (23) with respect to r vanishes at fixed t
as follows:

where t(r) is defined by the solution of Eq. (24) at fixed r.

Applying the Newton's iteration method, we obtain

= 0 = f(t(r), _) (27)

or

f_r = -f (28)

= -(_tt_.- (r) •(e- () (29)
Ar (Gt_,.+Gtt__(,,).(_._O+(Gt_(,_).(Gt,_(_)

Here, t¢ and t_ may by evaluated from Eq. (24). For example, t_ is evaluated as follows:

e,, . (e- () + e, . _
t. r

So we can choose a r, iteratively solve for t and _"from Eq. (26), and then get Ar from Eq.

process continues until Ar = 0.

Projecting A Point On A Surface Curve

(30)

(29). This

Given a point in space rand a point on a parametrically defined curve, R(s(r), t(r)), on a surface/_(s, t),
the square of the distance between/_ and _'is given by

A local maximum or minimum distance is found by taking partial derivative with respect to r as follows:

Applying Newton's iteration method, we obtain

f_Av = -f (33)

or

where

g, = g,,, + g,t, (3s)

g_., = g,s_.._+ Rtt,, + [/_,,s. + R,tt,]s._ + [Rtss, + Rttt,]t, (36)
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Curve And SurfaceIntersections

Considera curve_(u), anda surface/_(s,t). At an intersection between C and R we have

C(u)- g(s,t) = 0 - f(u,s,t) (37)

constituting 3 equations in 3 unknowns, u, s, and t. Following the Newton's iteration method, we derive an

iterative process as follows:

-C,(u)Au + _,(s,t)As + _t(s,t)At = C(u) - _(s,t) (38)

Isolating terms with cross and dot products, we have 3 equations,

e_(_)-[_,(_,t) × _o(_,t)]A_ =

e_(_). [_°(_,t)× ,q,(s,t)]At =

Solving these equations, we have the iterative process,

AU --
C..a C..a

lq°(s.t), x

Co(.)" ×

(39)

(40)

(41)

At : _'" [/_. X fl (42)

since

Cu" [/_s x/_t I = -C,," [/_tx/_.] =/_," [/_t x Cu I = Ct,'n (43)

where _ =/_0 x/_t is the surface normal at (s, t), and f = C-/_. For a quilted (trimmed) surface, patch

number p will enter the iterative process and play the same role as that in section "Projecting A Point On

A (Trimmed) Surface."

Surface And Surface Intersections

When surface intersections are not given by trim curves, an intersection must be computed. Two surfaces

generally intersect along a curve or curves in space. Initial points on any intersection curves may be found

by creating a mesh of curves, usually constant parameter curves, on one of the surfaces, and then finding the
intersection of these curves with the other surface. The mesh must be of sufficient density to find at least

one point on all curves of intersection, but not too dense and causing an inordinate number of computations.

When a point on any intersection curve is found, further intersection points axe easily created along this
curve. This curve may then be described parametrically by fitting an interpolating function through the

generated points. This procedure is followed for each curve of intersection.

Consider two surfaces given by the equations

/_a = 15(s, t) (44)

_q_ = _(_,v) (45)

each taking the form of Eq. (6). At an intersection point, we have 3 equations in 4 unknowns s, t, u, and v.

ff(s,t)- t_(u,v) = O = f(s,t,u,v) (46)
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FollowingNewton'siteration method,wehave

f ,(s,t)As Jr fit(s,t)At - Q,,(u, v)Au - Q,,,(u, v)Av = -.f

Since the system is overspecified, we need another equation for a unique solution.

(47)

Holding one of the paramters constant reduces the problem to a curve and surface intersection. Holding

a parameter constant is also useful for finding a point on a particular intersection curve, such as the patch

boundary. We could also hold the parameter constant which maximizes the denominator of Eq. (42) for the

curve and surface intersection. Another way is to approach perpendicularly to the intersection curve along
one of the surfaces. The tangent vector to the intersection curve _, is given by,

= _p x _Q (48)

where _p and _q are the local normals at (s, t) and (u, v), respectively,

_p=P, xP,, _q=O_×O_ (49)

The movement vector on surface P is given by fisAs + fitAt. The trace of the movement may be written in

parameterized form as follows:

with the direction of movement constrained to the normal of the intersection curve, i.e.,

e. (P.As + _at) = 0 (51)

Now, the problem has been reduced to the intersection of curve C(s) and surface Q(u, v). Following section

"Curve And Surface Intersection" and from Eq. (42), we have

c..[¢x:1
d, .% d,.%

Here,d, maybecalculatedfromSqs.(50)-(51)_ follows:

(e.,_)P, - (_. P,)_

Since

_" = d, .% (52)

= (_. p,)(p,A_+ _,At)

= [(_. _)P, - (_. L)_] as (53)

= [(_v x %) x _vla_ (54)

(_. p,)c,. _e = [(_p x _Q) x _p]. _Q = (_v x _Q). (_v x _Q) (55)

we cannot have a nonzero denominator unless ffp x 6Q = 0, which means the surfaces are locally parallel

and there is no intersection anyway. Substituting in the above we get the iteration process,

(_v x _)-(_e x _e)

,,, = [¢x4.o. (-)
(_,v x _,Q). (_p x _,Q)

[(,_,,x ,_,_)x ,_,,].[go x f-]
Au (58)(_e x _,Q). (_p x _Q)

[(_px_)x _p]. [_. x zl
Av (_9)(_e x _e) •(_e x _e)
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As previously defined, _p and _Q are in the direction of the local normals.

_p=PoX_, _Q=_x_, f=P(s,t)-_(u,v) (60)

When the convergence is satisfied, the next point may be found by marching Mong the surfaces in the

direction of the tangent vector _ = JR X _Q, and iterating again. Along the tangent vector,

(61)

or

Ag= O_a_+O_A_ r (62)
= _-_Aa

where o is the arc length. Then As and At along the intersection curve may be calculated by the vector

cross product of Eq. (61) and 16° and/_,, respectively,

_(f, ×f,)as _,× [(_°×_,)×_] a_ (_,×_)(_,. _)_ (63)

As = -( Pt " _Q ) _-_r7a (64)

a_ (65)
At : (;3._Q)]__

Similarly, Au and Av are obtained by the vector cross product of Eq. (62) and Q_ and ¢_,, respectively,

. Aa (66)

_..aa (67)

Here, a_ is computed as follows:

A_ = _.as + fiat + "7,,Au + ¢_hv

(68)

Surface And Plane Intersections

For the user's convenience, a space plane is specified by a set of three non-colinear points or by a reference

point and a normal to the plane. Intersection between a quilted surface and the user-specified plane is done

exactly in the same manner as that described in section "Surface And Surface Intersections" once the plane

is represented by a quilt containing a single patch.

SURFACE GRID GENERATION

Both structured and unstructured grid generators used in RAGGS are briefly described in this section.

References will be cited for readers who are interested in details of the numerical algorithms actually imple-

mented for the surface grid generations.
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Structured SurfaceGrid Generation

TFI Method.--The transfinite interpolation (TFI) of Ref. 2 is coupled with the space point projection,

Eqs. (16)-(22), to determine the interior grids of a 4-sided block. A subsection approach is employed. The

approach allows a 4-sided block grid be calculated subsection by subsection. Each subsection is defined by

its two opposite diagonal points and can easily be specified interactively by point-and-click. A subsection

grid is computed in two steps. First, the 4-sided subsection grid is calculated by TFI based on the sectional

edge grids. Second, Eqs. (19)-(20) are used to project the TFI grids onto the quilted surface. At each point,

a set of initial guesses (p, s, t) is formed by gathering all the available values at immediately adjacent grid
points. Additional sets of (p, s, t) may also be specified by user. The solution is taken to be the one that has

the minimum distance among all the calculated solutions.

When a grid is generated on a single patch, TFI may be optionally applied to the surface parametric

variables. In this case, the grid position vectors are evaluated directly from the patch considered using the
TFI interpolated values of parametric variables.

PDE Method.--The elliptic grid generation system on arbitrary curved space surface can be written, in
tensor form a, as follows:

2 2 2

_ ggmnf'_.W, + _ gg'mP.F_. - gH_ = 0
m=ln=l n=l

(69)

Here F is the grid position vector, _i are the curvilinear coordinates, Pn are the grid control functions, git

is the contravariant metric tensor, and g = det(glj) with go the covariant metric tensor. H is the twice

of the surface mean curvature and ff is the unit surface normal. Equation (69) is solved numerically using

the relaxation methods described in Ref. 4 once the differential operators are replaced by central-difference

operators. Equations (19)-(20) are used to snap the solution grid points onto the quilted surface at the end
of each iteration.

The grid control functions Pn are evaluated at the 4-sided block edges and the boundary values are inter-

polated into the field. Both Thomas/Thomas-Middlecoff's method s,s and Sorenson's method 7,s have been

implemented for the construction of orthogonal boundary grids. However, Sorenson's method is implemented

based on Thompson's method of Ref. 2 with the following two modifications. One, the central-difference

operator is used to approximate the second-order derivatives normal to the boundary instead of the one-sided

difference operator. Second, the grid control functions are updated immediately after the contributions from

a given orthogonal boundary section have been evaluated and the control function increments are evalu-

ated against the most current values. The first modification provides a consistent numerical method in the

sense that both the grid position vector and control functions satisfy the same governing equation as the

solution converges, and a grid initially orthogoanl will remain and be returned as the solution. The second

modification has provided a more stable iterative process.

Similarity Method.--An existing grid may be fine-tuned to have a similar or identical distribution in a

specified base variable, the arc length or one of the three Cartesian coordinates, along a specified coordinate

direction. To accomplish this, the edge distributions of the specified base variable are interpolated into the

field. Then, the grid points are re-evaluated line by line in the specified coordinate direction and projected

onto the quilted surface. This can provide a simple means of achieving a cylindrical-coordinate-like grid.

Also, it can provide panels on an aircraft configuration with constant spanwise or axial sections as required

by some panel codes.

Marching Method.--A grid may be constructed on a quilted surface from a given line grid (open or
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closed) by marching in the direction normal to the line segment with a specified step size. The marching
direction is the direction of the vector formed as the cross product (in the order specified) of the surface

normal and the tangent vector to the line segment.

Smoothing.--An existing grid may be smoothed by replacing each of the interior points by the averaged

value of its adjacent grid points. The number of passes of smoothing is specified by the user.

Unstructured Surface Grid Generation

Details of our unstructured grid generation algorithm may be found in Ref. 9. Briefly, the technique

is based closely on the Lfhner-Parikh 'sl° data structures and the 2-D advancing front triangulation scheme

described in Ref. 11. However, the implementation is made in the 3-D physical space coupled with the

space point projection, Eqs. (16)-(22). Interactively, a grid generation starts with a rectangular octree box

specified just big enough to cover the entire region to be triangulated. The advancing front is constructed

automatically as the user is pointing and clicking line segments on the screen. During triangulation, every new

nodal point is introduced to form a nearly equilateral triangle and satisfy the mesh consistency requirement
with a base selected from the front. Equations (19)-(20) are used to iteratively locate the new nodal point

on the quilted surface.

Since the unstructured grid generation is based on the same geometry database as that of the structured

grid generation, geometry manipulators and domain blocking tools developed for structured grid generation
can be used directly. With this new capability, RAGGS provides a unique environment where both structured

and unstructured grids can be generated and manipulated on a common geometry database.

SAMPLE CASES

Sample cases are presented herein to demonstrate the capabilities of RAGGS in handling trimmed surfaces

and generating grids on an unstructred quilt of patches and/or trimmed surfaces.

Figure 4 demonstrates the capability of RAGGS to display trimmed surfaces. Shown in the figure is a

portion of an impeller. The geometry is defined by a series of trimmed surfaces. Figures 4-(a) and (b) show
the shaded displays of the untrimmed and trimmed patches, respectively. One can hardly picture what the

geometry would look like from the untrimmed surface display in Fig. 4-(a). But it is clearly shown in Fig.

4-(b). Figures 4-(c) and (d) show how the two patches corresponding to the front face and the right side of

the geometry are discretized for display purposes. In RAGGS a structured grid is used to discretize the patch

in the parametric space with the grid size adaptive to the local curvature in each direction of the parametric
variable as shown in Fig. 4-(c). For a trimmed patch, the active region is automatically triangulated in

parametric space, using the advancing front technique of Ref. 9, with the trim curves as the initial front.

Figure 4-(d) shows the triangulation of the active regions of the two patches shown in Fig. 4-(c). It may be
noted that in RAGGS the trimmed and untrimmed displays can easily be toggled on and off. Also noted is

that no additional patch definition is given to the trimmed patch and the definition of the original untrimmed

patch is used for the geometry.

Figure 5 demonstrates the capability of RAGGS for generating structured and unstructured grids on
unstructured quilts of patches. Figure 5-(a) shows a B-1B forebody with fins. Four quilts are shown here:

the upper and lower body quilts and the upper and lower fin quilts. No trim curves were provided so a

surface intersection was computed between the body and fin quilts. The irregular arrangement of patches is

clearly indicated by the wireframe display in Fig. 5-(a). The calculated structured and unstructured grids

are shown in Figs. 5-(b) and (c), respectively.
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Figure6 demonstratesthe capabilityof RAGGSfor griddingon trimmedsurfaces.Figure6-(a) showsa
planeanda bump(part of semi-sphericaisurfacerepresentedby NURBS).Thefour edgegridsarespecified
entirelyon the fiat plane,and the interiorgrids aregeneratedwhileconsideringthe trimmed surfaces.As
shownin Fig. 6-(b), the interior grid pointshavebeenproperlypositionedon the trimmed patches.It is
notedthat the unstrimmedsurfacesaretheonly surfacesusedto definethe geometry.

CONCLUSIONS

Capabilityof generating structured and unstructured grids directly on CAD generated geometry with/whitout

trimmed surfaces has been described and demonstrated. Both geometry integrity and patch structure are
retained from IGES file to CFD geometry database.
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(a) Shaded display of untrimmed surfaces (c) Structured Polygons for untrimmed patches

(b) Shaded display of trimmed surfaces (d) Triangulation of trimmed patches

Figure 4.-Capability of displaying trimmed and untrimmed surfaces.
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(a) Bezier patch-defined B-Ib forebody
showing unstructured quilt of patches

(c) Unstructured surface grid

(b) Structured surface grid

Figure 5.-Capability of structured and unstructured grid generations on unstructured quilt of patches.
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(a)Patch-definedplaneandbump

(b)A structuredgridonthetrimmedsurface

Figure6.-Capabilityof griddingon trimmed surfaces.
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GEOMETRIC GRID GENERATION

David Ives

Pratt & Whitney
East Hartford, CT 06108

ABSTRACT

This paper presents a highly automated hexahedral grid generator based on extensive geometrical
and solid modeling operations developed in response to a vision of a designer-driven one day
turnaround CFD process which implies a designer-driven one hour grid generation process.

THE VISION

To affect the everyday aerodynamic design processes, a CFD system must be capable of generating
the grid, setting the flow boundary conditions, solving for the flow, and completing the graphics and
performance post processing in less than one 20 hour period, leaving at least 4 hours for the
designer to conceive and define a new geometry to improve on the current design. This new design
may have a different topology than previous cases. The flow solver unattended running occupies 16
hours of this cycle. The 24 hour design-analysis cycle seems to be natural human cycle, and allows a
large number of design iterations. Each of the CFD system components must be sufficiently
automated to allow the designer to operate them with minimal specialized training and support from
CFD "experts". This one day tumaround is also described in Reference 1 which states: "In

aerodynamic design work for commercial aircraft, CFD calculation results for aerodynamic analysis
should be produced ... with short turnaround times (for large, complex calculations, 1 day, say)".
Likewise, Reference 2 states "The significance of this is that the total elapsed time for redesigning and
arriving at a wing which meets all aerodynamic and manufacturability requirements can now be
envisioned to approach the order of one day!"

These requirements break down to allowing an hour for high level automated grid generation, which
is the focus of this paper. The high automation level reduces variation in grids generated by different
users. With this constraint in mind, a grid generation system was developed which includes only
technologies compatible with the one hour limit. This approach essentially starts from the desired

market-driven goal and works backward to select the technologies used, rather than making
continuous incremental improvements to current technology to work forward toward the one hour
requirement. This is a high-risk, high-payoff approach. The initial demonstration described below is
for Euler flows only; similar viscous flow grid technology is currently being developed. This approach
can also be used with conventionally generated grids to quickly add geometric details.

PROCESS OVERVI EW

The geometric grid generation process used here typically starts with a single component body-
conforming base grid from a conventional grid generator, as illustrated in Figure 1. A surface defining
additional geometry to be modeled, shown in Figure 2, is then embedded in the base grid. The first
embedding step is to close the surface as in Figure 3. Each base grid cell is then examined to
determine if it is inside or outside the closed surface; if outside, it is retained and if inside it is marked

as solid (inactive in the CFD flow solver). The process at this stage is illustrated in Figure 4 where the
embedded surface is represented as a stairstep. This stairstep surface is then distorted by moving all
nodes to the surface of Figure 2. A smoothing is coupled with this process; the resulting hexahedral
grid in Figure 5 conforms to the body. The following examines each of these steps in detail.
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INPUT PROCESSING

The geometric grid generation process assumes that a valid boundary representation (B-rep) solid
model which completely specifies the space to be gridded has been produced by the CAD system
used by the designer.The B-rep solid model surface is received from the CAD system as a large
number of small triangles. The most popular format for CAD output in this form is a sterolithography
file, which is a simple universal standard (in practice) currently supported by most major CAD

systems. This allows us to use our current CAD system to process IGES input. The NASA IGES and
NGP translators of References 3 and 4 may also be used to provide a separate IGES interface.

In practice, the quality of these solid models varies with the quality of the CAD system, and some
clean-up operations are currently necessary. As CAD systems mature, the need for these separate
clean-up operations will decrease, being transferred to the CAD system itself. The current grid
generation system supports the following high level clean-up and manipulation operations on the
input triangle surface primarily in a UNIX command line controlled mode:

1) interactively select surfaces/patches of object to be gridded
2) cap open surfaces under interactive user control:

a) cap single open or closed curve
b) cap region between 2 closed curves

3) remove small details deemed unimportant by using capabilities 1 & 2

4) topological analysis of input surfaces to verify B-rep solid model integrity
5) merge points differing within a tolerance
6) reflect surfaces about symmetry planes
7) extend open surfaces to resolve intersection tolerances
8) Boolean trim, union,, etc. of objects - i.e. trim a pylon surface with wing and nacelle

surfaces, then union them to obtain a single wing/pylon/nacelle surface

Please note that most of the above operations are very high level, usually requiring at most a single
number to describe the operation, and thus are amenable to command-line control. The exceptions
are options 1-3 which require a visualization and selection of the different surfaces and patches. The
SUN "leotool" visualization system is used in a separate synchronous UNIX process to select the
surfaces and patches. All that is required is to write a visualization file in the Wavefront ".obj" format
which separates the surface/patch components into groups. These groups can be toggled on and off
in leotool, allowing each group to be identified for control of the surface/patch selection process.

Another way to receive a B-rep solid model is to read a VSAERO panel method input file of Reference
5, which can be produced by other means such as the ICEM system of Reference 6. Such surface
models tend to be of high quality and require only very modest or no clean-up to achieve a perfect
solid model surface specification.

The basic philosophy is to let the CAD system or other tools which the designer uses on a daily basis
specify the boundaries of the space to be gridded. This approach reduces training and overall
complexity as the designer does not need to learn two different CAD systems, one for everyday work
and the other for CFD only. It is noted that the resulting grids are patch-independent; they depend
only on the B-rep surface as defined by the triangulation used to create the sterolithography file and

not on the B-rep patch edge locations unless the user specifies specific patch edges to retain in the
final grid.

Base add. - The flow region is determined by embedding the input surface in a base grid, which can
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range from a simple uniform Cartesian grid composed of a rectangular collection of cubes to a grid
generated by a current interactive grid generator such as ICEM, NGP, or others.The embedding has
three steps: automatic blocking, surface snapping, and quality improvement. These steps are

discussed below. For purposes of this discussion a "solid" point, edge, face, or cell lies in a region in
which there is no flow, and a "fluid" point, edge, face, or cell lies in a region where there is flow. A
"computational space smoothing" refers to moving a point to the average position of all points linked
to the point. A "physical space smoothing" refers to moving a point to satisfy a Laplace equation on a
stencil involving all points linked to the point and requires knowledge of which finite difference stencil
points are opposite each other as described in Reference 7.

AUTOMATIC BLOCKING

The geometric grid generator automatically determines the required blocking in a batch workstation
run on using UNIX command-line options to select the desired blocking rules. The blocking is done

on a cell-by-cell basis, which is simple for a computer, rather than blocking on large rectangular
collections of cells as is done in interactive grid generators. The normal blocking rule used here is a
simple local geometric test based on inside/outside tests of the 8 vertices of each cell and on

intersection tests for 12 edges of each cell. This blocking rule is:

1) if 5 or more vertices are inside the surface, then the cell is solid
2) if 4 vertices are inside the surface and the average of the 8 vertices is inside the

surface, then the cell is solid

3) if 4 or more edges intersect the surface ,then the cell is solid
4) otherwise the cell is fluid

The intersection tests in the blocking rule allow the correct detection of thin surfaces such as the
trailing edge region of wings. A more sophisticated blocking rule could count intersections along each
edge. If there are two intersections and both end points of the segment are in a fluid region then the
edge is solid, while if both end points of the segment are in a solid region then the edge is fluid.
These edge states could be included in determining if the cell is solid or fluid. This would allow the
detection of cracks as well as thin trailing edges.

The inside/outside tests are based on ray tracing as described in Reference 8. If a ray from the point
being tested to positive infinity in the Z-direction intersects the surface an odd number of times then
the point is inside, otherwise it is outside. In practice, rays are sent in two opposite directions and the
code checks to verify that both rays agree on the containment. If they do not agree, then a new
direction is chosen and the process is repeated. For difficult cases (ie: cases where tolerances are
nearly the same size as roundoff error) an option is included to require consensus among six
orthogonal rays issued from the point to infinity. Logic is included to ensure that a ray hitting a triangle
edge is given half an intersection count for each triangle independent of roundoff by the use of
special symmetric coding. Of course, each edge is shared by exactly two triangles since we currently
require two-manifold surfaces. A new direction is chosen if a ray hits a triangle vertex, although we
could have included logic to give an intersection count of l/N, where N is the number of edges
sharing the vertex. The technology described here is equally applicable to Chimera grid generation,
having much in common with the overlapping stencil generation described in Reference 9.

Handling ob!ects which extend outside base grid. - There are cases in which the object to be gridded
extends outside the base grid in some areas, and is inside or on the base grid surface elsewhere. For

each stairstep cube with a quad face lying on an external block boundary (ie: the quad occurs only
once), which we denote as a "candidate quad", we must decide if the face is to be retained in the
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stairstep surface quad list. This is controlled by an overall control which instructs the system to either
retain all of the candidate quads, or remove all of them. A local control, applied on selected base grid
block faces, instructs the system to do the opposite of the overall control. In practice, the overall
control is usually set to reject all candidate faces and the local control is applied to retain quads in a
very few block faces.

Computational soeed. - The key issue here is computational speed in determining the containment of
typically one million points within, and the intersection of three million line segments with, a surface

that may be composed of up to 100,000 triangles. Fortunately, the extensive literature of computer
graphics, data structures, and searching contains efficient ray casting and searching algorithms
(References 8, 10-13) which require only a few minutes of elapsed time on a workstation to perform
these operations even for a curvilinear base grid. It is surprising that these speeds can be achieved,
given the very large operation counts (3,000,000 times 100,000) that a straightforward approach
would require. Techniques such as those in Reference 14 can often substantially reduce the number
of triangles required to define a surface to a specified tolerance by selectively removing triangles in
regions of low curvature, substituting a smaller number of large triangles for a large number of small
triangles. This can help in the initial code development phase by making acceleration techniques less
crucial at first. The methods used in the current work are based on sorting, classifying, and range box
tests to preselect candidates for geometrical operations. It tums out that the time and storage required
for these processes is only weakly (logarithmically) dependent on the number of triangles defining the
input surface, so we can easily cope with 100,000 input surface triangles. Thus we have not yet
added the capability to reduce the number of input surface triangles which became available after the
current grid code development had progressed beyond the initial stages. However, it seems that this
technique would be well suited to help clean up input surfaces which often have poorly distributed
(both in size and in aspect ratio) triangles defining the surface.

SURFACE SNAPPING

The next step is to specify the "goal surface" which is the portion of the input surface which lies inside

the surface of the base grid. This is achieved by using the base grid outer surface, expressed as a
collection of triangles, to clip (in a Boolean sense) the input surface, which is also expressed as a
collection of triangles. This operation is necessary only if the input surface extends beyond the base
grid surface, otherwise the goal surface and the input surface are identical. The surface shown in
Figure 3 extends outside the base grid surface (ie: it extends inside the fan cowl.) The base grid outer
surface is obtained by loading each of six faces of each base grid cell into an array, then removing
those faces which occur twice in the array to leave only those (surface) faces occurring once in the
array.

Association. - A geometric and topological analysis is then performed on the goal surface to identify
corners, apexes, paths, circuits, and boundaries. A sketch describing these features is included in
Figure 6. A comer is a point in the goal surface which must be represented as a point in the snapped
surface. Sharp edges in the snapped surface must lie along edge paths in the goal surface. A sharp

edge is formed when two adjacent input triangles meet at a shared edge with less than a user-
specified included angle. A path is a collection of sharp edges. Paths may either stop on the surface
(called a pendant path) or terminate at a corner. A comer is defined as the meeting of three or more
sharp edges or the isolated end of a pendant path. An apex is the tip of a conical surface. A boundary
is an intersection curve (if any) of the input surface and the base grid surface. A circuit is a collection
of paths surrounding a surface. To retain geometric and topological fidelity, comers and apexes in the
input surface must correspond directly to points in the generated grid. Likewise, paths and

boundaries in the goal surface must correspond directly to interior edges and boundary edges in the
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generated grid. For geometrical fidelity, it is undesirable to allow a sharp edge to be represented by
the diagonal (rather than the edge) of one of the cells. The process of associating stairstep surface
vertices with the matching input surface comers, apexes, paths, boundaries, and the surfaces
enclosed by the circuits is called "association". The most difficult task in the current implementation of

geometric grid generation is the automatic association of paths on the quad surface with the sharp
edge paths on the input triangular surface. For base grids much finer than the path separations, this
task is straightforward and reliable. It becomes difficult when the distance between paths is small
compared to the base grid resolution.

Currently, the association is done as a three step process. In the first step, a "bead" is swept along the
triangle path, and the quad surface points closest to the bead are collected. In the second step,
adjacent duplicate quad points are culled and a connected path is built by linking points which are
adjacent in the quad faces. Then the remaining gaps are connected up to a distance of three links (six
links near the path ends). Then remaining gaps are connected across quad diagonals if necessary.
All of this is done under the constraint that no existing quad path be crossed. In the third step,the quad
path is improved by removing self-canceling segments and special handling is applied to the path
ends where multiple paths may meet.A refined version of this method replaces the bead point by the
closest intersection of the triangle surface normal at the bead point with the quad surface. This uses
additional information (ie: the normal vector) to distinguish between possible quad paths which lie
close to each other. This logic is essential at a wing/fuselage intersection.

The point associations are established first, with interior and boundary points on the goal surface

(corners or apexes) being associated, respectively, with interior and boundary points on the stairstep
surface. The association criteria is based on the shortest distance between points in the stairstep and

goal surfaces which are eligible to associate. As soon as a point is associated, it is flagged as
ineligible for further association. Then boundary edge curves in the input surface are associated with

collections of edges in the stairstep surface by associating eligible stairstep vertices with the input
paths. Interior edges are then associated between the two surfaces in a similar manner. Finally the
areas contained within closed circuits established by collections of the goal surface sharp edge
curves (which are in tum collections of edges which are in turn linked collections of points) are
associated with vertices between the corresponding circuits in the stairstep surface. The result is a list
of corresponding points, a list of corresponding curves matched with collections of stairstep vertices,
and a list of corresponding areas associated with stairstep vertices. Corresponding paths for the
surfaces of Figures 2 and 4 are illustrated in Figure 7.The vertices in the stairstep grid surface are
then moved to their associated points by a process we call "snapping" (in analogy to the CAD
meaning of snapping), or the the closest point on their corresponding curve, or to the closest point on
their corresponding surface. The HEXAR grid generator from Cray Research described in Reference
15 also operates in this manner. This move-to-the-nearest-point operation is also referred to this as
"conforming", "projecting" or "displacement"(References 15-17).

The snapping process can result in distorted elements, so the curve snapping process is repeated
typically three times with a computational space smoothing inserted between each snapping step.
Finally the surface snapping process is repeated typically 9 times, with a computational space

smoothing between each snapping. All surface faces are quadrilaterals as can be noted from Figure
3., since all grid elements are hexahedra. A grid for a complex turbine blade geometry shown in
Figure 8. demonatrates that the many comers, edges, and thin surfaces are faithfully captured even
with a relatively coarse grid compared to the features. This case required under 20 minutes of
elapsed time on a SUN Sparc 10 workstation and involved an 85x67x88 base grid containing
501,160 points and an input surface specified by 7,904 triangles. The final mesh contains 29,115
hexahedra and 14,364 surface quadrilaterals. Some of these elements must be broken up further for
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use with current finite element structural analysis solvers as discussed later.

The above process was chosen to minimize the need for flow solver modifications. The only flow
solver modifications needed for our Euler flow solver were to add a fluid/solid cell flagging capability

and some logic to recognize the associated solid face boundaries. We retained our extensively
calibrated strong conservation finite volume block-structured capabilities as is. Our block structured
Navier-Stokes flow solver needed no modifications to use these grids to represent Euler flow

(blockage) boundaries, as will be illustrated later.

Other choices could have been made at this stage to go from a stairstep grid to a grid conforming to

the goal surface. Some of these choices are illustrated in Figure 9. One choice would have been to
cut the stairstep cells with the goal surface, producing grid cells with other than eight hexahedral
faces, as in Reference 18. This is a viable option for a solver that can handle tetrahedra or general

polyhedra, and is only a minor change to the previous grid generation procedure.

Another choice would have been to cut the stairstep cells with the goal surface and feed the required
areas and volumes directly to the flow solver as in References 19-20. In this technique the cells which
intersect the surface (shown as dashed lines in Figure 9) are flagged to receive special treatment by
the flow solver. Since most cells do not intersect the surface, this was shown in Reference 20 to incur
only a minor increase in flow solver computing time. Since extensive Boolean geometric operations
(clip, join, cut, union, diff) are already supported, this step would be easy to implement in the current
grid generator but would require flow solver changes that are more extensive.

Yet another choice would have been to specify a stairstep design rule similar to the one discussed

previously, but which defines all cells containing any solid point or intersecting any solid surface as
solid. We could then "pave" or triangulate the stairstep to fill in the region out to the goal surface as in
Reference 21. This introduces an unstructured grid layer at the surface and would have required a

significant change in our production Euler flow solver.

Finally, we could use a combination of all the above. The extra freedom brought about could improve
the grid quality near the surface and lead to "provable quality" grids as it has done for the tetrahedral
mesh approach described in References 22-24 and used in the ICEM 'qET mesher". Again, this
would require substantial changes to our current production flow solvers.

All of these approaches start with a base grid (Cartesian, curvilinear, octree embedded .... ), determine
containment of each cell, then perform operations only on cells near the surface (not throughout the

volume). We call these methods "Geometric Grid Generation" since they all involve extensive
CAD-like geometric operations which can be made very fast. Chimera grids also fit this category.

The goal surface creation and snapping operations nominally require the intersection of up to
100,000 input surface triangles with up to 100,000 base grid surface triangles, and the snapping of up
to 100,000 points to the closest point on a surface of up to 100,000 triangles. The operation count for
these processes can exceed 20 billion operations without using suitable data structures and search
algorithms. In practice, these computations can be accomplished in a few minutes on a workstation by
using suitably efficient methods (References 10-13). The snapping process is also accelerated by

sorting the points to be snapped by color, and snapping them to the associated triangles sorted by
color, where the color denotes to the surface to which the point is to be snapped. Randomly
reordering the triangles within each color accelerated the snapping further; as soon as a random
triangle gives a close distance, most remaining triangles are eliminated with a fast range check.
These procedures accelerated the calculations by a factor of 6 to 12.
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QUALITY IMPROVEMENT

The grid quality at this stage is excellent everywhere except for the distorted cells near the surface,
since the remaining cells are either cubes or base grid cells generated by a conventional grid
generator. There often exists considerable distortion of grid cells near the surface, leading some to
suspect that this process will never work in practice. This section discusses the steps taken to ensure
the grid quality control which makes the process work for Euler flows.

There are two steps to improving the quality. The first is establishing the proper predictive grid
measures for flow solver accuracy and stability. The second is smoothing the interior grid to enhance
these measures. The measures of grid quality are based first on the particular flow solver
requirements and second on some general geometric measures.

Our Euler flow solver requires a positive volume for every cell to run successfully. A predictive grid
measure called "flatness" is presented in Appendix A for finite volume Euler flow solvers. The flatness
of a cell is the height of a rectangular parallelepiped with a square base measuring one unit in width
and depth and which has the same ratio of "cell volume divided by the cell face area raised to the 1.5
power" as the cell. Our Navier-Stokes flow solver, due to existing special handling of cells near solid
surfaces, prefers to run with the grid as it exists at this stage with no or minimal interior smoothing. All
it requires is a positive Jacobian for all cells not at the surface.

Other measures of grid quality are well known in the structures community, while less common in the
fluid dynamics community. The basic measures supported here include the fundamental quad face
measures (skewness, taper, warpage, convexity, and aspect ratio) and the hexahedral cell measures
(edge angle, aspect ratio, twist angle) described in References 25-26 and currently used for finite
element diagnostics in the PATRAN 3.0 structural analysis system.

The interior (volume) points which are within a specified integer linking amount (typically 2 or 3) of the
snapped surface are also be smoothed using the technique described in Reference 7. This Laplace
smoothing in physical space can be used because the block structured base gdd structure is retained
in the geometric grid. This physical space smoothing is less likely to fold, since it is based on the
maximum principle, and also works better with high aspect ratio grid elements. The smoothing is
coded in a manner which makes the block intemal boundaries transparent to the smoothing process;
the internal block interface boundaries "float" with the smoothing. The data synchronization process
used in this smoothing is described in Appendix B. This smoothing may involve points which are on

inter-block boundaries where we need to know which of the six linked points surrounding the point to
be smoothed are opposite each other in the computational IJK space. A technique was developed to
determine opposite points, even in arbitrary interface configurations, as required by the physical
space smoothing formula. The "design rule" to determine which of the six linked points are opposite is
based on the simple observation that opposite points in different blocks do not share a common face,
while all other pairings of the six linked points share a common face. The "same-face" logic requires
only one page of coding. Any points which are linked to more than six other points, such as at the

centerline of a cylindrical grid, are not moved

In some situations, portions of the base grid surface which are outside the added input surface must
be smoothed as well, while constraining them to lie on the base grid surface. Without this extra
smoothing, grid folding may occur on original surfaces at the intersection of the snapped surface due
to the differing requirements of the stair-step containment decision (which is a 3D criterion involving 8
points and 12 edge segments) and the original surface points taken individually. This behavior

requires that we smooth the original surface near the snapped surface. This smoothing must smooth
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the original surface points distribution while keeping them within the original surface. It must also
keep the original surface points which lie on any original surface sharp edges on those sharp edges.
It must also not move original surface corner points. Those original surface points within a specified

integer linking amount (typically 2 or 3) of the intersection of the snapped surface with the original
surface are so smoothed. For the surface smoothing, the smoothed point is moved to the average
position of it's linked points and then it is snapped to a saved copy of the original surface such that the
outward normals of the snapped and original surfaces lie within 90 degrees. This normal logic

prevents "snapthrough" which may occur when the smoothing the base surface grid near the trailing
edge of a thin nacelle cowl where the circumferential grid size is much larger than the cowl thickness.
In this case the simple nearest surface logic moves the point through the thin trailing edge region to
the wrong surface .Edge points are smoothed by moving them to the average of the two linked edge

points, and then snapped to a copy of the original edges. This computational space smoothing works
well on the original surface and edges. There is no need to separately treat each edge path and each
surface as in the snapping module. All that is necessary is to separate the comer, edge, and surface
points and snap to either the set of all edge paths or the set of all surfaces.An example of this extra
smoothing can be noted on the top rear of the core cowl adjacent to the pylon in Figure 5.

The centroid/volume weighted Laplace smoothing described in Reference 27 was also tried in the

hope that the closer the smoothing matches the flow solver, the better. The flow solvers used so far
have all been finite volume flow solvers. This approach did not prove immune to occasionally

producing cells with negative volumes. All of the above smoothing methods can produce negative
volumes, particularly near concave surfaces. In that case, all of the support points and/or volume
centriods can lie outside the flow region and any weighting (be it computational space weighting,

physical space weighting, or centroid/volume weighting) can move a base point outside the fluid

region.

The major operation counts for the smoothing step consist of up to 1,000,000 Laplace volume
smoothing operations repeated typically 10 times and up to 100,000 surface snapping operations
repeated typically 10 times. These operations can all be completed in a few minutes on a workstation.

One characteristic of the current geometric grid generation method is that the vast majority of grid
cells are identical to the base grid cells, which are presumably of good quality. Only a few cells near
the surface can have difficulties as described above. One solution to this is to treat only these

relatively few cells individually along the lines described in Reference 15. In the pending
implementation of this method, the cell having the lowest flatness value is chosen and improved by
solving a optimization problem where the function to be maximized is the minimum flatness of the cell
and all directly abutting cells. The variables are the interior node positions of the cell to be improved.

Even the smoothed distorted elements near the surface currently often exceed the bounds set by
finite element structural solvers. Structural solvers may require a positive Jacobian at as many as 27

integration points. The geometric grid generation process can be modified by breaking up each

significantly distorted element into a collection of less distorted (more convex) elements using
published methods. One method, implemented here, breaks up distorted hexahedra into a collection
of wedges, pyramids, and tetrahedra. The applicability of this method depends on whether or not the
structural solver being used supports pyramids; some do not (at least easily). Pyramids are a crucial

matching element between tetrahedra and hexahedra. Sometimes this breakup approach leads to
the propagation of "pencils" of wedges all the way from a surface to an exit elsewhere on the surface.
Another method in Reference 17 breaks up distorted hexahedra into a limited number of hexahedra

all lying near the surface. The idea is to break up the distorted elements without adding a large
number of new elements.
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Flow solver data structures. - The NASTAR Navier-Stokes flow solver uses point "flag" values to
control boundary conditions. It examines a group of point flags to deduce where solid cells are. The
minimum solid cell configuration is a 2x2x2 cell; there must be at least two solid cells in each of the

three coordinate (index) directions for a solid to be detected. The Ni Euter flow solver uses cell "flag"
values to indicate solid cells, and uses cell information for the two cells straddling a face to determine
the flow algorithm (flow or no flow) to use for the face. It also uses an "index table" to assign boundary
conditions to each block face. This requires that all inflow and outflow cell faces lie on a block

boundary, but allows solid regions as small as one cell thickness in each direction. Both of these

techniques require the storage of flags approximately equal in number to the number of grid points.
An alternate technique is to assign flags to face elements of the cetts. Internal faces which share a

common set of four points need only be represented once, so this scheme requires the storage of
flags approximately equal to three times the number of grid points. However, this allows a thin solid
(such as a jet engine mixer) to be represented as a membrane of zero thickness. It also allows the

treatment of non-manifiold geometries and helps to keep track of inflow and outflow boundary
conditions. The geometric grid generator can produce grids suitable for all three of these flow solver
data structures.

DEMONSTRATION & VALIDATION

The first validation is the Euler transonic flow calculation in a 2-dimensional channel containing a
circular bump known as the "Ni bump" case. The results from a conventional curvilinear grid and from
the geometrically generated grid are presented in Figure 10. The geometric grid is distorted at the
bump surface, yet it accurately predicts the transonic flow even on this relatively coarse grid at a near-
choked condition.

The second validation is the Euler flow over a wing/pylon/nacelle where the pylon was geometrically
added to an existing wing/nacelle grid as illustrated in Figure 11. The excellent agreement between
the Euler calculations and NASA experimental measurements from Reference 28 at a transonic

section of the nacelle very near the pylon/nacelle intersection is shown in Figure 12. Another case
(not shown here) at a lower free stream Mach number shows excellent agreement with the VSAERO
subsonic panel method solution from Reference 29 and NASA experimental data for this case where
substantial wing/pylon effects exist.The author is grateful to Ron-Ho Ni who modified his Euler flow
solver described in Reference 30 to accommodate the flagging of fluid and solid cells for these
calculations, and to Bill Siddons, Bob Miller, and Ed Migrfaro who provided the wing/nacelle base grid
and the pylon geometry definition.

This technique was also used to predict the inviscid flow from the inlet of a hetcopter, into a plenum,
into a bellmouth, and finally into the inlet of a gas turbine engine. A fine grid is shown in Figure $3,
and flow direction vectors from an earlier coarse g_d (without a cylindrical pipe thro_h the plenum
,which was added to the fine grid) are shown in I_gure "f4.

As a demonstration of use with a Navier-Stokes flow solver, the grid generator was applied to predict
the flow blockage produced by inserting a probe in a compressor cascade blade row. The probe,
defined by an IGES file, w_i,s read into the Unigraphics CAD program which produced a
sterolithography file specifying Ille input surface. This probe _ added in an Eul_ flow mode (slip
flow boundary condition on the p_be) to a viscus cascade ba_l_ _rld. The base _ surface and the

snapped grid_ representation of the probe (as a sl_lded image) a_ illustrated in Figume 15. The author
is indebted to Tom Rogers, Bob Zachatlas; and Cl_Rhie for prc_iding the probe st.lface definition,
the compressor passage base grid, and instruction in running the _i_STAR Navier-S_el_es. flow solver
described in Reference 31.
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The final demonstration addresses structural grid generation. The example shown in Figure 16 is a
MARC finite element solution for the VonMises stress in a loaded bracket assembly. The distorted
elements have been broken up mainly into wedges. This example is included to demonstrate that

structural grids can be successfully generated by this method, so that coupled fluid-structural
solutions will be possible using geometric grids.

FUTURE DIRECTIONS

When this work was started, it was not known how good the flow solver predictions would be with

these grids. The accuracy has exceeded our initial expectations and the extensive geometric
operations required were successfully accelerated to reasonable times on a workstation.

It is anticipated that this technology can be extended to generate viscous grids by the process
sketched in Figure 17 with less technical risk than was incurred in generating the Euler grids. The
steps include generating a hyperbolic marching grid to a finite distance from the body as
in References 32-34, and then constructing a geometric Euler grid from the outer hyperbolic surface.

Then the geometric grid nodes on this surface are interpolated back to the body using the hyperbolic

grid cells as an interpolation basis, finally the combined grid is smoothed. Many capabilities needed
for this viscous extension are already coded for current grid generation capabilities. Examples
include modules for computing surface normals and modules to determine the distance from a point
to the nearest surface (including the surface identification number and the matching outward normal

requirement). Combining these with the considerable literature and existing programs for hyperbolic
marching grid generation is looked forward to with anticipation. It is noted that these viscous grids will
contain extra directionally structured hexahedral collections of cells and will require either that our
flow solvers be modified to match or that other flow solvers be used.

To reduce the current dependence on using simple conventionally generated base grids, it is

necessary to extend the geometric grid generation process to include adaptive grid technology. It is
expected that this will be straightforward due to the cell-by-cell approach used in the current
implementation. Then the initial construction of a base grid may be replaced by a simple automatic
coarse cubical grid enclosing the flow region, to be enhanced locally as needed.

It is noted that crucial enabling technologies allowed this work to be accomplished. These enabling

technologies include fast workstations with large core and disk storage, and the attendant utilities
such as make and dbxtool to manage and debug large coding projects. Another significant enabler is

the ability to view complex surface images on the desktop, such as with the SUN ZX card and
"leotool" graphics program. This project would have been unthinkable with the limited core shared-
mainframe hardware, next-day graphics, and remote character te..rm.Jnais of ten years ago!

CONCLUSIONS

This paper demonstrates that highly automated geometric hexahedral grid generation for unique
complex geometries can be accomplished in one hour on a workstation. The resulting grids yield
demonstrated accurate Euier flow simulations as compared to experimental data, panel method

calculations, and Euler flow simulations with standard curvilinear grids.

"Geometrical Grid Generation" is suggested as a descriptor for approaches that determine
containment on e. base grid and then operate only on cells near the surface to complete the gridding.
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APPENDIX A - FLATNESS

This appendix defines a "flatness" measure to predict the suitability of a grid cell for use with
finite volume solvers. Finite volume solvers distribute the flux entering all the faces to the
volume contained within the cell, so a likely measure relates the volume to the total face area.
Since volume has three dimensions, and area has two dimensions, we choose a form of

relation involving volume/areal.Sto produce a dimensionless measure. We also desire the
measure to vary from -1 to +1 and to have a simple physical interpretation. Such a definition of
cell "flatness" is:

VA=volu me/( I area I/6) 1.S=flatness/((1 +2"1 flatness I)/3) 1.5
This flatness is physically interpreted as the height of a rectangular cube with a unit square

base which has the same value of [volume/lareal l.s] as the element. The rectangular cube
has volume=flatness and area=(2+41flatnessl). The 6 in the formula ensures a flatness range
of -1 to +1. It is our experience that as long as the minimum flatness exceeds .02, the Ni Euler
flow solver of Reference 30 does not encounter grid difficulties. A flatness of -1 represents a
cube whose faces are oriented counter-clockwise-in (negative volume). Face areas are
positive by definition. A ratio of +1 corresponds to a cube whose faces are oriented counter-
clockwise-out (positive volume). A flatness of zero corresponds to a hexahedron with no

volume, for example a hexahedron with all its' vertices lying within a plane. The rate of change
of VA with respect to flatness is zero at Iflatnessl=l, so the simple VA ratio does not provide
good resolution for cells with Iflatnessl~l. The flatness equation can require the solution of a
cubic equation. For IVAI<.707, we use Newton-Raphson iteration to solve for VA, otherwise we
use the method described in Reference 35. The two-way implementation of the relation
between VA and flatness is given below to encourage wider use of the flatness measure. This
FORTRAN code is rapid, stable, and accurate to about +/- .000001.

FUNCTION FLATNESS (VA)

REAL*4 FLATNESS, VA, A1, A2, A3, Q, R, TH, S, ERR

INTEGER*4 I

IF(ABS(VA) .LE..707) THEN

FLATNESS- 0.

DO 1 I-1,8

ERR-FLATNESS/(SQRT ( (i. +2. *ABS (FLATNESS))/3. ) ) **3-VA

IF(ABS(ERR).LT.I.E-7) GOTO 2

S-SQRT ( (I. +2. *ABS (FLATNESS))/3. )

FLATNESSIFLATNESS-ERR* 3. / (1. -ABS( FLATNESS ) ) *S*'5

ELSE

All (I. 500-3. 375/VA*'2)

A2-. 750

A3-. 125

Q-SQRT((AI**2-3.*A2)/9. )

R- (2.*AI**3-9.*AI*A2+27 .*A3)/54.

TH- (ACOS (R/Q**3))

FLATNESS--2.*Q*COS (TH/3. +3. 14159265"4./3. )-AI/3.

ENDIF

FLATNESS-SIGN (FLATNESS, VA)

RETURN

END

FUNCTION VA (FLATNESS)

REAL*4 VA, FLATNESS

VA-PLATNES S / (SQRT ( (i. + 2. *ABS( PLATNES S ) ) /3. ) )* *3

RETURN

END
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APPENDIX B - GENERIC ISSUES

This appendixcontainsdiscussionsof technicalissueswhich involveall of the above processes.

Tolerances

In the geometricgrid generationprocess,we first determinewhichpointsare coincidentin the base
grid, and keeptrack of themas a singleunit.Afterthis determinationall cancelingof cubes or quads
takes placeusing only pointers,and not the coordinatesthemselves,to guaranteeinsensitivityto
tolerances.We thusseparatethe geometryfrom thetopology.This is a key issuefor singleprecision
manipulationof inviscidgridswherethe lengthscalescanvaryby five ordersof magnitude,such as
for a wing/pylon/nacelle/fuselage.Essentially,the coincidenceof basegrid pointsis checkedinitially
with a zero toleranceand then all followingoperationson the base grid are performedwithzero
tolerancesettings.This presumesthat the inputbasegrid is constructedthat any coincidentpointsare
coincident,not just near each other.The ICEMgridgeneratorof Reference6, usedherefor manyof
our base grids, can producenon-coincidentpoints,but it also producesan integerface connectivity
tablewhichcan be usedto enforcestrict coincidenceof facepoints.This thenallowsus to operate
withzero tolerancesand createsingleprecisionEulerqualitygrids for a fuselage/wing/nacelle/pylon
installationflow simulationinvolvinggrid elementsizeswhichvary by 5 ordersof magnitude.

Data Synchronization

In handlingmulti-blockgrids,the a point maybesharedbetweenmultipleblocksat common
interfaces.The problemthenarisesof howto keepall of thesedifferentimagesof the samepoint
identical.One way,commonlyused inCADsystems,is to dealexclusivelywith pointersto a triad of
coordinatesand storethe coordinatesonlyonce.This is efficientfor CAD,which has relativelyfew
suchpoints, but can be inefficientfor multiblockgridswithoften millionsof points.For multiblockgrids
only relativelyfewergrid pointslie on blockinterfacesthan the totalnumberof grid points,so weonly
musthandlethese fewerpointsin a synchronousmanner.Thetechniqueusedhere is simpleto
implement,and guaranteesthat all imagesof a pointmatch.Themethodallowsa "read"of anyof the
equivalentpoints, and whena "write"is neededall imagesof the point(kept in a separatelist) are
wdtten.This guaranteesthat all imagesof the pointare identical.This is somewhatsimplerto
implementthan referringto all interfacepointsby pointersor referenceandall interiorpointsby value.
Thusall pointsare referredto by valuefor readoperationswithoutanyspecial handlingand only the
writeoperationneedbe modifiedfrom a codewhichdoesnot enforcesynchronicity.For writewe
interceptthe standardwriteoperationandtest if the pointbeingwrittenis an interfacepoint. If it is not
an interfacepoint, it is simplywrittenas before.If it is an interfacepoint,all the pointersto the
correspondingimagepointsare usedto write the identicalvalueat the correspondinglocations.In
essence,we readby value andwriteby imagereferences.Thismethodcan bedescribedas "read
any / write all". In essence, we use I,J,K,L computational space indices for points interior to the blocks,
and the equivalent of pointers to block face points.

The block boundary image point determination is made by examining the supplied base grid for
points having the exactly coincident coordinates. Pointers to those points which share the same
location are saved in an "images" list which is constructed for rapid recall of all pointers equivalent to
a given pointer. In practice, some base grid generators may not produce exact grid point coincidence
at common boundaries. In this case we either may either merge block boundary points which are
coincident within a tolerance or merge block boundary points specified by a block face matching table

produced by the base grid generator. At least one base grid generator, Reference 4, guarantees by
construction coincident points at common block interfaces.
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Clipping

The surface to be clipped can be non-manifold and things still work perfectly, since only one clipped
surface triangle is processed at a time. All that is required is that the clipping surface (which comes
from skinning a usually well-behaved grid) be nice. The logic used always gets the edge intersections
from low to high, so that two triangles sharing a common edge are treated identically. The logic also
completely avoids the use of the square root operator. An approximation is used to simplify the
process: namely the clipped surface edges are intersected with the clipping surface and the clipped
surface edge intersections are connected. No account is taken of the variation (other than linear) of
the clipping surface within the triangles to be clipped. No account is taken for the intersection of
multiple parts of a surface within the triangles to be clipped. This method cannot be used for Boolean
unions, as the unions will not join continuously. However, this method is often fully suitable for
trimming the goal surface with the base grid skin. The code is fast, requiring only 21 seconds on a
Sparc 10 for a clipping a surface of 29,564 triangles with a clipping surface defined by 29,552
triangles.

Cache Coherence

When the geometric grid generator works with a structured base grid, the information needed by a
flow solver is still as adjacent in memory as it is for a structured grid generator. Then, with modern
workstations having large amounts of (sometimes even two level) cache memory, it is believed that
cache misses will be small and the present grids will show a negligible increase in CPU time
requirements due to cache misses and paging. For adaptive grids it is anticipated that if we place the
embedded grid storage for each coarse grid cell adjacent to the data for the coarse grid cell, we will
likewise have efficient cache memory usage.

Visualization

The higher level of operations in this process, compared to current interactive CAD based
approaches, requires that surface visualization be available to inspect the results. Without this

visualization, it is very hard to discem where the process failed. This is particularly important when
checking the input surface file and the base grid file, and when deciding which operations to perform.
For example, if the input surface is not closed, it must be zippered as described above. If one forgets
to check for openness (either with diagnostic code or with a quick visual look), then the automatic
blocking process will fail badly. Visualization is crucial at times like this. The code currently is
controlled by standard UNIX command lines with options enabled or set by command line arguments.
A few command-line responses are required within the runs; these are being removed as feasible for
the production version. A GUI shell can then be added later to further simplify use.

Coding Quality

The approach described here consists of a sequence of high-level operations, and it is imperative
that each operation work perfectly or the overall results will be useless; all it takes is one bad cell
out of a million cells to cause the flow calculation to diverge! This places stringent demands on the
approximately 70,000 lines of FORTRAN code which implement this process. It is necessary to code
very defensively, checking data and assumptions whenever possible. The major operations are
currently separated by files (which one module produces and the next module reads) to decouple the
operations and to simplify debugging.

The main type of bugs currently encountered are "concept bugs" which typically involve implicit
assumptions overlooked in the initial formulation. Often an assumption is made that one has
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imagined all combinations possible, and accounted for them, but in fact some have been missed. This
often happens in topological circumstances. One example is the assumption that each edge of a
triangle in one surface being cut by another surface can intersect the other surface in only one point.
This assumption led to code which uses containment logic to slice the triangle, and if both end points

of an edge are on the same side of the cutting surface concludes that the edge does not intersect the
surface. This works most of the time, but fails on occasions when the assumption is violated. The fix is

to use intersection logic, rather than containment logic, in this particular case. Concept bugs are
generally harder to rectify, since they affect the basic formulation.

Coding memory allocation errors are prevented by an interface between the programs and
the FORTRAN mal/oc and free calls as suggested in Reference36. Other coding errors tend to be

removed by using different compilers and the ftnchek FORTRAN source code checker from Reference
37. The maximum optimization level that is used on the SUN is opt2, since opt3 produced erratic
results for pointer variables resulting from dynamic memory allocation and for embedded "DO" loops
containing "GOTO" statements pointing to a common "CONTINUE" statement. With these quality
conformance tools, combined with defensive coding, the primary source of errors is concept bugs.
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Figure 1. Base Grid Surface for a Nacelle
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Figure 2. Fuselage/Wing/Pylon Surface from VSAERO File

Figure 3. Closed Surface
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Figure 4. Stairstep Grid Surface
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Figure 5. Snapped and Smoothed Grid Surface
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Figure 6. Grid Features
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Figure 7. Associated Paths
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Fiaure 8. Turbine Blade Grid Surface
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Lrvilinear grid

Figure 10. Flow over a Circular Bump in a Channel
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Figure 11. Pylon added to Wing/Nacelle Grid
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Figure 15. Probe Added to Compressor Grid

Figure 16. Structural Analysis of Bracket
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Figure 17. Viscous Grid Generation Process
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SUMMARY

Two different approaches to the fully automatic generation of structured multi-block grids in two

dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of

a multiple block grid topology. The first approach is based on an advancing front method commonly used

for the generation of unstructured grids. The original algorithm has been modified toward the generation

of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the

global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is
then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to

practical problems is demonstrated for typical geometries of fluid dynamics.

INTRODUCTION

Structured multi-block grids are distinguished by regular quadrilateral cells (hexahedras in 3-D) which

allow to obtain solutions of good accuracy. However, this high degree of regularity is too stiff when considering

geometrical complex shapes. The direct mapping of the physical domain onto one single computational

domain becomes increasingly complicated. The discretized domain must be partitioned into a set of sub-

domains. For each of the resulting so-called blocks a grid is generated separately. The first step in the

generation of such a multi-block grid is the definition of the block topology. An overall structure for the

arrangement of the blocks, together with internal connectivity information and local coordinate orientations

must be set up. Traditionally the block topology is set up manually, a pre-processing task that can quickly

become difficult with rising complexity. This led us to the idea of replacing the user interactivity by an

automatic generation of the blocks. Examples for references on techniques for the automatic meshing of

quadrilateral grids are those of [2] or [8].

The aim of this work is to develop methods for generating structured multi-block meshes automat-

ically in order to reduce the amount of pre-processing required for multi-block calculations. Multi-block

solvers can then be applied to complex geometries with almost the same level of flexibility as solvers based
on unstructured methods. Our original interest is to provide meshes for problems in fluid dynamics, but

automatic mesh generators are highly demanded in many other fields.

The overall idea behind our first block-generation method is to combine the advantages of a struc-

tured multi-block grid with a technique commonly used to generate unstructured grids. In an unstructured

environment the rigidity of the structured (i, j)-index system is broken and replaced by a system of pointers.

Since the generation of an unstructured grid is done locally, and since only a 'single block' is required for a

complex configuration, no special topology needs to be defined. We propose a block generation algorithm

j ulmmlE
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that is basedon the advancing front technique (AFT), which has been applied e.g. by Peraire et al. [6] or

LShner et al. [5] to generate small triangular elements (that directly form the final grid cells). Here, we use

the advancing front technique to generate large elements that serve as blocks and thus have to be covered by
mesh lines in order to obtain the final computational grid. The basic ideas behind the AFT algorithm are

retained, with the exception of two principal modifications: Firstly, we create quadrilaterals instead of the

originally generated triangles and, secondly, we generate blocks of maximal possible size rather than small

grid cells. Compared to the basic AFT for triangles, the present algorithm for the generation of rectangular

elements is more complicated, partly because of attempts made to ensure robustness and the prevention of
distorted elements. The additional computational costs are easily justifiable, since much less elements are

required compared to a complete unstructured mesh.

Earlier results with an application of AFT as a multi-block generator are presented in [1], where

so-called 'micro-blocks' are created by forking triangles in an unstructured triangular mesh. ttowever, this

technique results in skewed blocks which degrades the accuracy of a flow calculation on the resulting meshes.

It therefore seems advantageous to replace the triangular elements by the direct generation of quadrilat-

eral blocks. This modified AFT-approach for the generation of quadrilaterals instead of triangles was first

presented in [7] and is in the following referred to as 'method 1'. Although fully automatic, both of these

AFT-approaches are based on underlying unstructured techniques. The drawback with these methods is

that the topology is difficult to control which might lead to undesirable effects on the grid.

These shortcomings led us to the second approach ('method 2') [3], which, instead of building blocks

as with AFT, is based on a successive partitioning of the domain of interest. This permits a better control

of the topology. With this approach, the initial computational domain is successively sub-divided, until each

sub-domain (block) is considered acceptable, according to certain criteria, for the generation of a structured
mesh. The desired properties of such a block are for example that it should consist out of four corners where

each corner should be as close as possible to a right angle. The partition procedure consists of first flagging

boundary nodes as cut required, cut permitted or cut not permitted (corner node) and then ehosing an optimal
cut between two nodes. Tile success of this algorithm depends on the definition of the function measuring

the quality of a cut. Though there are obviously several choices for this function, they all have to take into
account various criteria such as tile number of corners in the created sub-domains or the total number of

boundary nodes still requiring a cut.

METItOD 1: TIlE ADVANCING FRONT METHOD

The advancing front technique has obtained its name from a 'front' that 'advances' (travels) through
the domain of discretization. This front, often referred to as the actual or current front, is defined as a closed

curve of assembled line segments which changes continuously during the generation process. After each cycle

of the algorithm one (or several) elements are generated, often by the simultaneous creation of a new grid

point. A description of the underlying philosophy of our modified AFT-algorithm is given hereinafter.

AFT for Rectangles

Background grid: Tile so-called background grid, used for interpolation purposes only, is created

interactively and consists of large triangles which cover the complete domain of discretization (Fig. 1). At

the vertices of each triangle, stretching parameters are stored. These values are user-defined before the

generation process starts and enable the block size to vary throughout the domain. If desired, blocks of

equal size can be obtained by using the same value at, all the vertices. The information required at any point
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in the domain is then obtained by linear interpolation of the stretching values at the vertices. In order to

facilitate the creation of the background grid and to minimize the searching and interpolation procedures,
the number of elements is kept as small as possible.

Figure 1: Background grid for multi-element airfoil.

Surface discretization: Unlike for the triangular AFT [6], in the present method the background grid

is not employed for the discretization. Since large blocks are generated rather than the final mesh, a relative

coarse approximation of the solid surfaces is sufficient.

In a standard application of the block generator, solid surfaces are discretized by equally-spaced

points. These nodes belong to the final grid, and few of them are actually used in order to obtain a coarse

discretization. In an alternative approach, all of these points are used to describe the geometry, thus leading

to a much improved approximation of the solid surfaces. The supposed disadvantage of the latter technique

for the purpose of the block generation is neutralized by the method of merging neighboring faces.

Initial front: By means of the background grid the starting front is set up. This consists of contiguous

nodes on given discretized curves connected by straight lines. These line segments (in the following notation

called 'faces') are referenced by integer arrays, with two indices describing the start and end-point of tile face.

In order to enable the use of one single closed curve (once the parts of the front that are initially separated

are connected), the line segments on interior surfaces are stored in clockwise orientation (defined by the

order in which the data is entered), while the faces on exterior boundaries are oriented in a counter-clockwise

direction (or vice versa). The strict preservation of this rule throughout the entire generation process is an

essential part of the algorithm.

The Block Generation Algorithm

Compared to the generation algorithm for triangles, a large number of additional requirements are

needed to control the automatic generation procedure. The robustness of the algorithm is one of the major

considerations. The algorithm consists of the following principal steps, which are partially identical with

those of the traditional triangle algorithm:

(i) As in the triangle algorithm, a choice is made for all initial base for the next element to be generated.

The 'smallest length' criterion is used.

(ii) Next, the important means to merge faces comes into effect. The angle _ between the chosen initial

basis and the faces next to it (on both ends) are checked. The initial base-line, together with the
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(vii)

faces that are to be merged, form the final basis with end-points A and B (Fig. 2). The pointers

that indicate the positions of the adjacent nodes are then examined. Ill case AB belongs to a closed

polygon with maximal six corners that cannot be sub-divided into two quadrilaterals, the items (iii) to

(vi) listed below are skipped and the new element is set up directly.

(iii) The third major step is to find the position of the two ideal points Coa and CoB. By 'ideal' we denote

that point which is chosen if none of the nodes of the current front is selected. One ideal point for

each the start and end-point of the basis has to be found. Since this task is more difficult compared

to the standard AFT algorithm (with only one ideal node per element), below we give a more detailed

description.

(iv) When the ideal points COA and CoB have been selected, we determine all the potential nodes Ci that

belong to the actual front and which lie inside a circle of given radius r, with center COA (reasonable

value r = 1.7 x (SA). For reasons of simplicity, we restrict our attention to the point A; the procedure

for B is analogous. The coordinates of the flagged points are ordered according to their distance from

point COA; four 'reserve' nodes CR are added to tile end of the list.

(v) In this step, the connecting point CA (CB for point B) is determined. This point must satisfy all of

the requirements described below.

(vi) Once a valid point has been designated for both nodes A and B, a new quadrilateral element is defined

by the vertices A, B, CB and CA. Four principal configurations are possible and the correct one has
to be determined.

After the definition of a new element, the corresponding pointers are updated and the number of

remaining faces is checked. If any faces remain, the whole procedure is repeated by starting at item

(i); if none remain, the block generation is terminated.

51
D.

f,

iI ",

5 2

Figure 2: Genelal notation for rectangle algorithm.

Face merging: This tool to reduce the number of blocks is one of the essential ingredients incorporated

into our advancing front algorithm. Two neighboring faces may be merged to form one long face whenever the
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angle fl between them is 'smooth', i.e. close to 180 ° (Fig. 3). The use of angles (which are non-dimensional)

allows to circumvent the (heuristic) definition of the delicate threshold parameter that is necessary wtlen

working with tile curvature (which depends oil tile geometric scaling of tile configuration).

Typical values that define a smooth angle lie between 160 ° and 200 °, although these threshold values

may be chosen close to 180 ° at sohd walls. Note that not only the base side may consist of several merged

faces, but also the remaining three sides of each element. Indeed, the combination of faces opposite to the

basis has been found to be efficient.

n
final basis

initial basis

Figure 3: Face merging.

Finding the ideal points: For each end-point A and B of the final basis, two ideal points must be

selected. Different principal strategies are used depending on whether the angle a between the base side AB

and its neighbors is smaller or larger titan 130 ° . This heuristic value, as well as all the other characteristic

angles, has proved to be the most efficient when developing the program (efficient in terms of both algorithm

robustness and general validity for any given configuration). We distinguish between the following cases

(Fig. 4):

(i) c_ > 130 ° : The angle is large enough to be sub-divided without creating skewed elements. One new
_..___,

point is set up. The stretching length 6 of tile vector ACoA is obtained from the background grid. The

vector direction again depends on a:

(a) 130 ° < cr <_ 250°: The angle is divided into two equal halves, i.e. the direction of ACoA is the
mean value of the normal directions to AB and AD, where D denotes the other node adjacent to

A on the present front.

(b) c_ > 250°: A sub-division into two halves would lead to skewed blocks. The adjacent face is then
------4

disregarded and AC'OA is chosen to be orthogonal to AB.

(ii) _<

The

130 ° : Again, tile subdivision into two halves would lead to an element with a distorted shape.

nearest neighbor of A is chosen as an ideal point; tile length of AD is a given length 6.

Since we generate quadrilateral elements, no limitation on the stretching length f is necessary (con-

trary to the classical AFT). Long stretched blocks are allowed.

Criteria for point validation: In this section we give a survey of the criteria to be satisfied by, a point

('i in order to be a valid node ('A.

(i) Tile point under consideration (7 A does nol belong to any of the merged faces that form the base edge.
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(i) (a) S

(ii)

C 0A..---'(_A

Figure 4: (!hecking of angles.

(ii) In tile case when the point CA is one of the neighboring nodes, tile angle (_ IliUM ItOt be too large. This

check is perfornmd in a successive way for all the contiguous points of A.

(iii) The angle between AI3 and A('.._ obeys 50 ° _< /ll..t('a <_ 130 ° •

(iv) The triangle _I]A('A has a positive., area. i.e I)(4nl ('A li_'s il_ the ilklerior of the domain. Ilere the

strict maintenance of the orielltalion plays an inil)Orlanl role. This condition corresponds to the tirst

requirement of the standard A I:T alg, oril hln.

(v) The second well-known criterion of the classical A I"T approach checks for any intersections of the line

"ACA with existing faces. Note that crossings wilh all existing faces must be examined, not just those

with edges on the currcl_t front.

These tests are carried out for the flagged points of both end-nodes A and I1 of the basis. The list of

reserve points guarantees that at least one node fultills all of lhese live condilions. Since the check for node

B follows that for A, the designated node ('A is already k,l_)wn...\ddilio,,al validity requiremenls must be

imposed on point ('B"

(vi) Trivial: Node C'_ musl not he identical wilh ('._.

(vii) There must be no illlcrsections t)(!lv_(,ell till" poteillial line (-'ACB and any of the existing edges.

Creatioli of a new elelnent: I)uril,v; oil(, "qua,lr,l,tAulal i_m" step _,xact Ix" l')m new l',ll',ml',nt is generalted.

This characteristic featllre l')f llt_, algorit I_l_t lliailll _lill'_ ;1 cl_';ir sl I'11(1iili' I()r lh_' u£11t,l'al ion l)r()cl"ss. The tyl)e

of this element is (h,l(,rnline(I hv lh,, kilt(I ()f lh,, tl(,_ _,,)(l(,> ('._ a,,d ("t#. Iii I1{(, f,)lh)wiIJt4, w(, d_>('ril)l', the

t)rin(.ii)al ('onligurali(ms lhal (all ,_l)l)_';_I (s_,,, 1'i'4. 5):

(i) In the ideal case, one new i,o&' is placed in lh_, d(,m,li,i for either node ..1 and II. Thr('_' new faces are

formed. Poinls ('A and ('H are idenlical wilh (' ._ and ('oH, respectivel.v (or one of the reserve nodes).
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(ii)

(iii)

(iv)

If a neighbor of A (or B) is found, a new point is chosen for /3 (o1 A). One new node and two faces

are created. Tile faces that form the side A('A are deleted fron_ the actual fronl. In the special case

when an adjacent node has been chosen for both .,1 and /3, no new point is set up and the connection
line CACB forms one new side.

If (as in the previous case) one neighbor of A has been chosen, but the point ('B iS located on another

part of the front, no new node is set up, and one new side is created. All the faces that form ACA are

removed from the current front, as well as the faces between CA and C'B. Similarly for point B. In the

special case when both CA and CB are located on another part of the front, but neither is a neighbor
of either A or B, no new node but two new sides are defined.

In the final case, an element with either quadrilateral, pentagonal, or hexagonal shape is chosen. The

reason for the implementation of this special case was to reduce the computational costs by avoiding

the node validation verifications. Starling at the base side, all the faces that form the polygon are
discarded.

For all of the cases mentioned above, the faces which form the base side are removed from the list

of actual front faces. The new faces are added to the current fi'out, hereby conserving the strict orientation
rule.

(i) ideal case C p, (ii) CB

B

C

CA=D

(iii) C> special case C_ B

/ /

CA= D _''_ A _A

(iv)

Figure 5: Potentialnew elen,,nts.

TII_' l)oilllcr .<;\slclll

The data structure of the presen! block _eneralor elllph_ys a pointer system. Two pointers are

necessary to keep track of the block generaliou process. The first relales lhe nodes 1o the element faces.

For each face, this array contains: in its firsl po>ilion, the ittdex of lhe start point; in the second position,
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the end-point; in a third position, the face boundary condition type is stored. A second pointer contains

the inverse information and links tile faces to the nodes (though this is no longer of importance when tile

corresponding face is deleted from the actual front).

Additional pointers are required to provide the necessary information for both the mesh generator

and the flow solver (note that these pointers are independent of the block generation procedure and thus are

not essential fox" the algorithm). An element-to-face pointer relates the faces to the four block sides. In a

strict rule faces 1,2 and 3,-I are pairs of opposite faces of each element. The inverse lminter links the elements

to the faces. The third output pointer is the face-to-node pointer. Finally, the fourth pointer stores the

number of merged points on solid wall faces (this information is necessary for the mesh generator).

Block Generator Post-Processing

The automatic generation procedure usually gives a larger number of blocks than desired, since the

robustness of the algorithm is doemed to b,, Hlore inll)orlanl lhan crealing as few ole,llents as possible.

For this reason, a post-processing, routino has I),,,t, (I,vohq)(,(I. ..\fler vi(,wing; lho data given by the block

generator, neighboring blo('ks J_lav I)e nwrg, e(1 mal,uallv. '1'11o >ocond priltcipal pUrl,OS(' of p()st-processing is

t.o initialize the number of grid poilLls per I>h,ck side.

METtlOI) 2: I)IVII)I:, ANI) ('()NQIJEI{

The second of our methods has been developed with the experience gained by the pr,,vious approach

and is based on a divi& (rod coIwv(r paradig;m.

Block (;olloralion 1)v Nuccossivo l)olnaill I'allit ioning

The basic idea behind this technique is lo successively 1)al'lilion a given domain into sub-(lomains

until all sub-domains are accel)table for mosh generation, according to certain crileria. This princil)le is

illustrated by' the recxlrsive divide an(1 ('Ol_quer block ('real ion proce(lure, createblock, written in a pseu(lo

language:

procedure createblock(domaill );

if (domain zlot a block)

_/(, partition the domaininlosubdolnaill 1 and subdoxllai,l 2

partition(domain, sl_bdomaill l.sul)d-IllaiI, 2):

createblock(su hdotllaill I1:

createblock( sul)d(ml,_i It :2):

end

end procedure

As can be seen from the code. we need a (h,[illilion ()f a /)lock and a pavtitiotl procedure. The criteria

defining a block should ideally be based on mal l,e_ll,_lical l)rinciph.s related to eg. lhe shat)e of the domait_.

Since it might be (liffi('ull to lind a l)ropor f()rnlulali()n, w,' have ilt._tead ('hos(.n he.rislic crileria mimicking

those used in an interactive block _.m,ralioll _(,ssion. 'l'h(' (I,,>ir('(l I_VOl_('rlies of a blo,k are hence:
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(i) A block should have four corners.

(ii) Each corner should be as close to a right angle as l)ossible.

(iii) Each side should have a limited curvature.

(iv) The area of the block should be as large as possible.

The main reason for considering these is that they support tile generation of high quality meshes by

simple mesh generation Mgorithms like transfinite interpolation and elliptic smoothing. We need, however,

to modify items (i)-(iv) slightly ill order to obtain robust criteria for the block partitioning. IIere, robust

means that the algorithm should terminate after a finite number of steps, i.e. any given domain should be

split into a finite number of blocks. Criteria (i)-(iv) are also involved in the procedure of deciding if and

how to subdivide a given domain, i.e. the main part of the partition procedure. Before formulating the final

block criteria and the partition procedure, we start by introducing some notations and definitions.

The input data to the createblock routine is a 2-D domain with a boundary which is a closed polygonal

curve with positive orientation as shown in Fig. 6.

Figure 6: Sample domain.

First all vertices of the polygon, i.e. boundary nodes, are flagged. Tile flagging options are cut

required (cr), cut permitted (cp) and cut not permitted (cap). The first and foremost criteria when flagging

the nodes is the size of the angle a between two neighboring line segments as shown in Fig. 7.

cut not permitted cut permitted cut required

Figure 7: Flagging of nodes based on the angle.
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Let/3 beapredefinedfixedangle,0 < /3< r_/2, then a node is marked as cr if a fulfills a < -(-" -3).
7r

If-(_-/3) < a < 7-/3 the node is marked as cp. Finally, when a >_ 7-/3 tile node is marked as cnp.
A cnp node is also called a corner. Furthermore we need to introduce the notation accumulated curvature.

The accumulated curvature between two corners is defined as the sum of the absolute value of the angles

oe. The reason for using this notation is that property (iii) above suggests a lilnitation of the curvature of a

block side. Hence the accumulated curvature is coml)uted for all nodes along the boundary and each time it

exceeds a multiple of a t)redefined angle 7 the actual node is marked as cr (see Fig. 8).

Figure 8: Flagging of nodes based on the accumulated curvature.

We can now proceed defining the modified criteria of a block. As mentioned above the final blocks

should ideally have the desired properties (i)-(iv). Some of these are included in the partitioning algorithm,

as will be seen later, and hence not be applied explicitly. The following criteria for a block are finally chosen:

(i) A block has 3, 4, o1' 5 corners.

(ii) A block does not contain any node flagged as cr.

The first requirement ensures that the blocking procedure terminates after a finite number of steps.

This might not be the general case if we only allow blocks with four corners. As illustrated in Fig. l0 triangles

and pentagons cannot be partitioned into quadrilaterals with a single cut, without splitting tile corners, since

splitting such blocks result in at least one new block with same number of corners. Thus obtaining a domain

with three or five corners has to be accepted as a ])lock in order to terminate tile splitting of the domain. If

a domain is not accepted as a block, it is l)assed to the partition 1)rocedure for further subdivision. We will

now continue tile descril)tion of the partition 1)rocedure. First, a set of points, between which a cut Call be

performed, has to be prescribed. The cut will here be restricted to the set of boundary nodes. Among all

possible cuts only allowed cuts are considered. By an 'allowed' cut we mean a cut between a node marked

as cr and a cr or cp node. The best cut is finally selected from the set of allowed cuts. Hence a domain,
which is not a block, need to have at least one cr node in order to be split. If no such node exists the node

corresponding to the smallest angle _t is re-flagged to acr node. Finally, additional boundary nodes, flagged

as cp, are inserted to ensure an ample amount of possible cuts to chose fl'om. These nodes are chosen such

that no line segment is longer than a predefined characteristic length, 1.....re, and so that there is at least one

cp node between two cnp nodes.

We now proceed, by descrihing how to setecl lhe best cut among all legitimate cuts. Tile success

of the algorithm del)ends crucially on tho delinilion ¢_f' besl cut. Following the approa, cla of Talbert and
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Parkinsson[9],wedefine'bestcut' asthat cut whichminimizesa functionmeasuringthe quality of thetwo
newdomainscreatedby the cut. This function is chosenasa linear combinationof terms measuringthe
anglesbetweenthe cut and theboundary,thedistancefrom the cut to theboundary,thenumberof corners
in the resultingsubdomains,and whetheror not both nodesdefiningthe cut are flaggedas cr. Thus our
function f is defined as:

f = 11310 + 11.'28 -_- w37lc + w4r (1)

where Wl, w2, w3, and w 4 are non-negative weights and

0 = min n/21 (2)
n=--l,0,1

s = max (0, ( lsc_l¢ - l )/lsc_l¢ ) (3)

1 if number of corners = 3 or 5 in either of tile two blocksn_ = 0 otherwise (4)

1 if only one node is flagged crr = 0 if both nodes are flagged cr (5)

The angle measure (2) tends to encourage cuts that intersects the boundary either at an approximately

right angle, or that makes a smooth transition fl'om boundary to cut. For clearity, this is illustrated in Fig. 9.

Figure 9: Preferred angles between boundary and cut.

The distance measure (3) is designed to avoid excessively thin blocks. Ifere the parameter l_=te is a

typical length scale. The corner count (4) has the purpose of avoiding domains with three or five corners.

The final measure (5) encourages cuts between two nodes that both are tlagged as cr. This is intended to

reduce the total number of cuts that has to be performed.

Finally, before the generated block topology can be passed to the mesh generator, it must be post-

processed so that all blocks have four sides. This is achieved by a re-flagging of nodes wherever necessary.

This re-flagging is again based on the angle between neighboring line seglnents as shown in Fig. 7. For
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Figure 10: Subdivision of triangles and pentagons.

pentagons the corner node with the smallest angle is ignored, while for triangles, the node with the largest

angle not already defined as a corner, is flagged as a corner. Note, that only the definition of corners or sides

changes, while the actual shape of the block remains unchanged.

The output from the block generator then consists of blocks as shown in Fig. 11. Each block has

four sides, where each can be sub-divided into a number of edges. The different edges correspond to differ-

ent boundary conditions. All boundary conditions, except internal boundaries (i.e. boundaries which are

shared by two blocks), are supplied by the input geometry. For internal boundaries the condition is defined

simultaneously with the creation of new internal edges.

side 1

side 4

_._o....x>_--_ o o _edge6_
edge 8 edge 7

edge 3

edge 1

edge 4 edge 2

cd c 5

side 3

side 2

Figure 11: Inforlnation created by tile block generator.

ML. LqI BLOCI\ MEStI (II!;NI_I/AqION

The second part in the multi-I)lock generation method consists of generating a structured mesh in

each block. This part is conlmon to both of the nlethods described above and the same mesh generation tool

is used. Before a mesh can be generated, additional information has to be created by a block-grid generator

interface.
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The Block Grid Generator Interface

The block generator provides topology information ill the form of node-coordinate, edge-node, and

edge-side-block registers together with the type of boundary condition on each edge. From these pointers all

necessary information for the grid generator can be obtained. Part of the data can be used directly while
others are retrieved from an interface program.

Before generating the mesh the number and the type of boundary conditions, tile connectivity to other
blocks and the number of grid points oll each of the four block sides must be determined. The crucial task is

to compute the number of grid points on the edges fi'om which we get the number on the block sides. If the

blocks are meshed completely independent of its neighbors this is trivial. Then for each block an arbitrary

number of points can be specified in the two local coordinate directions. This, however, results in blocks with

discontinuous grid lines at the boundaries. We prefer instead to work with patched blocks with coincident

grid lines. This means that the number of points on each edge, under the constrains described below, have

to be computed. This is, for an arbitrary block topology, a non-trivial task. After some attempts to do this

interactively, we decided instead to formulate the problem in a mathematical framework, as a optimization
problem, and solve it by a well known technique.

To start with, let nl denote the number of l)oints on edge number i. For each block the following
equations hold:

)-_.ieEa,b(tti - l)= )_ieE2.1,(11i - 1)

_ie/_3.b(ni- 1)= _ieE4,b(ni- 1)
(6)

where Ek,b is the set of edges belonging to side k in block b. These axe the compatibility equations

which guarantee the same number of grid points on the corresponding block sides 1,2 and 3, 4. For a solid

wall edge ni is governed by the number of points, Ni, in the geometry descril)tion. To ensure that ni is not

less than Ni we impose the constraint Ni <_ n,. For the remailfing edges we need lower and upper bounds,

Li and Ui on ni i.e. Li <_ rti < Ui. The nulnbers Li and Ui can be specified directly by the user or generated
from a given grid point density function. The problem is now to find a solution to the underdetermined

system (6) with the constraints above. Among all feasible solutions we want a solution which does not lead

to unnecessary many grid points. Hence, it is reasonable to look for the solution which minimizes the total
sum (or a weighted sum) of grid points. The final mathematical formulation then reads:

for all blocks

min,u )--_.iEE lti

Y_ieE,.b(ni- 1)= __.ieE2.,,(.ui- 1)

_iEE3,t,( l_i -- 1 ) = _ieu4,6( 7_i- 1 )

ni >_ Ni i solid wall face,

Li <_ ni <_ Ui i not solid wall face, ni integer

This is a linear integer programming problem which is solved by a standard technique based on branch
and bounds.
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If a global smoothing of the mesh is desired a search for singular points is also necessary. All the

singular nodes are stored in an array together with their neighbor points and treated ill a special way by
the smoother as described in the next section. The block data structure used by the elliptic smoother is the

same as for a multi-block flow solver which means that flow calculations can be done immediately when the

mesh and the block data are available.

Grid Generation

The output from the mesh generator is a structured grid in each block, with coincident grid lines

on the interfaces between two blocks. As mentioned in the previous section, an alternative approach, not

considered in this work, is to allow the number and position of these grid points to vary independently in

each block. This technique may prevent grid spreading, but needs a more sophisticated flow solver which

includes conservative interpolation routines.

The initial mesh is generated by linear or hermitian transfinite interpolation. This gives often a good

start grid due to the feature of the topology generator which provides blocks with rectangular shape and

without strong curvature. The mesh quality is then further improved. The mesh is first stretched in the

direction normal to solid wall boundaries. The resulting mesh will then better resolve the flow in these areas.

The mesh is then smoothed by solving the well knowl_ elliptic equations (cf. Thoml)son et al. [11]):

= -J_ (x_P + x,Q)

= _j2 (y_p + y,TQ)

(7)

where (x,y) and (_,71) are coordinates ill the t)hysical and coInl)utational plane respectively, c_ =

+ 9 = + yey,,"y= .q + andJ =x v

Following the technique suggested by Thomas and Mid(llecoff [10], the source t.erms P and Q are

computed on the block boundaries and extended to the interior 1)y linear interpolation.

PQ =-(x,,x,,,,+ +

along the boundaries

along the boundaries

7/ = constant

= constant

(8)

Hence, the distribution of the boundary points spreads into the interior of tile block. Finally, system

(7) is discretized and solved iteratively I)v means of the .lacobi me! hod. We are mainly interested in applying
this technique in order to smooth the grid. If. however, there is a need for solving tile equations comI)letely,

a multi-grid technique can 1)e al)plied as ;Ill ol)tiolk, in or(l('r lo speed u 1) the convergence.

A special smoothing procedure is used for the singular lmints. Ilere, the mesh is smoothed iteratively

by a discrete version of the undivided La.placian operator:
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Np

i=1

where superscript n denotes the iteration counter, 7k is the singular point, r_, i = 1,..., Np its neigh-
bors and w a relaxation parameter (0 _<_ _< 1).

RESULTS - COMPARISON OF METHODS

The two algorithms for the automatic generation of multi-block topologys are presented with the help

of four different configurations. The generic configuration of a collection of four circles of different radius

provides a first challenging test for the second of our methods. In Fig. t2 the global topology with 16 blocks

and the final mesh are shown. The overall grid is characterized by' a few non-snlooth cells at the intersection

of the blocks. Here singular points are created, which require special attention by tile flow solver algorithm.

The double profile represents tile first test case for method 1. Fig. 13 shows the global mesh topology

consisting of 36 blocks. The overall topology type for this airfoil-flap configuration is a C-mesh, which is

fairly well followed by the block structure. A close-up of this block topology together with the final mesh is

given in Fig. 14. We note the smooth distribution of grid points (though the overall mesh is very coarse).

Two-dimensional mesh generation can also be used for axi-symmetric problems. As an example, we

have meshed a valve-cylinder assembly which represents the first case to which both of our methods are

applied. The blocks generated for this silnplified internal flow configuration are depicted in Fig. 15. Method

1 generates nine original blocks (where some of them could be merged afterwards), while method 2 creates

six blocks. While the shapes of the blocks in the valve l)art are similar, their topology in the cylinder part

differs substantially. This difference, although not crucial, is transmitted to tile meshes (Fig. 16).

A high-lift multi-element airfoil configuration represents the final test case. This geometry is the

most difficult among our configurations due to the presence of several different length scales as well as strong

curvature on the boundary. The present configuration is characterized by a main profile, a slat and two

flaps that render a structured single-block generation quite impossible. The global C-type block topology for

method 1 (75 blocks) and method 2 (21 blocks) is displayed in Fig. 17. The two approaches give substantially

different arrangements of the blocks. With the divide and-conquer method large blocks are generated that

can extend from the surface of the airfoils to the far-field boundary of the domain. These large blocks are

not obtained with the AFT-algorithm, which creates by far more blocks (where, again, some of them can be

merged afterwards). The global meshes are displayed in Fig. 18. The underlying block topology becomes

evident. Again, as with the generic circle configuration, with method 2 singular points can occur at block

intersections. For a better look at the geometry a close-up of these block distributions is given in Fig. 19.

We note the good clustering of a small number of blocks for method 2 in the region close to the airfoils. A

similar view in Fig. 20 shows the computational grids. Finally, in Fig. 21 the solution of the Euler equations

using the cell-centered multi-block solver of [4] on the mesh generated by method 2 is given. The figure

shows the computed Mach number field for a fi'ee-stream Math number of 0.15 and 10° angle of attack.

CONCLIrDING REMAI1KS

Two different approaches for the automalic general ion of the block topology of structured multi-block
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gridsarepresented.Both methodshavebeensuccessfullyappliedto differentgeometries.

The first approachis basedon an advancingfront method. Comparedto the original algorithm
for triangles, the presentmethodfor the generationof rectangularelementsis morecomplicated,partly
becauseof attemptsmadeto ensurerol)ustnessand the preventionof distortedelements.The additional
computationalcostsareeasilyjustifiable,sincemuchlesselementsare created than for the generation of a
completely unstructured mesh.

One of the major criticism leveled at the AFT is tile background grid, which prevents the advancing

front technique fi'om being entirely automatic. A certain amount of user experience (or trial and error

labour) is required to first place the vertices of the background grid triangles at the right locations and

next to allocate suitable stretching parameters to these nodes. In our opinion the background grid needs
to be replaced by a more automatic method, which provides the information about the element size. This

information could for exarnple be obtained from the curvature of the surface description. Further, robustness

of the algorithm is not always guaranteed, due to lhe heuristics involved in keeping the algorithm stable and

to enable its general application for a wide a range of configurations. Blocks need to be merged afterwards,
both in order to reduce their total number and to avoid extrem differences in the block size. It is desirable

to have a better control over the topology type of the global grid.

The second of our procedures is based on a divide-and-conquer principal. Tile algorithm basically

consists of first flagging boundary nodes as cut not permitted (i.e. a corner), c,t required or cut permitted,

and then chosing an optimal cut between two nodes. The success of the algorithm del)ends on the definition

of the function measuring the quality a cut. Obviously, a numl)er of adequate functions can be constructed,

and we do not claim having found the best one. It is however our exl)erience that this function has to take

into account the angles of the intersection of the cut with the l)oundary, the distance from the cut to the

boundaries, the number of corners in the create(l sul)domahls, as well as the total number of boundary points

still requiring a cut. The non-trivial problem of specifying the number of grid points on each block boundary

can be formulated as a lineal' integer l)rogramming i)roblenl. With this approach, the only information that

has to be supplied by the user is a lower bound for the nulnl)er of t)oints on a houndary edge.

A comparison of these two methods reveals better l)erformances achieved with the divide-and-conquer

approach. A smaller number of blocks is generate(1 than with the AFT-method. The better control over

the overall topology allows to cluster blocks in regions of complicated shapes, while at the same time only

a few blocks are created away from the body surfaces, llowew'_r, the problem of singular nodes still needs

to be resolved. A fllture conihmation of this work would therefore most likely be based on method 2. Tile

basic divide-and-conquer princil)al at)plies direclly ,o three-dimensional problems for realistic configurations.

Modifications of the 2-1) algorithms would colt,prise aspects such as the current way of flagging nodes and
performing the cuts.
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FIGURES

Figure 12: Global block topology (left) and final mesh for 4-circle configuration (method 2).
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Figure 13: Global topology with a6 blocks for double profile (method 1).

[

Figure 14: Close-up of block topology (left,) and final mesh for double profile (method 1).

Figure 15: Valve-cylinder: global block topology for method 1 (left) and method 2.
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Figure i6: Valve-cylin<ler: final mesh for method 1 (left) and method 2.
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Figure 17: Multi-element airfoil: global block topology for method 1 (left) and method 2.
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Figure 18: Multi-elemenl aivfi_il : _zl<_l_nl .tLri<l f'_l' Ill,'l hod (left) and mot lLod 2.
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Figure 19: Multi-elemetlt _drfoil: (:lose-ltl) of I)lo('k topology for method 1 (left) alt(t method 2.

Figure 20: Mult, i-eleliiei/t airfoil: close-up of lllesh for liietho(I 1 (left)all(l niethod 2.
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Abstract

The goal of our research is to produce a flexible, general grid generator

for automated use by other programs, such as numerical optimizers. The

current trend in the gridding field is toward interactive gridding. Inter-

active gridding more readily taps into the spatial reasoning abilities of
the human user through the use of a graphical interface with a mouse.

However, a sometimes fruitful approach to generating new designs is to

apply an optimizer with shape modification operators to improve an ini-
tial design. In order for this approach to be useful, the optimizer must be

able to automatically grid and evaluate the candidate designs. This paper

describes an intelligent gridder that is capable of analyzing the topology of
the spatial domain and predicting approximate physical behaviors based

on the geometry of the spatial domain to automatically generate grids for

computational fluid dynamics simulators. Typically gridding programs

are given a partitioning of the spatial domain to assist the gridder. Our

gridder is capable of performing this partitioning. This enables the gridder

to automatically grid spatial domains of wide range of configurations.

1 Introduction

Partial differential equation solvers require a grid, a discretization of the spatial

regions of interest. In computational fluid dynamics, one type of the spatial

regions of interest is the surface area the fluid contacts. The quality of the grid

strongly affects the accuracy and the convergence properties of the resulting

simulation. Generating a proper grid involves reasoning about the geometry of

the regions of interest, the physics of the situation and the peculiarities of the

numerical analysis code. To deal with the complexities of gridding, the current

trend in the gridding field is toward interactive gridding [P_emotique, Hart, &

Stokes 1992, Kao & Su 1992]. Interactive gridding more readily taps into the
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Figure 1: Yacht (consisting of three components hull, keel, and winglet) with
wake sheets.

spatial reasoning abilities of the human user through the use of a graphical
interface with a mouse. However, this approach is not acceptable for auto-

mated design systems, such as the Design Associate (DA) [Ellman, Keane, &

Schwabacher 1992] for racing yachts. In the process of designing a yacht, the

DA must repeatedly evaluate candidate yacht designs. A large number of these
evaluations are required, so the capability to automatically evaluate the perfor-
mance of a candidate yacht design without human intervention is crucial for the

success of the DA.

We are working in the physical domain of fluid dynamics, in particular po-
tential flows modeled by Laplace's partial differential equation. The potential

flow solver we use is PMARC, a product of NASA Ames Research Center. The

input PMARC requires is a panelization -- a discretization of an object's wet-

ted surface as a grid of surface patches, where each surface patch is an array of

approximately planar quadrilateral panels. This array of panels is represented
in PMAI_C as a matrix of corner points. See Figure 1 for a grid of a yacht

automatically generated for PMARC by our gridding program.
The yacht in Figure 1 consists of three input components: an ellipsoid hull,

the Star _ Stripes keel, and the Star g_4Stripes winglet. 1 The wake sheets

attached to the rear of the yacht are the vortices shed by the yacht. Discussions
on how to attach wakes and how to determine the shape of the wakes are beyond

the scope of this paper. The Star _ Stripes winglet attached to the bottom of
keel is considered a major innovation in the field of racing yachts, and the success

of the Star _4 Stripes was in part due to its winglet. Current automated gridding

programs should be but are not able to handle this kind of innovative topological

change in design without human assistance.
The input to the gridder is expressed in a language we have developed called

Boundary Surface Representation (BSR). Figure 2 graphically depicts the BSR

input for this yacht example. We shall use this yacht example throughout this

paper. Both BSR and the input will be discussed in much more detail later. For

now we'll point out that BSt't input consists of two major parts: geometrical
and topological. The geometrical part represents the detailed features of the

yacht, which are the three input surface mappings (shape) in the figure. The

topological part contains information on the adjacency of the input surfaces.

IThe Star _ Stripes is the yacht that won the 1987 America's Cup Competition.
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Theadjacencyinformationisrepresentedbydottedlinesin thefigure.

2 Why is automated gridding hard?

2.1 Steps to gridding

We divide gridding into three steps. The first step is to partition tile input

surface into griddable surface patches. That is, this step finds the appropri-
ate boundary lines (or partitioning lines) for the surface patches. As we'll see

this step is often the most difficult, because it involves significant physical and

geometrical reasoning.
Step two, for each surface patch, veparametvize it by defining two families

of approximately orthogonal grid lines. A formal definition will be given later
when BSR is defined. But, intuitively suppose a surface patch is laying on the

xy-plane, then {z = constant, y = constant} is one possible parametrization,

and {z + y = constant, _ - y = constant} is another.
The last step is to determine how many grid lines to lay down on each of

the surface patches, and in particular where to lay them down. This step cor-

responds to picking the constants to instantiate the equations in step two. The

intersections of these grid lines form corner points of the array of panels, which is
the input to PMAI_C. This step we shall call the grid line distribution step. The

distribution of grid lines can make grids with the same reparametrization look

different and may make the numerical simulator behave differently. For exam-

ple, using the equabdistance distribution scheme, z = i/10, where i = 0,..., 10,

may make the numerical simulator converge slower than a cosine distribution

scheme, x = (1 - cos_i/lO)/2, where i = 0,..., 10.

2.2 Evaluation criteria

Gridding as defined by the three steps above is unconstrained. The ultimate
test for a grid is to check how sound the resulting simulation is, and how well

it resolves the physical features of the domain. Short of feeding the grid to a
simulator, there are ways of checking the goodness of a grid.

Through our discussion with hydrodynamicists we have formulated a list of

grid evaluation criteria and constraints. On the basis of the geometric proper-
ties of the grid, these evaluation criteria attempt to predict the soundness of

PMARC's output. We divide this list into four levels, ranging from constraints

that absolutely must be satisfied to heuristic advice based on expericnces of our

experts.

1. Simple connectedness constraint: surface patches must be simply con-
nected, i.e., no holes.

2. Coverage constraint: patches nmst not overlap or leave gaps.

3. Planarity criterion: panels must be approximately planar.
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Figure 2: BSR, input

4. Heuristic criteria:

• following streamlines: grid lines should follow the streamlines of the

fluid flowing over the body.

• orthogonality: grid lines should intersect at right angles.

• expansion ratio: the area of the adjacent panels should not increase

by more than a fixed ratio.

2.3 Difficulties of partitioning

Much work has been done on the problem of automated gridding [Thomp-

son, Warsi, & Mastin 1985], and many gridding programs have been devel-

oped. However, most of these efforts concentrate on developing new meth-

ods of reparametrization and new distribution schemes. The choices of which

reparametrization method and which distribution scheme to use are usually left

to the human expert.
Most of the programs rely exclusively on the human expert to do the par-

titioning. He is expected to do the partitioning by either writing batch com-

mands, or more recently by using an interactive graphical interface. In either

case, the partitions created only apply to the one particular problem at hand.

More recently, [Schuster 1992] has been trying to revive batch mode gridding

by writing more general batch commands. However, his program is only able

to grid a small, fixed set of airplane topologies.
One of the fimdamental problems with the current gridding programs is

that they do not make use of topology. All the topological information has been
distilled away by either having the user provide the partitions or by fixing the

possible topologies. The programs can only work on individual surface patches.
Another problcm is that programs have neither the knowledge of physics nor

the knowledge of numerical analysis needed to generate grids that will lead to

good simulations.
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Ollemanifestationof thelackof physicalknowledgeis asfollows.A closer
examinationof thesurfaceareanearwherethehullandkeelmeetrevealsthat
thekeelactuallyprotrudesintothehull,andtilehullhasanextrasurfacearea
wheretile keelis.Surfacesgivento thegriddingprogramoftencontainfictional
surface areas, areas that should not be gridded. Fictional surface areas are

useful because they allow the hull and keel to be modified independently while

still remaining ill contact. However, all automated gridding program must be
able to distinguish between the real and fictional areas in order to satisfy the

coverage constraint.
Recall that PMARC represents each patch by a matrix of corner points. This

type of representation does not allow for holes in patches, i.e.. the patches nmst
be simply-connected. If the gridding program has knowledge of the underlying

numerical analysis program, it would realize that once it removes the fictional

surface area from the hull, it must break the hull in half to "cut" out tile hole.

This cut can be performed in limitless ways, but how it is done affects how

easily the reparametrization and distribution .steps can be performed to satisfy
the evaluation criteria.

In the following sections we present a geometric language, Boundary Surface

Representation (BSR), which is capable of representing geometrical information,

topological information as well as associating attributes of the physical domain
to the geometry. Also, we present a principled method of solving the parti-

tioning, reparametrization, and distribution problems based on reasoning about

physics of the flow domain. We call this method streamline-based gridding.

3 Boundary Surface Representation(BSR)

Surfaces are basically two dimensional objects that reside in three dimensional

space. So they are naturally represented parametrically as a mapping from para-

metric space, (u, v) = ([0 ..... 1], [0,..., 1]), to 3D Cartesian space, (x, y, z). Our

gridding system provides a mapping facility to represent this shape, mapping,
see Figure 2. No assumption is made about what mathematical form the map-

pings may take. Each mapping is treated as a "black box". The advantage of

using a black box representation is that it provides greater flexibility by hiding

tile implementation details from the gridder. In our example, the hull is defined

using algebraic h)rmulae, and the keel and winglet are defined using B-spline
surfaces.

This rnapping facility is not limited to defining shapes. Other geometric and

physical values may also be defined. For example, the outward normals of a
surface may be defined as a normal mapping from the parametric space, (u, v),

to 3D vector space. Then in turn based on the shape and normal mappings, our

gridding program can approximate the stream vectors on the surfaces as a flow

mapping by projecting the free stream vector, (1,0, 0), onto the surface. The
free stream vector is the direction the water would flow if the yacht were not
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present.

Notice the boundaries of each surface are represented explicitly by directed

edges, ares. The arcs ill turn are bounded by nodes. Explicit representation of

the boundary is useflll in that it allows for implicit representation of surfaces.

That is, a closed sequence of arcs in parametric space can be used to denote the

portion of the surface it encloses. The program adopts the counter-clockwise

ru.le. A counter-clockwise, closed sequence of arcs denotes the area bound by

the arcs. A clockwise, closed sequence of arcs denotes the area outside of the

arcs. This implies the area on the 'qeft-hand side" of all arc is "inside, '' and

area on the "right-hand side" is "outside."

Arcs are also useflll in expressing topological information. In our notation

two arcs are connected by a dotted line if they are the same line when mapped

using shape into xyz-space, even though they are distinct in parametric space.

For example, in Figure 2 the keel parametric arcs h (uk,er = 0) and f (uk,_l = 1)

are connected by a dotted lille, because both of these ares map to the trailing

edge of the keel. Thus in xyz-space it is possible to travel just ill the direction of

increasing uk_¢_ and end up at your starting point. This dotted line together with

the dotted line connecting arcs d (u_.¢_l = [0 ..... 0.5]) and e (uk_a = [0.5,..., 1])

implies the topology of the keel is similar to that of a cylinder with one end closed

or ,3. "clip? _

Notice that the hull parametric arcs b (uhun = 1) and d (Uhun = O) are

connected to themselves. This is used to show that arcs b and d are degenerate,

i.e., they each map to one point in xvz-space. The arc d maps into the trailing

point of the hull; the arc b maps into the leading point of the hull.

Also, notice each of the arcs on the winglet is connected to some other arc.

This means that in xyz-space the winglet surface does not have any boundaries.

Of the three components the winglet is the only one that actually encloses some

finite volume in xyz-space.

BSR provides a set of surface patch manipulation operations, such as in-

tersection of surfaces, and division of patches into sub-patches. Figure 4 de-

picts the patches after the partitioning step. Reparametrization and distribu-

tion operations also are supported, see Figure 5. Now, we can formally define

reparametrization as a mapping from a unit square, defined in a new parametric

space, say (,_,t), to a surface patch in (**, v) parametric space.

4 Streamline-based reasoning

The sohltion to Laplace's equation depends neither on the current state of the

flow nor on time, so the geometry of the object determines the solution. Since

streamlines are key characteristics of the solution, analyzing how streamlines

interact with geometry provides key insights to qualitative behaviors of Laplac,¢s

equation. These insights enabh', us to deh:rmim_ the topology of streamlines. In

turn this topology provides natural boundari,_'s for I_atches in grids.
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Themostimmediatereasoning problem we encounter in streamline-based

reasoning is how to get the initial set of streamlines, since we have not yet run

PMARC to generate the solution from which streamlines are extracted. We

have experimented with various methods of predicting the streamlines a priori.

However, wc have found the simple projection of the free stream vector onto the

body surface to be a good approximation of the true streamlines. This the flow

mapping defined earlier.

4.1 Object classification

Analyzing tile pattern of streamlines on the surface of different objects, we

defne two object classes. This first is the source/sink node class. Streamlines

on objects from this class all originate from one point on the surface, the source

node, and all flow to and terminate at another point on the surface, the sink

node. Spheres, ellipsoids and other simple bodies of revolution are objects of

this class. These objects have axial-symmetry, so there can only be one source

node and one sink node.

The second is the source/sink line class. This class is like the previous class,

except that the streamlines appear to originate and terminate at lines instead

of nodes. For instance, the leading edge of a keel is source line, and the trailing

edge is Sink line. All the streamlines flow from the leading edge to the trailing

edge. Any wing shaped object belongs to this class.

Using only these two object classes, one can already construct complex,

geomctric objects, such as the yacht in this paper. The yacht consists of

a source/sink node object (hull), and two source/sink line objects (keel and

winglet). New classes can always be defined as the need arises.

4.2 Application to gridding

Based on the following-streamline heuristic for gridding, it is reasonable to grid

a source/sink node object as a single surface patch, since all the streamlines are

flowing in one direction, from the source node to the sink node. A source/sink

line object should be gridded as two surface patches with the source line and

sink line acting as partitioning lines. Although the streamlines still flow from

the source line to the sink line, the streamlines take two different routes. For

example, one set of streamlines flows to the sink from the right side of the keel

(_t > 0.5), and the other sct flows from the left side (u < 0.5). The source/sink

lines separate these two flow regions.
Streamlines are also useful in reparametrization. Streamlines can be de-

fined as one family of grid lines. Lines orthogonal to the the streamlines can

be defincd as the other family. For example, on a sphere these two fam-

ilies correspond to the two spherical coordinate directions, 0 and _b, where

x = cos0, y = sin _b cos0, z = sin _bsin0. Streamlines have constant 0 and the

orthogonal lines have constant ¢.
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Figure 3: Partition lines: a) intersection lines, b) streamlines to "cut" holes out,

and c) source/sink lines.

The sources and sinks provide guidelines on how to distribute the grid lines.

The key to distributing grid lines is to highlight the physical features of the do-

main. That is, put more grid lines in regions where interesting physical changes
occur. In the flow domain, the most interesting change is the change in direction

and velocity of the flow. This change typically occurs most dramatically around

the sources and sinks. So, the grid lines should be distributed more densely
around them.

The above discussion deals with idealized objects. In tile yacht example,

there is a keel attached to the hull, and a winglet attached to the keel. The fol-

lowing sections show how to deal with the topological changes in these idealized

objects by going through the three gridding steps in more detail.

5 Partitioning

We break tile partitioning step into threc sub-steps: 1) Determine the surface

partitioning lines, 2) Partition surfaces into surface patches, and 3) Determine
real surfaces patches.

5.1 partitioning lines

The partitioning lines th_tt we use can bc divided into three categories: surface
intersection lines, streamlines, and source/sink lines. Intersection lines provide
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the boundary between real and fictional surface areas, so they must be present.

See Figure 3a for examples.
Notice that the hull-keel intersection line introduces a hole on the hull sur-

face. This hole needs to be cut out, because of the simply-connected constraint.

Using streamline-based reasoning, the logical way to "cut" out the hole is by

cutting along streamlines. We search for a leading point and a trailing point

along the intersection. From the leading point we trace a streamline backward
along the hull surface. From the trailing point we trace a streamline forward

along the hull surface. These two streamlines are shown in Figure 3b.
Source and sink lines are definitely needed, but all the sink lines turn out to

be redundant. The source lines are shown in Figure 3e. Notice that source/sink

nodes in xyz-space may become source/sink lines in uv parametric space, as in
the hull.

5.2 partition the surface patches

We shall not go into detail on how BSR accomplishes the actual partitioning.

Basically BSR 1) gathers all the partition lines of a particular surface, 2) in-
tersects the partition lines with each other and with the boundary lines of the

surface, 3) breaks all the lines at intersections, 4) forms a wire frame from the

broken lines, and 5) forms the surface patches based on the wire frame. The

surface patches after partitioning are shown in Figure 4. BSR updates the topo-

logical information after the partitioning process. The shaded surface patches
are fictional and will not be gridded.

5.3 determine the real surface patches

Real and fictional surface patches can be distinguished by reasoning using the

outward normal mappings, the counter-clockwise rule, and intersection lines.

For example, the surface patch Keell, Figure 5, has intersection lines in common

with the hull surface (arc 6) and the winglet surface (arcs 2 and 3). The hull

outward normals along the hull-keel intersection generally point in the negative
z-direction. The inward direction of arc 6 as defined by the counter-clockwise

rule is in the negative Vked direction, which corresponds to the negative z-
direction in xyz-space. This implies that Keell is outside of the hull. Similar

reasoning using arcs 2 and 3 shows Keell is outside of the winglet. Since Keell
is on the outside of all its neighbor surfaces, Keell is a real surface patch. If

a surface patch is on the inside of one or more of its neighbors, then it is a

fictional patch.
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Figure4: Surfacepatches after partitioning. Dotted lines across uv-space are
not drawn to reduce clutter. Omitted dotted lines would show Keell connected

to Hull1, Wingl and Wing3, and would show Keel2 connected to Hull2, Wing2

and Wing3.

6 Reparametrization

Our gridding program is able to invoke several different reparametrization meth-

ods, including transfinite interpolation, elliptic methods, and variational meth-
ods, [Knupp & Steinberg 1993]. These methods map a unit square on to a

quadrilateral. In the case of transfinite interpolation, the mapping is done by

interpolating from opposite edges of that quadrilateral. All these method re-
quires the surface patch to be reparametrized to have exactly four sides. But,

surface patches tend to have more than four boundary edges, and sometimes less
than four. In order to use these methods, we describe a heuristic, streamlined-

based method of grouping the boundary arcs of the surface patches into four

groups. See Figure 5.

We can classify each arc as either parallel, anti-parallel, or orthogonal with

respect to the streamlines. For example, the patch Keel1 is bounded by six
arcs. Arc 1 is a sink line. Arc 5 is a source line. So, by definition they are

orthogonal to the streamlines. Arc 4 is a boundary arc from the original input
surface. Arcs 2, 3 and 6 are intersection lines. These four arcs are neither com-

pletely parallel nor completely orthogonal to the streamlines. But by sampling
different segments of these arcs, we can approximately classify arcs 2 and 4 as

parallel, 6 as anti-parallel, and arc 3 as orthogonal. So, six groups are formed,

[(1), (2), (3), (4), (5), (6)]. But, unlike the graphical depiction in Figure 5, arc

3 is very short when compared to its neighbors, arc 2 and 4. So, heuristically

merging arc 3 with its neighbors, we get four groups, [(1), (2, 3, 4), (5), (6)]. We
call this a valid sequence of groups, because it follows a [orthogonal, parallel,

orthogonal, anti-parMlel] pattern.
If there are not enough arcs to form four groups, then additional degenerate,

point arcs may be introduced to construct a valid sequence of groups. For
example, in the case of three arcs with classification [orthogonal, orthogonal,

anti-l)arallel], then a parallel, point arc may be add between the two orthogonal
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Figure 5: Reparametrization and Distribution

arcs.

Our grouping method works well, because the boundary arcs of the sur-

faces patches tend to be partitioning lines: intersection lines, streamlines, and

source/sink lines. Classification of streamlines and source/sink lines are straight-
forward. In practice intersection lines tend always to be parallel, because an

orthogonal intersection line causes too much drag, and would not be used in

properly designed streamlined bodies.

This reparametrization step may fail ill two cases. The first case occurs when
the patch is inherently non-rectangular (e.g., a L-shaped surface patch), and the

heuristic method fails to group the boundary arcs into four groups. The second

case occurs when the patch is highly non-convex, and the repamaterization

method fails to converge or returns a folded grid. In both case the geometry

of the surface patch is too complicated, and additional partitioning lines are
needed.

7 Distribution

According to streamline-based reasoning, grid lines should be concentrated more
densely around sources and sinks. Sources and sinks tend to be at the ends of

the surface patches (in Figure 5 arc 1 and arc 5) in our streamline-based gridding

method. So, complicated distribution schemes usually are not needed. We have

experimented with cosine and hyperbolic tangent schemes, which distribute

more grid lines at the ends and yet distribute them smoothly enough as not
to violate the expansion ratio constraint. Both schemes work well, but if many

grid lines are laid out, cosine tends to place grid lines too densely at the ends.
This leads to numerical truncation error.

Beside resolving physical features, distribution must also resolve geometric
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features.Forexample,one Sk_¢_= constant grid line must be laid out at the
intersection of arc 2 and arc 3, and another one grid line at the intersection of

are 3 and are 4. Grid lines that must be laid out are shown as heavy, dotted

lines in Figure 5. The node at the intersection of arc 3 and are 4 touches three
surface patches, Kcell, Keel2, and Wing3. Not laying a grid line at that node

woul(l create a gap there so the three patches would not meet.

8 Computational Results

Our gridding algorithms have been implemented in a working program. Fig-
urc 6 shows the results of a convergence study in which our gridding program

generated a series of grids for PMARC. In the convergence study we ran a series
of simulations using grids with the same partitioning and reparametrization,

but with increasingly denser grid lines. As the grid becomes denser and grid

spacing decreases, output quantities computed by PMARC shouht converge to
their correct values. The output quantity we are most interested in is effective

draft, a measure of the efficiency of a sailing yacht's keel. Figure 7 shows how

effective draft converges as grid spacing is reduced in our convergence study.

Other values in Figure 6 can also be used as checks on the soundness of

the simulation. For example, the maximum Cp (pressure coefficient) should
approach 1 as the grid is refined, and the mininmnl Cp should not become too

negative, as very large negative values usually indicate flaws in the grid. [Gelsey
1992] discusses automated evaluation of simulation output quality.

rneaslDftDgiLift286 2.8836 0.0951 -0.2879

938 2.5869 0.1255 -0.2532

3678 2.4655 0.1479 -0.2418

14898 2.4327 0.1676 -0.2139

minC r
-3.1832

-4.6730

-4.1283
-4.9392

nlax _

0.6191

0.7941

0.9010
0.9631

Figure 6: Convergence study

9 Future Work

This work can be extended in various directions. One is to add feedback and lo-

cal refinement capabilities to the gridder. The streamlines predicted by PMARC

may be fed back into the gridder to improve the grid. Also, tim gridder can be

extended to detect and correct local flaws in the grid based on intermediate val-
ues, such as the coefficient of pressure. Another direction is to extend the gridder

to other physical domains where PDE simulators are needed. We believe our

methodology of identifyil,g key physical features of the domain and of reasoning
about how they interact with the geometry is quite general and extensible. For

example, in the ingot casting problem of heat transfer the temi)erature profih;
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seems to be the key feature [Ling, Steinberg, _z Jaluria 1993]. Temperature pro-

files tend to change the fastest near sharp corners and in appendages (regions
where the surface area to volume ratio is large). This suggests that isotherms

should be useful as grid lines, and they should be distributed more densely near

corners and appendages.

10 Related Work

Using streamlines is a natural idea. [Chung, Kuwahara, & Richmond 1993]
defines a 2D finite-difference method based on streamline-coordinates, instead

of Cartesian coordinates. [Chao & Liu 1991] applies streamline-based gridding

to 2D flow problems consisting of a single patch. Many geometric modeling

systems have been developed, such as Alpha1 by [l%iesenfeld 1981] and SHAPES

by [Sinha 1992]. [t'tequicha 1980] provides a good survey. Most of these systems
are intended for modeling mechanical components, and provide little support for

gridding, like representation of parametric space objects for reparametrization
and distribution, and algorithms to manipulate these objects. Previous AI work

in gridding includes [Dannenhoffer 1992], and [Santhanam et al. 1992]. In the

2D planar flow domain, Dannenhoffer's program is able to do partitioning by
merging templates of previously-solved cases. So, the set of shapes it can handle
is limited. Santhanam identifies several key parameters to modify and improve

grids in 1D Euler domain.
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11 Conclusion

Numerical simulation of partial differential equations is a powerful tool for en-

gineering design. However, human expertise and spatial reasoning abilities are
needed in order to form the spatial grids which PDE solvers require as input.

We have developed a geometric modeling language, BSR, capable of expressing

geometrical, topological, and physical aspects of the gridding problem, and we
have used BSR as a basis for an intelligent automated system for generating the

grids required for numerical simulation. The grid generation process involves

analyzing the topology of the spatial domain, predicting and classifying the in-
teractions of physics and geometry, and reasoning about the peculiarities of the
numerical simulator.
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ABSTRACT

The primary interest of the authors is in the area of grid

generation, in paticular, optimal domain decomposion about realistic

configurations. A grid generation procedu_b with optimal blocking
strategies has been developed to generate multi-block grids for a

circular-to-rectangular transition duct. The focus of this study is the

domain decomposition which optimizes solution algorithm/block

compatibility based on geometrical complexities as well as the physical

characteristics of flow field. The progress realized in this study is

summarized in this paper.

INTRODUCTION

Most solution algorithms for irregular configurations presently solve

a discrete form of the fluid equations of motion. The discretized

equations must be solved on a discretized computational region, that is,

on the grid nodes. A discrefization process of grid generation is to

establish a relationship between the physical and cornlmtational domain,

thus allow the solution algorithm to be performed in the transformed
domain.

In principle it is possible to make a correspondence between any

physical region and a single computational region. However, for general

complicatedthree-dimensionalconfigurationsthe resultinggrid is likely

to exhibitexcessive skewness and coarseness. Despite the power and

sophisticationof present grid generation capabilities,it remains difficult

to generate a reasonable,single-blockgrid about geometrically complex

flow fieldconfiguration.

* Assistant Professor of Korea Air Force Academy

**Professor of Aerospace Engineering, Mississippi State University
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A better approach with complicated physical boundaries is to
decomposethe physical domains,each boundedby six curved sides and
each of which transforms to a rectangular block in the computational
domain(ref.1). This domain decomposition has the merits of flow solver

efficiency, grid smoothness and orthogonality, and flexibility of gridding

for complex geometries by choosing suitable block topologies.

There are many approaches and philosophies which can be included

under the domain decomposition strategies. Structured grid analysis of

flow around complex geometries in widespread use is blocked

decomposition, in which the solution domain is divided into regions
t

with common internal boundaries. The grid lines at adjoining blocks

can be set up to match in a variety of ways, with various levels of

slope continuity. There is no theory which governs the way in which a

flow field should be partitioned. A limited number of papers in the

literature(ref.2-5) address basic flow-field-decomposition criteria and

guidelines. Eiseman has developed an automatic block decomposition

algorithm(tel.6). This algorithm is based on the geometrical

complexities. However, no comprehensive, systematic studies have been

done to determine the effect on the computed solution of using different

blocks for the same geometry. Currently, the major bottleneck is in the

design and implementation of the blocking plane(ref.7)

To remedy this problem, the focus of this study is the domain

decomposition which optimizes algorithm/block compatibility based on

geometrical complexities as well as the physical characteristics of the

flow field.

Generally, the use of analytical shapes is not enough to satisfy

the unusual geometrical requirement. Hence, sculptured curve/surface

definitions such as Non-Uniform Rational B-Splines(NURBS), and quick

elliptic grid refinement algorithms are developed. The application of

these algorithms to grid adaption and domain decomposition is

demonstrated. Grid generation associated with the circular-to-rect

angular transition duct has been accomplished by applying these

techniques. After careful consideration of the various alternatives, the

structured muli-block approach must be chosen as the most suitable,

from the point of view both grid generation and flow analysis.

INS3D(ref.8), a three-dimensional multi-block incompressible Naver-

Stokes code is used for this study.
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DOMAIN DECOMPOSION PROCEDURE

The work focuses on effects for optimizing domain decomposition

strategies associated with circlar-to-rectangular transition duct_ The

transition duct is designed to connect a typical circular engine exhaust

to a high aspect ratio rectangular nozzle. The application presented is

of considerable engineering importance in internal fluid flow designs.

To take full advantage of the flexibility of multi-block structured

techniques, one has to decide upon a suitable blocking topology to yield

an optimal block arrangement for a given flow solver.

[ CAD [

I
Geometry

definition

Analysis of solver

: scheme

: block capability

: flow properties

I
[ Decision of block topology]

I

Transformation of physical Ito computational domain

I
[Generation of surface grid]

I
[ Generation of field grid 1

I
Set B.C. and I.C.

Solve the flow equations

I
___NO__[Anaysis : postprocessor]

Compter resources

: CPU time
: amount of memory

Figure 1. Basic procedure for domain decomposition
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This step is an art, requiring knowledge-based techniques and

trial-and-error. Typically, a domain decomposition strategy is performed

and then surfaces and volume grids are created for each individual

block. Figure 1 shows the basic procedure. The desired characteristics

of multi-block grid are strongly dependent on the needs of the flow

solver and computer.

GEOMETRY DEFINITION FOR TRANSITION DUCT

The circle-to-rectangular transition duct can be designed by the

equation of a superellipse.

+ z = 1 (1)

Where a and b are the semi-major and semi-minor axes, respectively,

of the superellipse. The x axis is coincident with the streamwise

direction and the y and z axes are parallel to the major and minor axes

of the duct The cross-sectional area at a given stxeamwise location is

given by

1 )2
( 2

An: 1 _ )(4ab) (2)

Where 11 refers to the gamma fuction defined as

r(_)= i:(e-' t"-l)dt (11>0) (3)

The design procedure for the transition duct is to specify the

streamwise variation of the semi-major and semi-minor axes, and

superellipse exponent(n) defined by fifth order polynomial functions.

Special cases of the superellipse include a circle( a=b, n=¢.), an ellipse(

a_ b, _=co).

Steady, incompressible, turbulent, swirl-free flow through a

circle-to-rectangular transition duct has been studied experimentally

(ref.9). For comparison, the same geometry has been simulated. Figure

2 shows the lower half of the duct. The transition duct has an inlet

diameter of 20.43cm, a length-to-diameter ratio of 1, and an exit plane
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aspect ratio of three. The transition region length-to-diameter ratio is

1.5. The cross-sectional area remains the same at the exit as at the

inlet, but varies through the transition section to a maximum value

approximately 15% above the inlet value.

SURFACE REDISTRIBUTION AND REMAPPING

The principal requirement for generating a grid about a complex

geometry is the ability to efficiently redistribute points on the surface

while maintaining the integrity of the geometry. Because the regions

where high gradients are expected in the flow solution require high

density of grid points. The redistributed surface grid is accomplished

by evaluating the NURBS surface at th_ respective parameter

associated with the desired distribution space. The NURBS is used for

the standard surface description. The convex hull, local support, and

variation disrninishing properties of B-spline functions contribute to the

generation of the well-distributed smooth grid.

Let l:=[xt(L_), xz(L_), xst¢,)] denote the parametric representation

of the surface with coordinate(x_, xz x3) and parameter(L n). A

control point form of the NURBS surface(in 3-D) is defined as a tensor

product formula in 4-D(ref.10).
NI NI

_ojoo (4)
P(_, rl)-- Nt N r

_Bff(_)Bj (n)Ho
i=oj:o

Where B_(_):theM th degree B-spline basis functions in i direction.

B_(n):theK _ degree B-spline basis functions in j direction.

H0 : weight (positive real values)

Oo : control points

The control points of the surface are determined using tensor product

formula associated with both _ and 11 parameters when a surface with

a set of data point is given. It is called the inverse problem.

The parameWic space associated with NURBS is transformed as

the normalized arc length distribution mesh. The original surface which

is expressed into non-NURBS form can be converted to NURBS

representation. It is important to note that the redistributed surface grid
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is obtained by evaluating the NURBS surface at the desired distribution

point. However, the NURBS surface is smooth and has kept precisely

the fidelity of the original surface. A redistributed surface resulting

from the NURBS surface is demonstrated in Figure 3.

ELLIPTIC REFINEMENT

The grid should exhibit the desirable qualifies of smoothness and

orthogonality especially near the solid surface. Some results of algebraic

grid methods such as transfinite interpolation functions can not meet

the requirement of the grid qualities on certain geometries. Thus,

ellipticgrid methods are used to make up the shortcoming of the

algebraicmethods(ref.ll).

Derivation of the conlxol function based on grid metrices begins

with analyzing the ellipticgrid equation. Define the physical and

computational space with r= (xl,xz x3) and 2 = (¢I,¢2 _3),respectively.

The covariant and contravariantvectors then appear as follows:

a; = covariant base vectors rc (i=1, 2, 3)

a; = contxavariantbase vectors _V_A; (i=1,2, 3)

go = a;. a1 = g'_ (i=1, 2, 3), (j=l, 2, 3)

gO : a _ . _ : g_" (i= l, 2, 3), (j: l, 2, 3)

g = det[go[ = [ al • ( a2xa3)] 2

(go) C =- derivative of go with respective to _k

= z¢,C re + I:¢, r¢¢,, (i=l, 2, 3), (j=l, 2, 3), (k=l, 2, 3)

The elliptic grid generation system used in this study(ref.12) is
3 3 3

The determinations of the three control functions for the general

three-dimensional case can be summarized as follows. The three

components of the ellipticgrid generation equation(5) provide a set of

three equations,
3 3 3

_.gkk ( 12_)i Pk = -_gO ( rCC)I, 1=1, 2, 3 (6)
kffil iffilj=l
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that can be solved simultaneouslyat each point for the three con{xol
functions, Pk, k=l, 2, 3. The derivatives here are represented by

central differences. The smoothness is established by replacing the

control function at each point with the average of the four neighbors in

the two curvilinear directions other than that of the function. Thus,

pl(_l, _z, _3)=..___ [p1(_t ' _2+1 ' _3) + pl(_l, _2_1 ' _3)

+ pl(_l, _2, _3+1 ) + pl(_l, _2, _3_1), (7)

with analogous equations for P2 and P3. No smoothing is done in the

direction of the function because to do so would smooth the spacinq

distribution. The use of smoothed control functions evaluated from the

algebraic grid produces a smooth grid that retains essentially the

spacing of the algebraic grid(ref.13).

An application of these control functions results in a smooth-nearly

orthogonal grid in fewer iterations of the elliptic solver. These control

functions are applied in surface/volume grid refinement. It can be

observed that the elliptic grid provides smoothness and near

orthogonality in Figure 4.

BLOCK INTERFACES

There are three distinct configurations along the axial direction

which are a constant diameter circular entrance section, the transition

section, and a rectangular extension section. Because of the drastic

changes in the flow direction, a multi-block grid topology has been

adapted. This provides a smooth discretization of the entire volume
inside the transition duct.

Each block has its own curvilinear coordinate system irrespective

of that in the adjacent blocks. In order to keep complete continuity of

grid lines across the interfaces between blocks, the linkage among the

various blocks can be set by interpolation or fixing an actual boundary.

The grid points on an interface of one block are coincident in physical

space with those on another interface of the same or another block.

This facilitates the interface of block treatment without an application

of interpolation. This philosophy allows the flow solver to be run on

the multi-block grid system.
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APPLICATION

The two previously described methods, elliptic and algebraic, are

merged appropriately to obtain various multi-block grids on the

transition duct configuration. Moreover, by utilizating an approprite

blending of these methods allows a grid generation capability ranging

from cases with only a few blocks to cases with hundreds of blocks

for various shapes.

To demonstrate the capability of the present procedure, several

types of multi-block grids are designed such that the grid cell aspect

ratio and orthogonality are maintained with a reasonable range for all

the duct cross section. Figure 5-8 present several examples. For

comparative purposes, all types of domain decomposition are

implemented in the same flow solver code using equivalent boundary

conditions. Even the flow conditions for the computational analysis are

chosen to correspond to the experiments reported in Ref.8. Inlet

conditions are as follows:

Reynolds number : 390,000(based on U and D)

Bulk velocity(U) : 29.95 m/s

Core velocity(UcAJ) : 1.083

Friction velocity(UtauAJ) : 0.04063

RESULTS AND DISCUSSION

The results of the flow calculation are shown in Figures 9-12.

Pressure contours of the axial flow component are plotted in Figure 9

(a)-(b) which are on the x-y plane and x-z plane, respectively. The

velocity contours on both planes are demonstrated in Figure 10.(a)-(b).

The transition segment produces saddle-shaped pressure distributions in

the y-z plane as shown in Figure 11. Within the boundary layer the

velocity is reduced as shown in Figure 12, but the cross-stream

pressure gradient imposed by the flow outside the boundary layer is

not reduced. This can result in significant flow turning in the boundary

layer and is refered to as skew-induced secondary flow or cross flow.

The rate of cross flow production increases as the amount of

streamline curvature increases(ref.13). Figure 13 shows the comparison

of sidewall normalized static pressure between the experimental data

and the computed solutions in the upper quarter of the duct only. The

results of computational simulation and the measured data of Ref.9.,

show a very good agreement.
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CONCLUSIONS

Several blocking strategies have been considered in order to

analyze the transition duct flow. Optimal domain decomposition is

dependent on the method of flow solver and flow properties as well as

geometry concerns. This domain decomposition gives us the following

merits:

• A higher solution accuracy and faster convergence for the

computational fluid dynamics solver.

• Savings in the CPU time and the amount of memory.

• Maximization of the grid quality and optimization of the grid

distribution.
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Figure 3. A NI_TRI3S surface

Figure 4. Elliptic grid refinement
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Figure 5. Two-block system along the flow direction

Figure 6. Two blocks, O-tyI-_ grid system.
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Figure 7. Two blocks, O-H type grid system.

Figure 8. 5 blocks H-type grid system.
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(a)
.

(b)

Figure 9. Pressure contours (a)x-y plane, (b)x-z plane.
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Figure 10. Velocity contours (a)x-y plane, (b)x-z plane.

610



i ........

t: ,°. _ .t :., ..

_ _ jv

Figure 11. Vorticity contuors.

. ..:..::" : :": :

.....:-:::::::!:!:!:ii : : :i::
._-: - : -

..........._:;!_:_:..::!.:-". -!.........._- "
........:_..::f.i'i?:.:.:::':_L:.-.:.:L_ " .. i_-

....:,->>; :...- ,. -.: . -..

......•:-_:..- : ....... . .. >--'---7_... - " . .. -
..-..:':-:::"i ..::.'-:-":_'-.'-:,:._.. - " " .. . "'" _ : -

•-':':":-: :: " " " " ._ • " "7"-_ .....

:?:::::k_" ::---:----%-'_.... .. .... Z" .-": " .- " !
:... ..... ;..: ..... ,:,,.... . .... . .. ;..

::'-_" i ..-" - ! ..... -" i -"
.. ..,, . :._ ........... ._.-,.. ...: .......... _-,,,. . .. • . :

; . -. ; .-

--::--¢._. . • -.

..------ ....... _ i _-

i ..*''°

i °.''"

: ..-

.....-. !
: ...-

Figure 12. Boundary layer effects.

611



cp

0.4

0.3

0.2

0.1

0.0

-0.1

I I I I

• x/R=2.2
• x/R=2.8

• x/R--4.0

• x/R=8.0

O----O x/R=2.2
o ...... {3 x/R=2.8

• o - --ox/R--4.0
Ck • D
_" • _- _ x/R--8.0 .- "

_..n-_DO0 ....0 O

• _._ ...0"_. - • • •

..O...g-'"-'" _•
• • • i_ .._] .''Ji .........._'"[ • A_

• " ........ " _..l_,,._jC_'"_ A _JO--'_Qv.J,,_._ j.

......................o ............ • _ _ .,o,O_<> ..,______ .z{3-

-0.2 , , , I , , , ,
0.0 0.2 0.4 0.6 0.8 .0

periperial wall along the upper quarter.

Figure 13. Comparison of peripheral wall pressure

coefficient distribution between computed and measured

data. (symbol: e_nt, simbol-line:calculation)
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Summary

- An elliptic grid generation method is presented which generates excellent boundary conforming

grids in domains in 2D physical space. The method is based on the composition of an algebraic and

elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system

with control functions specified by the algebraic transformation. New expressions are given for the

control functions. (;rid orthogonality at the boundary, is achieved by modification of the algebraic
transformation.

It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent

to grid generation in a domain in 2D physical space.

A second elliptic grid generation method is presented which generates excellent boundary con-

forming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the

parametrization is a smooth mapping from a unit square onto the surface. A generated surface

grid only depends on the shape of the surface and is independent of the parametrization.

- Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method

to generate a smooth surface which is passing through a given discrete set of control points. In

contrast to bicut)ic spline interpolation, there is extra freedom to model the tangent and twist

vectors such that spurious oscillations are prevented.

1 Introduction

A flow simulation system for the computation of flows about complete aircraft configurations in-

eluding propulsion aircraft components has been develol)ed at NLR. The system is known as tim

ENFLOW (Euler/Navier-Stokes FLOW) system [1]. Fig.4 shows the layout of the system and
summarizes its use for CFD work.

Surface modeling of the original aerodynamic input configuration surfaces is done with the commer-
cial ICEM-CFD software. The subdivision of a three dimensional flow domain into blocks is done

with the grat)hical interactive domain modeler ENI)OMO. The computation of structured grids in

the interior of the blocks is done with the graphical interactive grid generator ENGRII). Given a

inulti-block grid, the flow solver ENSOLV computes the solution of the Eu]er and/or Navier-Stokes

equations with respect to specified boundary conditions.

In this paper we focus on surface grid generation. Output of ICEM-(TFI) is a set of discrete

_This investigation was partly performed under contract 01105N with the Netherlands Agency for Aerospace

Programs (NIVR).
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surfaces.A discretesurfaceis a two-dimensionalarrayof so-calledcontrolpoints. The complete
setof discretesurfacesapproximatesthe originalaerodynamicinput configurationsurfaces.

A discretesurfacemust be interpolatedduringgrid generation.For this purpose,bicubicHermite
interpolationis usedto definea smoothsurfacewhichis passingthroughthe setof controlpoints
without introducingspuriousoscillations. A C 1 parametrization is constructed which maps a unit

square onto the interpolated surface. Bicubic Hermite interpolation is discussed in Section 5.

Multi-block grid generation proceeds from the inside out, starting with the generation of grids in

edges, followed by the grid generation in faces, and ending with the grid generation in blocks. For

this reason, a surface grid generation method is needed to generate interior grids in surfaces with

a prescribed boundary grid point distribution as Dirichlet boundary condition.

In Section 4 it is shown how elliptic surface grid generation can be used to generate an interior

surface grid on a parametrized surface with a prescribed boundary grid point distribution. A

generated surface grid is independent of the parametrization. Thus the interior surface grid will

only depend on the shape of the surface and the prescribed boundary grid points.

For surfaces ill the interior of a flow domain, often only the boundary shape is defined. For a

surface with only a prescribed boundary shape and a prescribed boundary grid point distribution,

it is possible to generate an interior surface grid on a minimal surface. The shape of the surface

becomes a soap film bounded by the prescribed boundary of the surface. It appears that surface

grid generation on minimal surfaces is in fact a straightforward extension of grid generation in 2D.

Grid generation in a domain in 2D is treated in Section 2, the extension to minimal surface grid

generation is discussed in Section 3.

Concerning grid generation, the main emphasis lies on the derivation of the elliptic grid generation

systems. The discretization and solution of the systems of partial differential equations is not

discussed. We refer to [2] for details about the applied solution methods. Grid generation in 3D

domains is also discussed in [2].

2 2D grid generation

Consider a simply connected bounded domain T) in two dimensional space with Cartesian coor-

dinates _ = (x,y) T. Suppose that /) is bounded by four edges El, E2, E3, E4. Let (El, E2) and

(E3, E4) be the two pairs of opposite edges as shown in Fig.1.

Introduce the parameter space "P as the unit square in a two dimensional space with Cartesian

coordinates _"= (,% t) T. Require that the parameters 8 and t obey:

• s= 0 at edge El and s--- 1 at edge E2,

• s is tile normalized arc length along edges E3 and E4,

• t = 0 at edge E3 and t- 1 at edge E4,

• t is the normalized arc length along edges El and E2.

(1)

(2)

(3)

(4)
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Figure 1: Transformation from computational (_, r/) space to a domain D in Cartesian (x, y) space.

The mapping g: OD _ 07_ is defined by these

and t are harmonic functions of x and y, thus

requirements. In the interior of 79 we require that s

obey the Laplace equations:

_2 S _2 S

/ks - Ox 2 + Oy 2 -sx_+syu =0, (5)

02t 02t

At - Ox 2 + Oy 2 t=_ + tuu = 0. (6)

The two Laplace equations /Xs = 0 and At = 0, together with the above specified boundary

conditions, define the mapping g': 79 _ _o. Note that this mapping only depends on the shape

of domain 79. By interchanging the dependent and independent variables, a non-linear elliptic

partial differential equation can be derived for £ : T' _ N. This mapping is called the elliptic

transformation. It is well known that this mapping is differentiable and one-to-one [3].

Define the computational space C as the unit square in a two dimensional space with Cartesian

coordinates (= (_,r]) T. Assume that a mapping £ : c3C _ 07) is prescribed which maps the

boundary of C one-to-one on the boundary of _. This mapping defines the boundary grid point
distribution. Assume that

• _ = 0 at edge El and _ = 1 at edge E2,

• 7/= 0 at edge E3 and r/_= 1 at edge E4.

We wish to construct a mapping :_ : C _ T_ which obeys the boundary conditions and which is a

differentiable one-to-one mapping. Furthermore, we require that the interior grid point distribution

describes a smooth transition between the prescribed grid point distribution in the four edges.

A natural mapping £ : C _ 79 exists which obeys these requirements. This mapping will be the

composition of an algebraic transformation and the elliptic transformation based on the Laplace

equations. The algebraic transformation is a differentiable one-to-one mapping from computational

space C onto the parameter space P. The composition of these two mappings defines the interior

grid point distribution and is a differentiable one-to-one mapping from computational domain C
onto domain 79.
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The algebraictransformationis definedas follows. Because_7: 0C _ 0D is prescribed and _ :

0P _ 0D is defined as described above, it follows that F: OC _ OP is also defined.

From the preceding requirements it follows that

s(0,,1) = 0, s(1,,/)= 1, s(_,0)= sz3(_), s(_, 1)=-qE,(_), (7)

where the functions sE3, SE4 are monotonically increasing, and

t(_,0) = 0, t(_, 1)= 1, t(0,,1)= tE,(q), t(1,r/)= tE2('l), (S)

where the functions tEx,tE2 are also monotonically increasing. Thus the four functions tE_(71) ,

tE2(_l), SE._(_), SE_(_) are defined by the boundary grid point distribution.

The mapping Y: C _-. P is now defined by the following two algebraic equations:

s = sE3(_)(1 -- t) + SE4(_)t, (9)

t = tE,(,I)(1 -- S)-4- tE2(_)S. (10)

Eq.(9) implies that a coordinate line ( = constant is mapped to the parameter space P as a straight

line: s is a linear function of t, and Eq.(10) implies that a grid line 7/= constant is also mapped

to P as a straight line: t is a linear function of s. For given values of ( and _, the corresponding
s and t values are found as the intersection point of the two straight lines. For this reason, the

system defined by Eqs.(9),(10) is called the "algebraic straight line transformation". It can be easily

verified that this system defines a differentiable one-to-one mapping because of the positiveness of

the Jacobian: .%t, 7 - .%t( > 0.

In the remainder of this section, we will derive the set of non-linear elliptic partial differential

equations which tile COlnposite mapping _ = i(F(_)) has to fulfill. First introduce the two covariant

base vectors
0_ 0_

ffl - 0_ -2¢' if2- 0,!-i'_' (11)

and define the covariant metric tensor components as the inner product of the covariant base vectors

ao = (ffi,ffj) , i= {1,2}, j = {1,2}. (12)

Then the contravariant base vectors ffl and if2 are defined according to the rules

( ,ffj)=_j, i= {1,2}, j= {1,2}, (13)

with 6_ the Kronecker symbol. Define the contravariant metric tensor components

aiJ = (ff,,ffs), i= {1,2}, j = {1,2}, 14)

so that

and

(a,,o,2)(a,, o)a12 a22 a 12 a 22 = 0 1 '

ffl = all_l + a12ff2 , _2 = al2ffl + a22K2.

15)
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Introducethe determinantj2 of the covariant metric tensor: j2 = alia22 - a_ 2.

Now consider an arbitrary function 4) = ¢(_,7/). Then ¢ is also defined in domain 7) and the

Laplacian of ¢ is expressed as

1 { (ja11¢( + ja12¢n)( + (ja12¢ ( + ja22¢n)n}, (17)A¢ = + = j

which may be found in every textbook on Tensor Analysis and Differential Geometry (for example

see [4], page 227). Take as special cases respectively ¢ - ( and 4) _= _. Then Eq.(17) yields

1 1

Thus the Laplacian of 4) can also be expressed as

A4) = a114)(_ + 2a124)(n + a22(ann + A_ 4)_ +/_1 4),7. (19)

Substitution of respectively 4) - s and 4) _= t in this equation yields

/Ns = alls_ + 2al2s_n + a22snn + A_ s_ + AT? sn, (20)

/kt = aalt_ + 2a12t_n + a22tnn +/_ t_ +/kr I t n. (21)

Using these equations and the requirement that s and t are harmonic in domain D, thus As = 0

and At = 0, we find the following expressions for the Laplacian of _ and 71

where

and the matrix T is defined as

t_n

t_ tn

(22)

tTl7 ]

(24)

The six coefficients of the vectors /3a, = (P_I,P_1) T , fi12 = (P_2, P_) T and /5_2 = (P._2, P222)T are

so called control functions. These six control functions are completely defined and easily computed

for a given algebraic transformation g = s-'(_). Different and less useful expressions of these control

functions can also be found in [5, 6].

Finally, substitution of 4) - :_ in Eq.(19) yields

Substitution of Eq.(22) into this equation and using the fact that/k£ =_ 0 we arrive at the following
Poisson grid generation system

a11_-_{-It- 2a12_t_rj 3t- a22_,, -31- (allpl 1 -{- 2aa2p]2 + a22P_2 ) ._¢

+ (allg21-]-2a12p?2-{-a22p.22) x. =0. (26)
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Using Eqs.(12),(15), we find the following well known expressions for the contravariant metric

tensor components:

j2all a22 (xv,xv) j2a12= = , -a12 -(z'_,_'_) , j2a22---- ---- ----all = (_'_, _'_). (27)

Thus the Poisson grid generation system defined by Eq.(26) can be simplified by multiplication
with j2. Then we obtain:

a22_'_ -- 2a12Z(v + allxnv 7t- (a22pl, - 2a12p12 -JVallp12) _ _

Jr- (a22P?l- _a12P?2 -_- all P,22) ;_71 = o. (28)

This equation, together with the expressions for the control functions P_ given by Eq.(23), forms

our 2D grid generation system. Grids are computed by solving this quasi-linear system of elliptic

partial differential equations.

Orthogonality at boundaries

Grid orthogonality at boundaries can be achieved as follows.

Redefine the elliptic transformation £ : _ +-+ 7) by imposing the following new set of boundary
conditions for the harmonic functions s and t:

• s=0at edgeEl ands= 1 at edge E2,

Os
• _ = 0 along edges E3 and E4, where n is the outward normal direction,

• t-0 at edge E3 and t- 1 at edge E4,

at = 0 along edges E1 and E2, where n is the outward normal direction.

These new boundary conditions define a new mapping i : P +-+ 7).

The Neumann boundary condition as = 0 along edges E3 and E4 imply that a parameter line s =

constant is a curve in domain ;D which is orthogonal at those edges. Similarly, a parameter line t =

constant is a curve in 7) which is orthogonal at edge El and edge E2.

The algebraic transformation g" : C _-+ 7_ is redefined according to the following two algebraic

equations:

s = SE3(_)Ho(t) + SE,(()Hl(t), (29)

t = tE, OT)Ho(s) + tE2OT)HI(s), (30)

where Ho and H1 are cubic Hermite interpolation functions defined in Eq.(52) below. Note that

Ho(0) = 1, U6(0) = 0, H0(1) = 0, H6(1) -- 0 and H_(0) = 0, H_(0) = 0, Hi(l) = 1, H_(1) = 0.

It follows from Eq.(29) that a coordinate line _ = constant is mapped to parameter space 7, as a

cubic curve which is orthogonal at both edge E3 and edge E4 in T ). Such a curve in parameter

space 7' will thus be mapped by the new elliptic transformation £" : 7:) +--+/) as a curve which is

orthogonal at both edge E3 and edge E4 in 7). Similar observations can be made for coordinate

lines _/= constant. Thus the grid will be orthogonal at all four edges in domain 19.
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The composite mapping _ : C _ D still obeys the Poisson grid generation system defined by

Eq.(28). Thus the same system of elliptic equations can be solved to generate an orthogonal grid

at the boundary. The only difference is that now _': C _ 7:' is defined by Eqs.(29),(30) instead of
Eqs.(9),(10).

Figs.5,6,7 are demonstrations of the robustness of this elliptic grid generation method. The bound-

ary grid point distribution is prescribed and the interior grids are obtained by solving Eq.(28). The

interior grid point distributions were verified to be foldfree by zooming into regions where the grid
is very dense.

3 Surface Grid Generation on Minimal Surfaces

Grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation
in a domain in 2D physical space.

As in the two dimensional case, again consider four curved edges El, E2, E3, E4 but now situated

in the three dimensional physical space with Cartesian coordinates i = (x, y, z) T. Let (E_, E2) and
(E3, E4) be the two pairs of opposite edges as shown in Fig.2.

Introduce the parameter space 7_ as the unit square in a two dimensional space with Cartesian

coordinates g = (s, t) T. Again require that the parameters s and t obey the boundary equations

specified in Eqs.(1),(2),(3),(4). Furthermore, require that

As = 0, (31)
At = 0, (32)

H = 0, (33)

where A is the Laplace-Beltrami operator for surfaces and H is the mean curvature.

These three requirements, together with the specified boundary conditions define a unique mapping

_" : P _ 7_3. The shape of the surface defined by this mapping is a minimal surface (soap film)
because of the requirement that the mean curvature H is zero. The parametrization of the surface

is defined by Eqs.(31),(32). Define the minimal surface S = {_(s,t) I (s,t) E T'}.

Consider a prescribed boundary grid point distribution at the four edges El, E2, E3, E4 of the

minimal surface S. The boundary grid point distribution can be defined as a mapping _ : OC _ OS

where C is the computational space defined as the unit square in a two dimensional space with
Cartesian coordinates (= ((, _])T. Because a_: OC _ OS is prescribed and _ : 07:' _ 0S is defined

as described above, it follows that g: OC _ 07_ is also defined.

In exactly the same way as for the two dimensional case, the mapping _": C _ T' is defined by the

algebraic straight line transformation defined by Eqs.(9),(10). The mapping i" : 7:' _ ,S is defined

by Eqs.(31),(32),(33). The composite mapping i: C _ S is defined as i = _(_()) and describes

the interior grid point distribution on the minimal surface S. Note that this composite mapping
will be differentiable and one-to-one.

We will now show that the set of non-linear elliptic partial differential equations which the composite

mapping has to fulfill is the same Poisson system as defined by Eq.(28) but with a? = (x, y, z) T
instead of _. = (x, y)T. Thus grid generation on a minimal surface in 3D physical space is in fact
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(z, y, z) space.

equivalent to grid generation in a domain in 2D physical space. The result that a Poisson system

of the form as defined by Eq.(28) can be used to compute a grid on a minimal surface can also be

found as a special appfication of the formulas derived in [7].

For this purpose, introduce the two covariant base vectors

E, = £_ , if2 = xn" (34)

The two covariant base vectors span the tangent plane of S at the corresponding point P. Define
the unit surface normal as

fix A d2

- II if,̂ E2 I1' (35)

where A is the vector product operator. The contravariant base vectors E1 and E2 are defined

according to the rules

(_/,ffj) = 6j, i= {1,2}, j = {1,2}, (36)

and

(ff1,fi)=0, (E 2,fi)=0. (37)

Thus the two contravariant base vectors are also lying in the tangent plane of S at the corresponding

point P. Define the covariant metric tensor components by Eq.(12) and the contravariant metric

tensor components by Eq.(14). Then Eqs.(15),(16) are still vahd. Again introduce the determinant

j2 of the covariant metric tensor: j2 = 511522 - 522.

Now consider an arbitrary function ¢ = ¢(_,r/). Then ¢ is also defined on surface S and the

Laplace-Beltrami operator of ¢ is expressed as

1 Ja12¢v) ' (Ja12¢,_ ja22¢v)v} (38)

(see [4], page 227). As in the two-dimensional case, substitution of ¢ = _ and ¢ - _ into this

equation yields Eq.(18). Thus the Laplace-Beltrami operator of ¢ can also be expressed as defined

by Eq.(19). Substitution of respectively ¢ = s and ¢ _= t in Eq.(19) and using the requirements ex-

pressed by Eqs.(31),(32)yields exactly the same expressions for/_ and/X,/given by Eqs.(22),(23).

Finally, substitution of ¢ -_- Z in Eq.(19) yields Eq.(25).
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TheLaplace-Beltramioperatorappliedon _ obeysa famousrelationexpressedby

/_ = 2H_,

where the mean curvature H is defined as

H=_I (ala_._ + 2a,2£_ _ + a22_.m 7' _) .

(for example see [8], Theorem 1, page 71). Using the requirement H = 0 yields

AI=0.

(39)

(40)

(41)

Thus Eq.(22) and Eq.(25) with A.g = 0 are also valid for minimal surfaces. Following the same

derivation as given in Section 2, we arrive at exactly the same non-linear system of elliptic partial

differential equations as expressed by Eq.(28). Thus an interior grid point distribution on a minimal

surface is found by solving Eq.(28). The only difference compared to the two dimensional case is

that now _ = (x, y, z) T instead of _ = (x, y)r .

Grid orthogonafity at boundaries can be obtained in the same way as described in Section 2.

One may ask whether it is useful to implement a method to compute grids on minimal surfaces in a

3D multi-block grid generator code. The answer is yes. Minimal surfaces may be used to define the

geometry and grid for a block-face of which only the four face-edges are given. It is also possible

to apply minimal surface grid generation when a grid must be generated in a block-face with four

face-edges lying in a plane. Then the minimal surface is a plane surface bounded by the four edges.

The grids in the 2D domains depicted in Figs.5,6,7 were generated in this way and are in fact grids
on minimal surfaces.

An example of a grid on a characteristic minimal surface is shown in Fig.8. This is a so-called

square Scherck surface [8]. Fig.9 illustrates what happens when the prescribed boundary grid

point distribution is changed. This figure clearly shows that the shape of the minimal surface is

independent of the prescribed boundary grid point distribution.

4 Surface Grid Generation on Parametrized Surfaces

In this section we develop a method to generate a grid on a parametrized surface which is indepen-

dent of the parametrization. A generated grid only depends on the shape of the surface and the

prescribed boundary grid point distribution at the four edges of the surface.

Consider a bounded surface S with a prescribed geometrical shape in three dimensional physical

space with Cartesian coordinates _ = (x, y, z) T. Assume that S is parametrized by a differentiable

one-to-one mapping
i: 7'_ _ S, (42)

where P_,v is the unit square in two dimensional space with Cartesian coordinates ff = (u, v) T.

Define the four edges El, E2, E3, E4 of surface S by

• u - 0 at edge E1 and u = 1 at edge E2,
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Figure 3: Transformation from computational (_, r/) space to a parametrized surface S in Cartesian

(x, y, z) space.

* v-0 at edge E3 andv- 1 at edge E4.

Thus (El, E2) and (E3, E4) are the two pairs of opposite edges of surface S as shown in Fig.3.

Introduce the parameter space Pst as the unit square in a two dimensional space with Cartesian

coordinates K = (,% t) T. Again require that the parameters s and t obey the boundary equations

specified in Eqs.(1),(2),(3),(4). Furthermore, require that As = 0 and At = 0 where /k is the

Laplace-Beltrami operator for surfaces. Hence the parameters s and t obey

(jallsu d- jal2sv)u d- (Jal2Su d- ja22sv)v -- 0, (43)

(galltu 31- gal2tv)u -Jr (gai2tu -_- ga22$v) v -: O, (44)

where a ij are the contravariant tensor components and j2 is defined as the determinant of the

covariant metric tensor. The contravariant tensor components a ij are related to the covariant

tensor components alj according to Eq.(15). The covariant metric tensor components are defined

by Eq.(12), where the two covariant base vectors are now given by

al =xu, a2 =xv. (45)

The coefficients Ja _ , Ja _2 and Ja 22 in Eqs.(43),(44)are thus functions ofu and v, and Eqs.(43),(44)

are therefore two uncoupled second-order linear partial differential equations for the functions

s = s(u,v) and t = t(u, v).

Each boundary point of surface S has a unique (s, t) parameter value at cOPst and a unique (u, v) pa-

rameter value at 0P_.. Thus each (u, v) parameter value at 0:P_. has also a unique (s, t) parameter

value at 0Pst. Thus the functions s and t are prescribed at the boundary of 79_,. Hence, Eq.(43)

together with the Dirichlet boundary conditions for s can be used to compute s = s(u,v) and

Eq.(44) together with the Dirichlet boundary conditions for t can be used to compute t = t(u, v).

Only two hnear partial differential equations have to be solved to define these mappings. These

two mappings are compactly written as _: _P_,_ _-_ _st. Note that _': 7)_,v _-_ "Pst is a differentiable

one-to-one mapping so that the inverse mapping ff :Pst _-_ T)uv also exists.

Thus the composite mapping Z: :Pst _ 5;, defined as _? = Z(g(8")) also exists and is differentiahle

and one-to-one. Note that this mapping Z : ?)st _ S only depends on the shape of surface 5; and

is independent of the original parametrization Z : T)uv _-_ 8. The mapping Z : T)st _-_ 5; may thus

be considered as a property of surface $ and defines a new unique parametrization of S.
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Consider a prescribed boundary grid point distribution at the four edges El, E2, E3, E4. The bound-

ary grid point distribution can be defined as a mapping Z : OC _ cOS where C is the computational

space defined as the unit square in a two dimensional space with Cartesian coordinates (= ((, _1)T.

Because _ : cOC_ cOS is prescribed and Z : cOt)st _ cOS is defined as described above, it follows that

_ : cOC_ cOt)st is also defined.

In exactly the same way as for the two dimensional case, the mapping _": C _ T)st is now defined by

the algebraic straight line transformation defined by Eqs.(9),(10). The composition of the mapping

g : C _ "/:'st and the mapping £ : P_t _ S defines 2" : C _ S and describes the interior grid

point distribution on surface S. Note that this composite mapping will also be differentiable and
one-to-one.

Grid orthogonality at boundaries can be obtained by the same procedure as described in Section 2
for 2D domains.

Fig.10 shows an irregularly distributed control point mesh on a smooth surface. The surface is de-

fined as z = 81-tanh(15( ¼- (x - 1)2- (y_ 1)2)), (x, y) • [0, 1]2. In section 5.2 is described how bicubic

Hermite interpolation is used to define the mapping i : Puv _ S. The parametrization depends on

the control point distribution. Fig.ll shows an elliptic grid. Equidistributed boundary grid points

are used as Dirichlet boundary condition. This figure clearly demonstrates that the interior surface

grid only depends on the shape of the surface and is independent of the parametrization.

Less academic surface grids are shown in Fig.13.

5 Surface modeling

Consider a discrete surface defined as a two-dimensional array of control points. An interpolated

surface is obtained by bicubic Hermite interpolation. Non-linear averaging formulas for the tangent

and twist vectors are used to prevent spurious oscillations. The interpolation method is explained
first for curves and then extended to surfaces.

5.1 Piecewise cubic Hermite interpolation for curves

Consider a set of control points {_i = (x,y,z) T I i = 0...N}. We wish to construct a smooth

C 1 curve :? : u • [0, 1] _ 7_3 which is passing through the set of control points with a geometrical

shape as one would intuitively expect. Furthermore, spurious oscillations should be prevented. For

this reason, cubic spline interpolation is not safe. Instead, piecewise cubic Hermite interpolation is

applied. The extra freedom to model the tangent vectors is used to prevent unwanted oscillations.

The parameter u is defined as normalized arc length.

Compute the distance between succeeding control points:

& =11 II, i= 1...N. (46)

Define the length of the curve by
N

L = _ di, (47)
i=1
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andthe normalizeddistancesas
di = dilL, i = 1...N. (48)

Define the knot sequence {ui ] i=0...N}byu0=0and

ui = ui-_ + di , i = 1 ...N. (49)

Hence, 0 = Uo < ul < ... < UN = 1. Patch iis defined as the interval [ui-l,ui]. In patch i, we
relate a local variable a E [0, 1] to the global variable u by

u = ui-1 + a(ui - ui-1) = ui-1 + adi. (50)

dZtu'),i 0 N} are known. HowFor the moment, suppose that the tangent vectors {_=, = d,,_ _ ....
these tangent vectors are modeled is shown below.

The shape of the curve at patch i is then defined as

£(a) = £i-,Ho(a) + £iHl(a) + di._u,_,H2(a) + di:_u, H3(a),

where Ho, H1, H2, H3 are cubic Hermite interpolation functions defined as

with0_<a_< 1.

Ho(a) -- (1 + 2a)(1 - a)2,

Ha(a) = (3 -- 2_)_ 2,

H2(a) = a(1-a) 2,

H3(a) = (a-1)a 2,

(51)

(52)

It can be easily verified that d---_tu.--_ d_d_,_ ' J = -d-if(ui+) = _',,,, so that the piecewise cubic curve Z(u) is
indeed C 1.

The tangent vectors {Z=,, i = 0... N} are computed as follows. Define the chord vectors

_'-½ - di , i= 1...N. (53)

Note that [[ _,,_½ []= L. The tangent vectors at the interior knots i = 1 ...N - 1 are modeled as

._,, = i._,,_½ci + £'_,,+½(1 - ci), i -- 1...N - 1, (54)

with

IIi_ - _i-, II2 d_

c,= [l£, _ £,-, II2+ l[ - J[2 - d_ + dhl ' i = 1...N - 1. (55)
If [l £i - £'i-1 1[<<[1£i+1 - £i [[ then ci "" 0 and £'_, _ _ This implies that high curvature

Xui+ ½ •

will be restricted to small patches which is a behaviour as one would intuitively expect. Spurious
oscillations are also prevented.

Quadratic end conditions are used to compute the end tangent vectors x_0 and Z=N" The quadratic

end conditions require that the cubic polynomial function Z((_) is a quadratic function of (_ in patch

1 and in patch N. It is easily verified that this implies that

x"_0 = 2£_½ - £,, , £_N = 2£_u_½ - x_N-_" (56)

Fig.12 illustrates that cubic Hermite interpolation prevents spurious oscillations, in contrast to

cubic spline interpolation.
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5.2 Piecewise bicubic Hermite interpolation for surfaces

Consider a set of control points {:gi,j =(x,Y,z)Tj ] i=O...N,j=O...M}. We wish to construct

a smooth C 1 surface :_ : (u, v) E [0, 1]2 _ _3 which is passing through the set of control points

with a geometrical shape as one would intuitively expect. As for curves, spurious oscillations should

be prevented. For this reason, bicubic spline interpolation is not safe. Instead, piecewise bicubic

Hermite interpolation is applied. The extra freedom to model the tangent vectors and twist vectors

is used to prevent unwanted oscillations.

Consider a row of points {:_i,j I i = 0...N} with j E {0...M} fixed. This row of points is
considered as a discrete curve and it is therefore possible to compute a knot sequence {ui, j ] i =

0...N} in exactly the same way as described in the previous section. In the same way, consider

a column of points {2"ij I J = 0...M} with i E {0...N} fixed, and compute the knot sequence

{vij [ j= O...M}.

To construct a smooth surface, one knot sequence is needed for all rows and all columns. These

two knot sequences are obtained by averaging:

1 M 1 g

ui-- M + l j=o_ui'J ' i=O...N, vj- N+ l _Vi'J'i=o j=O...M. (57)

Patch (i,j)is defined as the rectangle [ui-,, ui] x [vj_,, vj]. In patch (i,j) we relate local variables

(a, 3) E [0, 1]2 to the global variables (u, v) by

u = ui-i + c_d_ , v = vi-1 4-/_d_, (5s)

with d_ = ui - ui-1 and d_ = vj - vj_ 1.

oz _ _ ae vj ) , and twistFor the moment, suppose that the tangent vectors x_,,.j = g-_(ui, vj) , x,,o - -g-j(ui,
_ a2z . ,

vectors xuv,._ - 0--ff_(u,, vs) are known for all knots (i,j). How these tangent and twist vectors are
modeled is shown below.

The shape of the surface at patch (i,j) is then defined as

x(a, 3) = (H0(a), H,(a), H2(a), H3(a))Mi H
H0(3)

H,(/3)
H2( )
H3(3)

(59)

where the matrix MR is defined by
%2

_i_ 1,j- 1 :_i- 1,j

MH " xi,j-1 xi,j
,,3 = ,,_. d,_,,,_l, 'di u,-1,j-i d_d'_,,_,_,,,_, d'Cd_i.,,,,_,.j "

g ,-- .1 ,

(60)

From these definitions, it can be easily verified that the piecewise bicubic surface Z(u, v) is C 1.
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The tangentvectors:_,,,j arecomputedasfollows( the tangentvectorsZ'v,,:

same way ). Define the chord vectors

x-'i,j - Xi-l,j , i = 1 ...N , j = O...M,
xu,_ ½._ - d'_

and use the same non-linear averaging formula as used for curves, thus

_ . +- (1 ) i 1 .N 1 j 0 M.
Xu,,j = Xu _½,jC_,3 Xu,+½j -- Ci, j , = .. -- _ = ...

with

are computed in the

(61)

(62)

II_,J - Xi-l,j II2
c_,j= IIx'_,j- _-l,j II2 + II_+a,j - _,,yII2 ' i = 1... N - 1 , j = 0... M. (63)

Quadratic end conditions are used again to compute the end tangent vectors.

A modification of Adini's method [9] is used to compute the twist vectors. Consider patch (i,j) with

local variables (a, _). Assume that the tangent vectors Z_, _, are known at the four corner points of

the patch. Introduce the abbreviate notation Zoo = xi-t,j-l, a?io = xi,j-1,101 = aTi_l,j, xlt = x_,j-

Use Eqs.(59),(60) to find _(0, 0) = d_:_u,__.j__, i'_(1,0) = d_,,.j_,, _(0, 1) = dU:_,,,__.j, _( 1, 1) =

d_'_'u,,. , z'fl(0, 0) = d_.V,_l,,_, , _'Z(I ,0) = d?_,,,,:. _, , _Z(0, 1) = d?_,,,:_,,. , _(1, 1) = dyer,.,. Compute
the boundary curves of the patch by cubic Hermite interpolation. Thus, for example

Z(a, 0) = ff00H0(cQ + ffl0Hl(a) + _(0, 0)H2(_) + _(1,0)H3(&), (64)

and the other three boundary curves are computed by similar formulas. Define the shape of the

surface patch as a bilinearly blended Coon's patch

e(1,/_) + e(c_,0) -(1-a,a) x:00 x:01 1 -- _ . (65)

Compute the corner twist vectors aT_(0, 0), £_Z( l, 0), :_(0, 1), aT_( 1, l) from Eq.(65). Use Eq.(58)

to find the corresponding twist vectors w.r.t, the global variables (u, v): £_,__.___ = £_Z(0, O)/d_d_
etc..

Thus at the four corners of each patch, an estimation is found for the twist vector £_,. Consider

an interior knot (i,j). Then four estimations for the twist vector xu,,,_ are found in respectively
patches (i,j),(i+ 1,j),(i,j+ l) and (i + 1,j + 1). Write those estimations as respectively £sw,

z SE, £NW, a?NE. A similar averaging procedure as applied for tangent vectors is used to define a

unique value _.,., :

._SW a2 zSE a2 zNW A2 _NE_2
uv "ti,j + ;ruv _ti+t,j + Xuv eai,j+l + Xuv _i+l,j+l

x_.,,_ = A.2 + A 2 A 2 2 , (66)
t,3 i+l,j + i,j+l + Ai+l,j+l

where Ai,j is the area of patch (i,j) defined as

Ai,j = 0.5 II(_,: - _-a,:-_) _ (_-_,j - xi,j-1)II. (67)

This non-linear averaging procedure guarantees that large changes in twist will be restricted to

small patches. At a boundary knot, there are only two estimations for the twist vector. It is

evident how the averaging procedure must be applied in that case. At the four corner knots, only

one estimation is available and averaging is thus not needed.

Figs.10,11 illustrate that bicubic Hermite interpolation gives a smooth surface shape, even if the

control points are irregularly distributed.
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Concluding remarks

An elliptic grid generationmethodis presentedto generateboundaryconforminggridsin domains
in 2Dphysicalspaceandonminimalsurfacesandparametrizedsurfacesin 3Dphysicalspace.The
methodis basedon the useof compositemappingsand produceexcellentgrids in the senseof
smoothness,grid point distribution andregularity.

The describedelliptic grid generationmethodhasbeenimplementedinto NLR's multi-blockgrid
generationcodeENGRID and is extensively used for the generation of boundary conforming Navier-

Stokes grids in block-faces with complex shapes.

Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method

to define interpolated surfaces.
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Figure 5: Elliptic grid with grid orthogonality at the lower boundary of the domain.

632



Figure6: Elliptic grid with boundarylayerandorthogonality.

Figure 7: Detail of elliptic grid at convex part of the boundary.
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Figure 8: Minimal surface grid. Surface is a square Scherck surface.

z

Figure 9: Minimal surface grid. Shape of surface is independent of the boundary grid point distri-
bution.
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Figure 10: Irregularly distributed control point mesh on a smooth surface.

Figure 11: Elliptic grid on the surface. Grid is independent of the parametrization.
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Figure 12: Comparison of cubic Hermite and cubic spline interpolation.

Figure 13: Surface grids of a wing-body-pylon-nacelle configuration.
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COOPERATIVE SOLUTIONS COUPLING A GEOMETRY ENGINE
AND ADAPTIVE SOLVER CODES

Thomas P. Dickens

Aerodynamics Configuration Computing
The Boeing Company

Seattle, WA

ABSTRACT

Follow-on work has progressed in using Aero Grid and Paneling System (AGPS1,2), a geometry
and visualization system, as a dynamic real time geometry monitor, manipulator, and interrogator for

other codes, as first published in 19923. In particular, AGPS has been successfully coupled with
adaptive flow solvers which iterate, refining the grid in areas of interest, and continuing on to a
solution. With the coupling to the geometry engine, the new grids represent the actual geometry
much more accurately since they are derived directly from the geometry and do not use refits to the
first-cut grids. Additional work has been done with design runs where the geometric shape is
modified to achieve a desired result. Various constraints are used to point the solution in a
"reasonable" direction which also more closely satisfies the desired results.

Concepts and techniques are presented, as well as examples of sample case studies. Issues such as
distributed operation of the cooperative codes versus running all codes locally and pre-calculation for
performance are discussed. Future directions are considered which will build on these techniques in
light of changing computer environments.

INTRODUCTION

Current computing technology enables increasingly complex geometric configurations to be
analyzed and allows analysis at a much finer level of detail. Flow solvers must work with the
geometric definitions more closely to accommodate the level of accuracy desired. Rather than
building more sophisticated geometry capabilities into the solvers, which is a duplication of the effort
that went into the geometry code, a cooperative environment can be created which facilitates multiple
codes working together. This environment will use the specialized capabilities and knowledge of
each system, rather than investing the time and money to replicate capabilities in multiple codes plus
the incurred problem of diverging capabilities once they are duplicated. The application of the code
cooperation is needed in the geometry/solver combination due to the complexity and specialization
of each of the two fields. This coupling of codes is especially beneficial in adaptive solvers, and when
using solvers in a geometry-design mode.

In an aerodynamics design mode, a pressure solution is first generated for a geometric
configuration. This pressure solution is then examined and modified by an engineer to represent a
desired condition using a method of their choice. An area of the geometric configuration is selected
for modification and may have associated constraints imposed. The solver then systematically
perturbs the geometry while tracking the effects on the resulting solution. A new geometric
configuration is calculated based on the results of the perturbations. A solution is then run for this
new geometric configuration, which is then compared with the desired solution. This process is
iterated as required.

It should be pointed out that, in this scenario, the geometric configuration is paneled, and then the
resulting paneling is provided to the solver. The solver then perturbs the paneling, which represents
the geometric configuration, to achieve the desired solution. The assumption with the paneling is that
it is sufficiently refined to represent the actual surfaces within a desired tolerance. In these design
runs, when the paneling is modified to represent new geometry, the original tolerances used to

637



generatethe panelingmaynow begreaterthandesiredto accuratelyrepresentthegeometry.The
solveritself doesnot understandtheoriginalgeometry,nordoesit knowtheoriginalcriteriawhich
wentinto thepanelingdecisions.I haveseendesigncaseswhichgeneratedfairly sharpgroovesand
bulgesin surfaces,asseenin Figure 1. If theoriginalpanelingwasjust within a desiredcriteria
(chord-heighttolerancewith the geometryfor example)changesto the designregioncaneasily
generatepanelswhich, if testedbackagainsttheoriginalgeometry,areno longerwithin tolerance.
This mayintroduceunwantedartifactsinto thesolutionwhichdegradetheusefulnessof theachieved
solution.Oncethedesignrunhasachieveda targetgeometrywhichsatisfiesthedesiredpressure,the
new geometricshapemustbe generatedin the geometrytool (not a trivial task), a new paneling
created,anda solutionrunon thenewgeometryto testthemodifiedgeometry.

Figure1. Before(left) andAfter (fight)Panelsof a Strut.

Anotherconcernis theuseof constraintswithin thesolver. Localizedconstraintsareusedwhich
canconstrainthe resultinggrid to fit within a curvaturetolerance,for example,or to imposea
constraintto only allowmovementin thepositivesurface-normaldirection. Localizedconstraintsare
thefirst stepin theprocess,but theydonothavethenecessaryinfluenceon theglobalpropertiesof
the configuration. Without moreglobal constraints,local constraintscangenerateoscillationsor
otherundesiredartifactsin theresultingpanelingwhichareoutof thescopeof the localconstraints
to "see".

Thelaststepin theprocessis to createa newgeometryloft whichrepresentsthemodifiedpanel
data:theresultingoutputfrom thedesign-modesolver. Theinputpanelswereoriginallygenerated
by discretizingthesurfacelofts within thegeometrytool. Thesurfacelofts aretypicallygenerated
from aseriesof airfoils in thecaseof wing-likesurfaces,or stationcurvesfor body-likesurfaces.It
shouldbenotedthatwheretwo surfacesintersect,suchasa wing-bodyintersection,thesurfaceloft of
the wing typically extendsinto the body. The extractedpanelingis only for the exposedwing
surface,the subrangeareaon the wing which is outboardof the wing-bodyintersection. The
modifiedpanelnetworkswhichare returnedby the solverareusedastemplatesto generatea new
loft.

Severalchallengesoccurhere. There may be geometric shapes such as bumps and grooves in the
new panels which are located between the original airfoils used for the original loft. Additional
airfoils may be required for the new loft to sufficiently capture these shapes. But there are problems
with using too many airfoils; high frequency noise can be introduced in the loft. Another problem
is re-creating the parts of the loft that were not paneled, such as the part of the wing which is inside
the body. The original loft data may be used, but if there are changes required in this region, the
original data may not be useful. In this process you also wonder about all of the ripples in the new
panels: are they necessary to achieve the desired solution, or are they artifacts of the process and not
absolutely necessary? Once a new loft is generated, it is then paneled and processed again by the
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solverwith thehopesof matchingthepreviouslyobtainedresultsachievedfrom thedesignrun.

TERMINOLOGYOVERVIEW

To facilitate communicationwith a commonunderstanding, some foundation definitions and
concepts are outlined:

Geometric Definition.-Geometry is defined by two criteria: data, and functions which utilize the
data. For example, a 3D surface is represented using a 2D parameter space. A function for
evaluating the surface will retum surface properties for a given parametric pair: D = F(S, T), where
the returned data, D, is the data at the given S and T parametric location on the surface, and can
consist of the 3D spatial coordinates, derivative information, surface normal, and other associated
information. Higher dimensionality can be used to define geometry which would also be accessed by
the given function. A surface can be constructed through an array of 3D data points to yield a set of
data. For example, if the geometric form is a series of bicubic patches in 3D space, each patch will
have 48 pieces of data to define the physical points at the four patch comers, plus the parametric
derivatives with respect to S, T, and the ST cross derivatives. On top of this is the organization of the
multiple surface patches to the parent surface. The surface evaluation routines are synchronized with
the surface construction routines within a geometry tool. Without visibility of the methods and
equations involved within the evaluation function, other codes can only approximate the
interpretation of the geometry defined by the data. Additional complexity is added when the
geometry tool builds upon the geometric definitions with techniques such as subrange and trimmed
surfaces as well as procedural entities.

The key point here is that the data alone is not enough to accurately represent geometry. The
defined evaluation process, or geometry engine, to work with the data is also required. Two different
evaluation processes operating on the same data may not produce the same results. Thus, even if a
solver has the capability to work with geometric data rather than just paneling representation of that
data, unless the solver uses the same exact code as the geometry definition tool, the resulting
geometry as known to the solver will be different than the geometry as defined in the geometry tool.

The Paneling Burden.-In the current computational fluid dynamics (CFD) process, the following
tasks are performed: creating geometry, paneling the geometry, running the CFD code, and analyzing
the solution. The particular CFD code used here is a full potential code that uses a locally refined
rectangular grid which is generated internally by the code. In terms of flow time, the paneling
process continues to be a bottleneck in the overall CFD process. Engineers currently can spend days
paneling a typical wing-body-strut-nacelle configuration, and the resulting quality of the CFD
solution is directly affected by the quality of the paneling. The engineer is burdened with the task of
ensuring that the paneling is detailed enough for the problems being addressed to achieve
meaningful results, yet not too dense to break the solver code or take too much time to run.
Common techniques are used to help automate the paneling process. Such techniques are based on
chord-height tolerance of the flat panel to the surface or other methods. The paneling process is not
a bottleneck if the task can be automated, such as by using AGPS command files written to handle the

topology of the configuration. 4

Another concem is in iterative adaptive solutions, where emerging details in the solution will
concentrate volume grids in areas of interest, such as shocks. The volume grids can generally be
easily refined to detail these areas of interest. However, where the volume grid meets with the
paneling, the flow code typically does a simple interpolation of the paneling to determine the
panel/field intersection. It is at this panel/field intersection where additional knowledge of the actual
geometry is needed. If the paneling in this region is not fine enough to accurately represent the
geometry to achieve a reasonable solution, the task must be redone with a modified panel. This
requires engineers to study solutions, to refine the paneling, and then rerun the codes. This is cosily
both in time and money. Of even greater risk is that the effect of the nonsufficient paneling is not
realized and that an inaccurate solution is believed to be more accurate than it is. This is because the

CFD code deals only with discretized geometry (paneling) and not with the original surface lofts.
Again, the burden is placed on the engineers to understand the limitations of their paneling and to
interpret the given solution with the appropriate level of accurateness. Of course a given paneling
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maybeintendedto showgeneraltendenciesandisnot intendedto beusedfor finerdetails.

A(_P$ Overview.-Whiledevelopedandusedprimarily for the preliminarydesignof aircraft,
AGPSis usedthroughoutThe BoeingCompany(Boeing)for a varietyof geometrictasks. This
Boeingproprietaryprogramis a surfacegeometrysystemin which virtually any shapecan be
modeled. The underlying mathematics include cubic and quintic polynomials and rational B-splines
for representing curves, surfaces, and solids. The interface consists of a structured programming
language with over 160 geometry-related commands, along with a mouse-and-menu-driven interface.
Higher-level command files can be constructed and used as a macro capability to do complex or
repetitive tasks very simply. Collections of command files are used as high-level packages to allow
users to accomplish complex tasks by following an interactive menu-driven session. Hundreds of
existing command files are included in the AGPS release, which runs on a variety of machines
including VAX, SGI, HP/Apollo, IBM, and Cray. AGPS has been coded to be machine and
architecture independent, and utilizes a dynamically allocated object data structure.

TRANAIR Overview.5-A full-potential, solution-adaptive, rectangular grid code for predicting
subsonic, transonic, and supersonic flows about arbitrary configurations, TRANAIR is used to
analyze complex geometric configurations in transonic flow. A locally refinable rectangular grid is
automatically constructed and is superimposed on the boundary geometry as described by networks
of panels. Surface-fitted grid generation is not required. The nonlinear discrete system is solved
using a preconditioned Krylov subspace method embedded in an inexact Newton method. The
solution is obtained on a sequence of successively refined grids.

GEOMETRY USE IN SOLVERS

There is an increasing trend to use solvers in a geometric design mode, in which the solver will be
modifying the geometry definitions. To successfully accomplish this, greater attention must be
placed on the geometry operations as driven by the solvers. There are two main directions to
accomplish this: additional geometric capabilities can be coded into solvers, or the geometry tool and
the solver can work together.

The geometric sophistication within solvers is limited. This is understandable and even expected;
their domain of expertise is flow solving, and one does not expect to have solvers as sophisticated as
dedicated geometry tools in the domain of geometry and geometric definitions and operations.
Incorporating geometric sophistication within solvers makes the solvers much more complicated, and
duplicates capabilities among various codes. Even if this route is taken, the geometric definitions will
not be exact unless the same exact code used in the geometric tool is also used by the flow solver.
The natural evolution for this path is to evolve the solver to also be your geometry tool, or to add
solver capabilities to your geometry tool. Each of these fields require specialized expertise and
generate extremely complex systems as they currently are. If a solver and geometry tool are merged
into a single code, the resulting code could be too complex to manage.

A logical altemative approach is to dynamically couple the solver code with the geometry code,
each working in a cooperative manner on the part of the problem which is its specialty. This
approach has advantages and disadvantages. The primary advantage is the ability to refer back to the
original geometric definitions. This is used for panel refinements as well as for moving the geometry
and repaneling the changed area. By definition, in this process the paneling will define the geometry
to the specified accuracy. Geometry changes will be transformed into new paneling which maintains
the desired accuracy in its representation. With the geometry tool used in the design process, changes
to the paneling can be applied to the loft process instead, which will then produce a modified loft.
New paneling is then generated from this new loft. Once the design process achieves an acceptable
solution, the loft which generated the paneling for that solution is already there. The problem of
creating a new loft to represent the results of the design process is eliminated.

The disadvantages to this approach are the requirement of enabling the codes to cooperate
together, as well as the performance overhead of the communications between the codes. Once the
direction to enable codes to cooperate is taken, relatively minor modifications can be done to the
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codesinvolvedto accomplishthis task. This leaves the performance penalty in the communications
between the codes as the major disadvantage.

Compared with the altematives of either working in the current paradigm or incorporating the
modifications necessary to put sophisticated geometric capabilities into a solver (or the reverse), I
contend that the advantages of coupling these codes strongly outweigh the disadvantages.

COUPLING MULTIPLE CODES

Within Boeing, work has been done in this direction. I have added the capabilities to AGPS to
allow various cooperation methods between codes. This cooperation can be set up in two different
schemes, based on which programming unit (AGPS or another code) in the system is in control.

Extemal control, or what we call the master type of connection, allows another program to
connect to AGPS and directly interface with the AGPS command line input stream. The external
process also will receive all of the output from AGPS (Figure 2). In effect, the extemal master
program appears to AGPS to be a user interacting with the normal input and output capabilities of
AGPS. This capitalizes on a very successful feature of AGPS: the command-line interface. The
AGPS development team has recognized the importance of offering almost all of the capabilities
within AGPS in a command-line interface as well as a graphical user interface (GUI) point-and-click
interface. This feature allows repetitive tasks to be easily automated and repeated with little or no user
interaction required. Routines which initiate and terminate the controlled AGPS connection, as well
as send and receive data between AGPS and the master program, are provided by the AGPS
development team to allow this capability to be easily incorporated into the I/O system of a master
program. This feature allows an external program to easily assume the role of the AGPS user and to
have AGPS accomplish geometric tasks for the program.

There is a second level of master program access into AGPS. The extemal program can directly
invoke a set of AGPS intemal subroutines which handle the geometry creation, modifications, and
interrogation within AGPS. The direct routine access capabilities are generally not used by extemal
programs; the command-line interface is the most widely used method to control AGPS via an
extemal program.

Figure 2. Master Program Using AGPS Capabilities.

The second scheme is to have AGPS in control. Up to nine external processes, referred to as
slave processes, can be dynamically invoked and connected to AGPS (Figure 3). A slave process is
spawned from AGPS, with AGPS remapping the standard-in and standard-out streams of the slave
process into pipes which are held by AGPS. This way the slave process does not need to be modified
in any way to allow it to be used as an AGPS slave process. This was a very important concept for the
general usefulness of the slave capability. If two communicating programs need to jointly agree on
an interface specification and protocol and need to be maintained with the knowledge of the other,
the interdependence between the codes may be unworkable. In addition, the coupling of a different
pair of codes will require modifications to both of them to allow them to communicate. With the
approach of mapping the standard-in and standard-out streams of the invoked process, the invoked
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processdoes not require any modifications. Any process or program available on the system can be
utilized as a slave process. This allows AGPS to have at its command an endless supply of dynamic
capabilities. This is used in production to provide added capability to AGPS, and to prototype new
AGPS capabilities without requiring modifications to AGPS.

Figure 3. AGPS Using Multiple Slave Programs.

Tradeoffs.-With the techniques of coupling two or more codes to cooperatively accomplish a
task, there are costs and compromises involved. On the positive side, the savings in development time
to incorporate major new capabilities are significantly reduced from months or years into a few hours
or days to access the capabilities through existing extemal codes. This provides the new capabilities
almost immediately when needed. Specialized expertise is not required to develop the capabilities
from scratch, and the capabilities are known to be mature and robust. On the negative side of code
coupling are performance issues. With two or more processes communicating, there will be an
overhead involved with physically running the programs. More important is the limited bandwidth
for communication between the processes and the sequential nature of tasks. These issues can be
addressed and minimized while still maintaining the general-purpose nature of the solution.

However, attaining the same performance as compared to a dedicated program is not achievable.
My feeling is that if the overall solution is no more than an order of magnitude slower, the
performance penalty is acceptable, at least for initial proof of concept purposes. The bottleneck of
the communication overhead can be minimized through the use of files to communicate large
quantities of information, using process-to-process communication primarily for control. Another
technique is to partition the task in ways that minimize the communication required and allow for
larger amounts of work to be accomplished for a given set of data. This can be combined with the
concern of sequential work by front-loading the known work to be done with an extemal system to
allow the extemal system to have as much of the work completed when the master system requires the
results. As demonstrated below, extemal tasks can be front-loaded and also distributed among

multiple machines to achieve more responsive tumaround.
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CASESTUDY: TRANAIR AND AGPS

As a casestudyof thesetechniques,we will considerthe useof TRANAIR in a designmode
whichusesAGPSasageometryengine.

Cray Y-MP_

Figure 4. Coupling of TRANAIR and AGPS on the Cray.

The first implementation of the TRANAIR/AGPS coupling used both codes running
simultaneously on the Cray Y-MP (Figure 4). It should be noted that TRANAIR has been optimized
for the Cray architecture, while AGPS has not. Add to this the interpreted command-line nature of
AGPS which results in a very generalized geometry system, but a system which is much slower than
dedicated code to accomplish specific tasks. Code was added to TRANAIR to launch AGPS, and to
communicate the desired geometry tasks to AGPS. The algorithms involved to solve the geometry
tasks were implemented in AGPS command files which allowed easy development and modifications
to the algorithms without requiring subsequent changes to either of the two systems. TRANAIR
requested AGPS to perform a geometry task and then waited for AGPS to finish the task. AGPS
communicated the result to TRANAIR via a data file, which TRANAIR read. For a sample design
case using 40 design points, 80 solutions were required of AGPS for each iteration. Needless to say,
this was slower than implementing similar capabilities directly into TRANAIR. Each iteration using
AGPS took about a minute to complete, and then TRANAIR took a few seconds to digest the
information. A similar implementation coded solely into TRANAIR took a few seconds per iteration.
These results must be weighed with the fact that the AGPS solution was configured to run within a
couple of days while a TRANAIR version modified with similar capabilities took weeks (flow time) to
be available, and the capabilities were job-specific and hard-coded into the code.

Much was learned from these experiments. A small change in TRANAIR was made which
launched the 80 AGPS jobs as soon as TRANAIR knew what those jobs consisted of--which was
about 10 minutes before TRANAIR required the results. This gave AGPS some lead time to get a
head start on the task. It was also noted that the initial conditions were known before the run was
even started, so the first iteration results could be pre-calculated by AGPS before the TRANAIR run
was initiated. During the process we were also able to gather metrics on the running of TRANAIR,
which allowed bottlenecks within the TRANAIR design-mode code to be discovered and optimized.

The next logical step in the experiment was to distribute the AGPS tasks to a local workstation
(Figure 5). Since AGPS is not optimized for the Cray architecture, wall-time performance on
workstation class machines was comparable to the shared Cray performance. Using a handful of
UNIX scripts and files for communications between the two machines, running TRANAIR on the
Cray and the AGPS geometry jobs on a workstation gave comparable results to running both codes
on the Cray. This has the added benefit of off loading the geometry task from the Cray which
allowed our Cray resources to be focused on the solver task. Even with the 10 minute lead time,
AGPS still could not keep up with TRANAIR's need for results when it required them.
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Cray Y-NIP TRANAIR 1

I workstatiOn AGPS 1

Figure 5. TRANAIR and AGPS Coupled Across Different Machines.

We then looked at distributing the geometry task across multiple workstations. This was initially
done using UNIX scripts to launch remote AGPS sessions on predetermined machines and to assign a
predetermined set of jobs to each machine (Figure 6). A central machine was used to collect the
results and communicate them to the Cray. When this scheme worked, it worked well. We were able
to feed the results to the Cray fast enough to keep up with its demand; however, this scheme is quite
fragile in practice. With the list of machines predetermined, and the jobs on these machines
predetermined, if one machine was either unavailable or heavily loaded during the run, the job would
fail due to an incomplete set of results. Some system-level glitches were discovered, such as the
inability to spawn remote jobs on the Cray with a large number of files opened. We finally tracked
this glitch into the system kernel on the Cray as a problem with the rsh command.

ICray Y-NIP TRANAIR 1

Workstation

ribution

Logic

fW AGPS IPS

orkstation 1

Workstation 2
:ation 3

AGPS

Workstation N

Figure 6. TRANAIR with Multiple AGPS Coupled Across Many Machines.

We are currently working to refine these techniques and to offer them to the Boeing user

community in an easy-to-use manner.
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CONCERNSAND FUTUREWORK

During this effort we discoveredvarious roadblocksand have identified areas needing
enhancements.

Receiving Complete Files.-Three problems may occur in the transmission of files between the
various machines. One problem is the corruption of a file. This is rather rare due to the robustness
and error checking built into ftp and rcp. A second problem is the non-arrival of a file. This does
happen and can be caused by network problems, file-space problems, or code failure on the sending
machine. A third problem occurs rather commonly; the use of a file before the entire file is received.
There is no mechanism built into UNIX to make a file unavailable until it is complete. Various
techniques can be used to address this, such as including the checksum of the file as a field in the
name of the file. The receiving program will not open or access the file until the checksum generated
from the file matches the checksum in the filename. This has the added benefit of also checking for
corrupt files. Another method is for the sending machine to send the file with a temporary filename,
then, after transmission, to remotely change the name of the file. This should work in theory, but
subtle timing through the network can cause failure. The transmission can be completed and then the
file name changed, while actually the file is not completely available on the remote system.

Working with Dynamic Machine/Network Loading.-At this time, work is being done on a C
program which will dynamically determine the health of a given set of machines on the network and
issue geometry tasks to be solved with AGPS jobs running on the subset of available machines. These
tasks will be monitored for completion and also for performance. Remaining jobs will be allocated in
a logical manner to ensure completion of the entire set of tasks as quickly as possible as well as the
ordering of the results received. Tasks may be reissued on top performers if the assigned machine is
not responding in a timely manner, or if the resulting files are not complete. This approach will offer
many improvements. Most failures in the system can be recovered from during a run, including a
node being unavailable, a node being too heavily loaded with other tasks, network failures, and file
corruption. Problems can still occur if the central machine coordinating the distributed effort goes
down, loses its network connection, or is too heavily loaded. Preliminary testing of this capability
looks very promising.

SUMMARY

Benefits of using AGPS for geometry_ tasks.-It has been demonstrated that there are a variety of
benefits in coupling two or more specialized programs together in a cooperative manner. These
benefits must be weighed with the costs incurred to determine the appropriateness of this technique
for a given environment and problem. The costs include both development costs and run-time costs.
There will be a development effort involved to set up the programs for cooperative communication.
Doing the development changes in a general-purpose manner, and implementing the main capability
in a key central program which does not dictate changes in other programs, is highly favorable. The
run-time costs include the overhead of running multiple codes and running codes not optimized for a
particular task. This results in both higher CPU usage costs as well as longer wall-time tumaround.
These costs can be minimized by partitioning the problem. Benefits include the rapid availability of
new capabilities, use of capabilities withotlt requiring extensive code development, gaining access to
specialized code without duplicating or reproducing the code, and immediate access to robust, mature
code.

Easy-to-change tasks (command-file driven and dynamically accessed capabilitiesL-By using the
AGPS command language to accomplish the geometry tasks, algorithmic changes to the command
files can be incorporated without requiring changes to any compiled source code. This allows very
rapid turnaround of modifications to the geometric algorithms. In addition to production work, this
facilitates rapid prototyping of new capabilities without requiring the system to be modified and
rebuilt. The expertise needed to work in this environment does not require an expert with the
internals of either code.

Work is done on the actual geometry_, in the defining system of the geometry.-Refinements made
at the request of the solver can be made to the actual geometry, rather than using extracted panels and
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approximatingthedefininggeometry.As geometricchangesaremade,effectsto thesurfacescanbe
realizedandused.Dynamicrefinementsto thepanelingis possibleto accommodateareasof interest
asthesolutionevolves.

AGPS has the tools to work with global constraints/conditions.-Using the capabilities in a mature

geometry system provides a much richer set of offerings than is available as add-on capabilities in a
solver. These offerings are also proven to be reliable due to widespread use for other applications
over time, while new code added into solvers will not be mature or widely tested. Many years of work
have gone into the geometry system, which results in a system which is fine tuned to work with
geometry, both on a local scale and in a global scale. This global understanding of the geometry,
and the ability to work with the geometry in this manner, allows better constraints to be imposed on
the solution which will lead to more usable solutions.

Changing loft definitions in the design mode.-By using AGPS to dynamically modify the loft
definition during a design run, the problem of creating a new loft based on a set of modified panel
networks is eliminated. The cost to run a solution for the new loft is also eliminated. The result of

the design run is a new loft rather than modified panel networks.

Generality-The techniques presented here are appropriate to be applied in a general manner to
numerous other applications and should not be limited to CFD solvers and geometry codes.
Candidate applications are those where two or more specialized codes working together can yield a
cooperative benefit.
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ABSTRACT

Hybrid tools have been developed which greatly reduce the time required to generate three-dimensional
structured CFD meshes for turbomachinery blade passages. RAGGS, an existing, Rockwell proprietary, general
purpose mesh generation and visualization system provides the starting point and framework for tool development.
Utilities which manipulate and interface with RAGGS tools have been developed to 1) facilitate blade geometry inputs
from point or CAD representations, 2) automate auxiliary surface creation and 3) streamline and automate edge,
surface and subsequent volume mesh generation from minimal inputs. The emphasis of this approach has been to
maintain all the functionality of the general purpose mesh generator while simultaneously eliminating the bulk of the
repetitive and tedious manual steps in the mesh generation process. Using this approach, mesh generation cycle times
have been reduced from the order of days down to the order of hours.

INTRODUCTION

Over the last decade, advances in both computer technology and numerical algorithms have made
Computational Fluid Dynamics (CFD) a viable analysis tool for engineering design. In particular, aerospace
companies have employed CFD in the design of turbomachinery components, combustion devices as well as
hypersonic propulsion systems. The major limitation to CFD as a design tool has been the length of the CFD analysis
process. When modeling complex geometries the CFD analysis process is frequently too time intensive to be used
early in the design cycle. Unfortunately, the later that CFD is used in the design cycle the less likely it is to have an
impact on the final design.

Geometrical complexity impacts the CFD analysis process at each step. In the preprocessing step, the time
required for model creation and mesh generation increases dramatically with increasing geometrical complexity. CFD
meshes for complex geometries generally require more nodes or elements and thus the flow solution phase of the CFD
process increases in time. Finally, visualization and data reduction in the postprocessing phase require more time and
thought for complex geometries. On average, for complex geometries, the preprocessing phase of the analysis
requires the greatest amount of time. In many cases preprocessing may require much more time than either flow
solution or postprocessing combined. The primary focus of this work is on the preprocessing step of the CFD
analysis cycle.

Preprocessing logically subdivides into model creation and mesh generation. The geometry may only exist in
the form of diagrams or sets of points defining lines, curves or surfaces. Tools are then required to convert this data
form into a model upon which a mesh may be constructed. In this case, a model may be created using any of a variety
of CAD tools such as CATIA or Pro/ENGINEER. Mesh generation tools would then be required to import the CAD
geometry. Altemately, mesh generation packages exist which have CAD or CAD-like capability.

A CAD model may have already been created to serve some other design purpose. Unfortunately, a CAD
model suitable for rapid prototyping or automated machining etc. may be different than a model of the same geometry
which is suitable for mesh generation. Extraneous surfaces may have to be removed while additional (auxiliary)
surfaces may have to be created to extend or partition a flow region.

Once a suitable model has been obtained, mesh generation is performed. Although fully unstructured mesh
CFD technology has been rapidly evolving, it has not reached the maturity to displace existing multiblock structured
mesh CFD technology. This work focuses on structured mesh generation. Structured mesh generation requires up
front planning to decide the general topological layout and blocking, as well as node number and distribution. In
general, three-dimensional structured meshing proceeds serially from edge meshing to surface meshing and then to
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volume meshing. Four edges determine the boundary of a non-degenerate surface while six surfaces determine the

boundary of a non-degenerate volume.

The goal of this effort has been to reduce the time spent in the preprocessing phase of the CFD analysis cycle
for a commercially important class of complex geometries. To this end 1) a relevant class of geometries was selected,
2) the primary grid generation tool was identified, 3)key geometry model input and generation issues were
identified, 4) key flow solution requirements were identified and 5) tools were developed which automated and

expedited the preprocessing phase of the analysis cycle.

GEOMETRY CLASS

A relevant class of complex geometries, namely blade passages, was identified. Blade passages are elements
in a wide variety of applications ranging from rocket engine turbopumps (ref. 1) to air compressors. The primary
deterrent to using full three-dimensional CFD in the initial design of rocket engine turbopumps is the time required to
generate the appropriate geometry model and corresponding mesh. In this effort, three types of blade passages were
considered: axial, radial and mixed. Axial flow devices have inflow and outflow primarily in the axial direction.
Radial flow devices have axial inflow and radial outflow. Mixed flow devices have inflow in the axial direction and
outflow at a flow angle between axial and radial. The three configurations are shown schematically in figure 1.
Figures 2 through 4 are turbopump components with either axial or radial flow configurations.

PRIMARY GRID GENERATION SYSTEM

Rockwell Automated Grid Generation System (RAGGS, (ref. 2)), a general purpose mesh generation and

visualization system was selected as the primary grid generation tool. RAGGS is a Rockwell proprietary code which
was developed at North American Aircraft Division of Rockwell International. In interactive mode, RAGGS is a
highly graphical tool with an extensive user interface. Geometry models as well as edge, surface and volume meshes
are easily manipulated and visualized via menus and mouse control. Edge, surface and volume meshing may be
performed in a highly interactive and visual manner in this mode as well. Of critical importance to the current effort is
the fact that nearly every primary gridding tool available in interactive mode has a nongraphical, "batch" counterpart.
For instance, a simple nongraphical tool exists to create an edge mesh on a specified surface. Similarly, nongraphical
tools exist for surface and volume meshing. These tools are extremely accessible and flexible. The key point is that
these tools may be combined to form macros. Since RAGGS runs in a UNIX workstation environment, C-shell and
Bourne shell macros were written calling various tools. In this manner the grid generation process was expedited and
automated while at the same time key intermediates were easily visualized and optimized in interactive mode.

GEOMETRY INPUT AND GENERATION

Initial geometry data for blade passage configurations at Rocketdyne is available in one of two forms: point
data or CAD geometry files. Generally, point data is available earlier in the design cycle. The format for point data is
two arrays of points, one for each side of the blade. Together the two arrays may combine to form the two sides of a
single blade or the two arrays may represent the bounding blade surfaces of a passage. The arrays are assumed to be
N x M arrays (M curves with N points per curve) which span the leading edge to trailing edge, otherwise points are
interpolated as appropriate. From the blade surface data and a few geometrical inputs (e.g., the number of blade
passages) all other geometrical features can be constructed.

Since CAD design at Rocketdyne may be performed on a variety of CAD systems, CAD geometry files exist
in any of the corresponding CAD formats. All of the CAD systems at Rocketdyne have translators enabling
conversion to IGES (International Graphics Exchange Standard) format. RAGGS is able to input IGES geometry
files and the CAD to IGES to RAGGS path has been tested for CATIA, Pro/ENGINEER, PATRAN, and
UNIGRAPHICS. CAD geometry files obtained at this stage in the design cycle usually contain a large amount of
superfluous detail (i.e. details of solid portions of the hardware item when flow passages are of primary interest,
figure 5 ). Often the geometry may not contain a complete contiguous blade passage (i.e., the furnished geometry
may consist of a "pie" or sector cut of the full geometry, figure 6). For this effort, when CAD data rather than point
data was provided it was assumed that the format was IGES and that two complete blade surfaces could be
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constructedfromtheIGESdata provided. Again, the two surfaces could combine to form either a single blade or the
bounding surfaces of a passage.

FLOW SOLUTION CONSIDERATIONS

Simulation of the flow domain requires that the blade passage be extended both upstream and downstreann.
The length of the upstream and downstream extensions is an input provided by the analyst performing the flow
simulation. Although the geometry details of the upstream and downstream extensions are flexible, the side boundary
surface grids must be periodic since the single blade passage along with the extensions represents one element in a
device with repeated elements in rotational symmetry.

The flow algorithm and physical modeling also dictate a host of grid features including wall clustering, cell
aspect ratio, cell skewness and overall grid quality.

TOOL DEVELOPMENT

The preprocessing phase of the analysis cycle was divided into the following steps: 1) blade surface input,
2) full geometry creation, 3) edge and surface meshing, 4) volume meshing and 5) mesh manipulation and quality
checking. Corresponding to each step, a module was created.

The blade surface module converted either IGES blade geometry data or blade point data into a form which
could be directly used by RAGGS. The output of the blade surface module could be read directly into RAGGS in
interactive mode and examined for consistency and correctness.

The geometry module read user geometry input (e.g., upstream and downstream extension lengtl_ and
geometry details) as well as the blade surface geometry as output from the blade surface module. The geometry
module used the inner and outer edges of the blade surface to construct the hub and shroud profiles. The blade
leading and trailing edges were used to construct the upstream and downstream extensions respectively. The blade
surfaces could be given as either the two sides of a single complete blade or as two sides of the blade passage. If the
surfaces were given as a single complete blade the logic was in place to generate a blade passage. Based on
geometrical input, two auxiliary surfaces were created, one spanned the entrance of the blade passage from leading
edge to leading edge while the second spanned the exit of the blade passage from trailing edge to trailing edge.
two auxiliary surfaces partitioned the total geometry into upstream extension, blade passage and downstream
extension. Partitioning the geometry in this way provided greater control over the three volume grids that were
subsequently generated. In particular, these auxiliary surfaces were used to minimize mesh skewness at the blade
leading and trailing edges.

The geometry module centered about FORTRAN programs written to create the new geometry elements.
These FORTRAN programs along with existing batch RAGGS tools were linked via C-shell scripts. The output of
the geometry module was a complete consistent geometry containing all features necessary to make the final mesh.
This geometry could be read into RAGGS in interactive mode and examined.

The edge and surface meshing module read point distribution and clustering information from an input deck
and automatically generated the appropriate edge and surface meshes. Initial surface meshes were generated with
RAGGS transfinite mesh generation tools. For surfaces which were anticipated to contain excessively skewed cells,
elliptic refinement was automatically performed. Each surface mesh was tested for negative area cells. If negative area
cells were encountered, elliptic refinement was performed automatically. The output of the edge and surface meshing
module was a set of files containing final edge and surface meshes. These files were easily displayed and modified in
interactive RAGGS mode.

The volume mesh module read surface meshes from the edge and surface meshing module and produced
transfinite volume grids. Each volume grid was tested for negative cell volumes. If a negative cell volume was
encountered elliptic refinement was performed automatically. The final volume mesh was examined in RAGGS
interactive mode.
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The lastmodule performed a hostof miscellaneousmanipulationsand qualitycheckson volume meshes.
Minimum, maximum, average and standard deviation were calculated for quantities like aspect ratio, skewness and
cell volume. Grid index manipulations could be performed as needed. Thus the I index could be switched with the K
index, etc. Two or more grids could be combined into a single grid. Since the blade passage grid was actually
generated in three blocks corresponding to the inflow extension, the blade passage and the outflow extension, if the
analyst preferred a single block, the three blocks were combined into one block with this tool. Mesh lines could he
added (interpolated) or removed using the mesh manipulation tool. Finally, the mesh could be output in any of a

variety of formats required by existing flow solvers.

RESULTS

Figure 7 shows the three-dimensional mesh generated for the axial configuration modeling a three-
dimensional turbine nozzle. The blade surface for this configuration was available both as blade point data as well as
CAD IGES data. Both formats were meshed using the tools developed under this effort. Beginning. with either blade

point data or CAD IGES goomelxy data, the start to finish meshing time was less than five hours usmg the automated
tools. The five hours roughly divides into three hours for geometry creation and finalization and less than two hours

for actual mesh generation. The _tal of five hours compares to 25 hours for "mar_.uar' meshing from an existing CAD
IGES geometry and 30 hours for manual meshing beginning .from blade point aata. When the geometry is avanaoie
as blade point data, manual refers to, first, employing the services of a CAD expert to create the base geometry and
generate the necessary auxiliary surface_s, to parti.tion _e flow passage _d, second, u_ng.RAG(3.S, injnteractive
gr_t_eal mode to generate the mesh step by step. when me geometry is avauame as a t:AtJ l_t_n me me nrst manual
step is simplified since the CAD expert need not generate the base geometry.

The axial flow devices shown in figures 8 and 9 are both inducers. Blade point data was provided in each
case. Start to finish mesh generation using the automated tools required between five and six hours for each
configuration. This time compares to roughly 35 hours for "manual" (RAGGS and CAD expert) mesh generation.
Note that it took two hours to produce a subsequent modified mesh for the configuration shown in figure 9. This
modified mesh employed the same geometry as shown in the figure, but varied point distribution and clustering.

Figure 10 shows an impeller. Blade data for this radial flow device was provided in the form of a CAD IGES
file. Time estimate, s for "manual" and "automated" generation of this configuration are nearly the same as those given

above for the inducer configurations.

FUTURE WORK

Future work will focus on including a variety of additional geometrical features. The overall approach can be
modified to include papal or splitter blades in the blade passage. Tools exist to handle tip clearances between the
blade and the shroud but these tools have not been incorporated into the current framework. Subsequent work will
improve these tools and incorporated them into the overall system. Fillets at the intersection of blade surface with the
hub or shroud could eventually be taken into account. Currently, blade surface IGES files which are based on
trimmed surfaces are excluded. Future work will eliminate this limitation. Finally, this work has focused on rotating
machinery blade passages. The approach that has been taken is sufficiently general that it can be applied to nearly any
geometric class to produce template type capability. Future work will focus on other geometric classes to produce
p_ocessing templates analogous to the one presented in this paper.

.
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F_lum 1.-Schenla_o_ audal, radild and mixed b_de peuages.

Figure2.-R_a nowdev_:e(knpene,).
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Figure 3.--Axial now device (b_ee.dimensional turbine nozzte)

Figure 4.-Axial flow device (lrNJUNC_)
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Figure 5.-C:AD geometry representabon of an impell_ showing full 360 °
diuly _ I¢lpecfkJou= hard'ware detail.

Figure 6.-A "pie-slice" or sector cut of the geometry shown in figure 5.
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Figure 7.-RepresenlalJve mesh surfaces for a three-dimensional turbine nozzle
(AxialNow do_._._e).

Figure 8.-Relxesontative mesh surface for an inducer (Axial flow device).
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F_gure g,-Represemative _ lurfac_ #o¢an i,,lducer with a novel, sickle l_haped
blade I_ e_lge (Axial go_ device}.

Figure lO.-!qepresenl_li,,te mesh surfaces for an impeller (Radial flow device),
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A GRID GENERATION SYSTEM FOR MULTI-DISCIPLINARY DESIGN OPTIMIZATION
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ABSTRACT

A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-
Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI "C" for
platform independence. Algebraic techniques are used to generate and�or modify block face and volume
grids to reflect geometric changes resulting from design optimization. Volume grids are generated�modified
in a batch environment and controlled via an ASCH user input deck. This allows the code to be
incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil
Transport (HSCT) Wing�Body geometry as well a complex HSCT configuration including horizontal and
vertical tails, engine nacelles and pylons, and canard surfaces.

INTRODUCTION

The continuing increase in computer speeds and the advancement of numerical algorithms has helped to
increase the interest in Multi-disciplinary Design Optimization (MDO). MDO is a methodology for the
design of complex engineering systems and subsystems that coherently exploits the synergism of mutually
interacting phenomena. The process involves analyzing independent solutions generated after perturbing the
design variables of a baseline system.

Typically, the MDO process proceeds in an iterative manner. Each cycle, at a minimum, includes the
generation of numerical solutions, determination of design sensitivities, and system optimization. It is
apparent that a large number of cycles may be necessary to complete the optimization, and as a result, the
process must be capable of efficient execution in the batch environment with as little human intervention as
possible.

Perturbations are based on design sensitivities which are derivatives of design parameters (e.g. lift) with
respect to the design variables (e.g. airfoil camber). In practice, design sensitivities from the various
disciplines used in the system analysis are obtained separately. These are then combined using the chain rule
to obtain the global sensitivity of the system. The derivatives may be obtained analytically, by differentiating
the analysis code(s), or numerically, using finite differences. When using finite differences, however, it is
often difficult to determine the appropriate step size to be used for a given system.

In many applications of MDO, computational fluid dynamics (CFD) is an integral part of the design
process. As a result, it is necessary to possess a rapid and highly automated grid generation capability which
produces changes in the surface and volumetric grids to reflect the perturbations of the baseline system. It is
also desirable to make grid modifications within the design cycle. Many design parameters, such as lift and
drag, are fairly well established after a small number of flow iterations. With geometric changes occurring
within the design loop, partially converged flow solutions can be used as a starting solution for the next cycle
thereby reducing the overall computational effort 1.

Current grid generation techniques have been strongly shaped by a push to develop interactive tools
which aid in the discretization of computational domains. While most of these tools are well suited for the
generation of grids about unique configurations, their generality requires a large degree of human
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interaction.Evenfor thesmallestchanges,like those resulting between MDO cycles, a great deal of input of

varying degree is needed to redefine the computational structure. Recently, some tools 2,3 have incorporated
useful parametric capabilities, but continue to rely on interactive software control. These methods fall short
of satisfying the rapid, "hands-off" grid generation needs of CFD in the MDO cycle.

In this paper, the development of a computer program specifically designed for MDO grid generation is
described. The code is capable of generating CFD quality surface and volume grids, as well as analytic grid
sensitivities with respect to the design variables. In addition, existing grids generated with other grid
generation systems may be modified to reflect the geometric changes defined in an automated design and
optimization cycle. This program has been applied in the generation and modification of both inviscid and
viscous CFD grids.

In the sections to follow, the approach taken to develop the Coordinate and Sensitivity Calculator for
Multi-disciplinary Design Optimization (CSCMDO) computer program is described. Also discussed are
results from aerospace test cases involving High Speed Civil Transport (HSCT) configurations and future
directions of code development.

APPROACH

The CSCMDO code includes

specialized features required by MDO
grid modifications. These features are
added to compliment standard volume
grid generation methods. The code is
controlled via an ASCII user input file
for execution in a batch environment.
The code developed herein is capable of
modifying any of the six faces of a
block, representing a computational
cube, to reflect geometric changes in the
optimized system as defined by input
surface(s).

Figure 1 shows the layout of a
typical MDO design loop. Information
input from outside the loop is generated
one time before the loop is initiated.
This information includes the baseline

BaselineSurface(s) iNumber of points,
Relative spacing)

,
I Surface(s) Design Loop Volume

i[_ °"
(Optimization) _ _

Figure 1 Integration of grid generation into the design loop

geometry, baseline CFD grid, and a user
input file. The design loop is totally self contained and therefore requires no human intervention. The
CSCMDO code operates within the loop to provide automated volume grid generation / modification within
the each design cycle.

The baseline surfaces are provided in the form of a structured mesh of discrete point data. The number
and distribution of points defining the surfaces are not required to match those of the desired CFD grid.
However, sufficient point resolution must be provided so as to adequately define all surface curvature. Some
methods of surface modification described herein will require that the surface mesh topology match that of
the desired CFD grid. Also, points of interest, such as a wing crank location, must fall along isoparametric
lines in the surface definition. Point continuous surface/surface intersections are desirable. In the event that
point continuity cannot be provided at surface/surface intersections, intersection curves on each surface
should have sufficient resolution such that interpolation errors resulting from the inconsistent data do not
contaminate the quality of the resulting CFD grid.

The baseline grid may be in the form of a baseline volume grid or, in some instances, discrete grid point
data for the six faces of each block. The original grids can be generated using any structured grid
generation package. File formats used are widely used throughout the field of CFD.

Within the design loop, the optimization process is to provide modified surface geometry definition,

again as discrete point data 4"6. The changes represented by the modified surfaces are assumed to be small
so as not to violate the original topology definition. In the event the modifications do violate the topology,

grid quality checks provide retum codes to the software controlling the loop for appropriate action.
Standard algebraic two-dimensional(2D) and three-dimensional(3D) grid generation functionality is

implemented for the generation of faces and blocks. Blocks may be automatically subdivided using
intermediate face "hard planes" to increase the quality of 3D interpolation. Hard planes may be input or
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calculatedintemally.

FACE MODIFICATIONS

Face modifications are provided using a variety of methods to be described in the following sections.
These methods include simple input of a modified face, parametric updates to a modified surface, projection
to a modified surface, and deformations conforming to a modified surface.

PARAMETRIC:

The parametric updates 7 include methods utilizing mappings to uniform parameter space (UPS), as well
as arclength parameter space (APS). APS is provided in the event that input surface parameterization is not
smooth and orthogonal. The use of UPS with such a surface could produce an unacceptable CFD grid. A
detailed explanation is contained in ref. 7. APS seeks to alleviate such shortcomings.

These methods use a forward mapping into the selected parameter space where the grid generation takes
place. Parameter values are then mapped back to physical space according to the modified surface.

The mapping to and from both UPS and APS, as well as a description of the parameter space grid
generation technique of reference 7, are briefly described here for completeness.

Forward mapping involves the transfer of the surface grid from physical space "(R= {X,Y,z}T I" to a

(W= {U,v}TI. The surface is a parametric surface such as a bilinear, bicubic, or NURBSparameter space !
representation. UPS is the primary type of parameter space used in grid generation, and is simply
constructed using the surface grid indices according to

Ui,j = i,, Vi,_ = j. ( 1)

APS is constructed using the surface arclengths in each computational direction as

Ui. j = Ui_ l,j + ei. j ,
(2)

Vi.j = Vi-l.j + f ij'

where

(3)

Grid generation is the same for both parameter spaces. The edges of the CFD face are determined in the
appropriate parameter space. In CSCMDO, the orientation of the CFD face to the background surface is
automatically determined. A manual override is provided in the event the orientation search fails. Once the
edges are known, the interior of the face is generated using arclength based transfinite interpolation (TFI).
With TFI, the interior grid points are defined by the edge and comer contributions according to

w-"t._= aj._wi._l+ bt._t.,,,2+ ct.,,,wtl.m+ dt,mwl2,,n

-at.,,ct.,w-'tl._]- bt.,ncl.,,t_ll.,,,2

-al.mdt.m_t2.mI - bl.mdt._ _12,m2.

(4)

The subscripts (/1,/2) and (ml,m2) are the minimum and maximum indices of the face in the u and v
directions respectively. The variables a,b,c and d are the blending functions subject to the following
conditions,

al,ml = Ctl.m = hi,m2 = dt2.m = 1.
(5)

al.m2 = Cl2.m = bl,ml = dtl.m = O.
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A veryrobustsetof blendingfunctionshas been proposed by Soni 8. These blending functions are based on
the normalized arclength of the edges in physical space, and are defined as

at.,,, = 1 - _Tt,,n, bt.m = tit,m,

ct. . = 1 - _t.m, dt,,n = _t.n,,

(6)

where

_t,,, = gt,,,,_+ htt,,,,{gt,,,,z - gt,,,,1} ,
Pt,,n

htl,.+ gt,.1{ht2,.- hn,.}

rh''= PI,. "

Pt,. = l - { g,,.2 - gt,.l }{ ht2,. - hn,. },

(7)

The values of gl,m and hl,m are the normalized edge arclengths in physical space. With this interpolation
complete the grid can be mapped back from the parameter space to the physical space.

( :/Backward mapping is used to transfer the grid points from the parametric space Wt,,. = {ut,.,,vt,.. to

the physical space (F_,,.={xl,.,yz,,.,zt,,.} r). The backward mapping involves three steps. The first step is a

search of the surface parameter space to determine the local surface patch which includes the current grid

point. The second step is to compute the local patch coordinates (st.,.,q,.) for the coordinates in parametric

space (Wt,.). For UPS this is relatively simple, where

St,m = UI.m - Ui, ) ,
(8)

tt.,n = vt, m - Vi. j .

For APS, the local coordinates are computed using a set of quasilinear equations. The UPS parameter values

of U_,/ and Vi,j are known for each comer of the patch and the patch grid point (ut,,,,,vt.,,,) is known in the

interior of the patch. With this information a system of two equations with two unknowns is formed, where

ut..:(1-,t..)(1-,,.,)u,.j+,,..(1-,,..)u,+,.,
+(I-sl,.,)tt,.,Uia+1+s_,,.tt,..Ui+la+1,

vt,. :(1-,t,.)(1-tt,.)Vi,)+ ,t,.(1-tt..)Vi+a,/

+(1- s_.,.)t_,.,v_a+_+ _,,.t_..,v,+_,_.._.

(9)

The solution to these equations is obtained using the Newton-Raphson method and gives the local

coordinates of the patch (st,,.,t,,.,,). The final step is to compute the physical coordinates (Tt,.,) of the grid

point on the local surface patch using bilinear or bicubic interpolation.

PROJECTION:

Projection of a face allows for the generation of a CFD grid over several surfaces, while also avoiding
problems associated with surface parameterization mentioned in the previous section. The projection
algorithm 9 used in CSCMDO is described briefly for completeness. Again the surface is approximated by a
parametric surface as,
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_(_) = {x(_),y(_), ,(_)}_,

= {u,v}r.
(10)

The process of projecting a point, 7, onto a surface k(_), involves finding _ such that the distance, d,

between _ and R(_) is minimized such that it does not violate the limits of _. The distance, d, can be

written in terms of parameter _ as,

d 2(_.) = f(_) = [_(_) _ _]2. (11)

To minimize d, Eq. (11) must be minimized with respect to _. This is accomplished by setting the gradient

of f, Vf(_), equal to zero, as

Vf(W') = ai(_ ) -- _f(w) = O,

3ui

c, =_. {_(_)- _}.

(12)

Solution of the above nonlinear system of equations for _ results in the projected point.
As with the parametric update, a surface is represented as a set of bilinear or bicubic patches.

patch, R(u, v), is approximated in terms of its parameters as,

For each

"R(u,v)=(l-u)(1-v)Ri,j+u(l-v)'Ri+,,j

+(l-_)_.j+,+"v_+,j+,.
(13)

Combining Eqs. (12) and (13) yields the following system of nonlinear equations,

_.{_(_)-_}=o, _.{_(_)-_}=o,(14)

where,

_u

3v

(15)

Again the system is solved by the Newton-Raphson method. An additional method of projection available in
CSCMDO is the projection onto an original surface(s) and evaluation based on a new surface(s). This
method obtains the parametric coordinates by projecting each face grid point onto the baseline surface. The
parametric coordinates are then mapped to the physical space using the surface(s) driving the modification.
The resulting grid maintains the same characteristics of the original grid. The shortcoming of this method,
however, is the required existence of both the original and modified surfaces at the time of projection.

DEFORMATION:

Deformation of a face is key in providing reusability of an existing CFD grid. When a face is modified,
a comparison to the original face edge points is made according to,

AR = Rmodi1"ud- "RoriVnal' (16)
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RearrangingEq. (16),themodifiededgeis givenby,

Rm,_ _r_,d= R_.I_ + 6/_. (17)

If all edges have been modified, Eqs. (16) and (17) are applied to the interior grid points to yield the

modified face. In the event that less than 4 edges of a face are modified, unmodified edge AR values in Eq.
(17) are obtained by blending the ending values of

a) Original smoothed, orthogonal face

6/_ along the edge. The edge _ values are then
interpolated into the interior for use in Eq. (17). This
method maintains the grid quality characteristics of
the original CFD grid and provides time saving
reusability of an optimal CFD grid.

Figure 2 shows the method applied to a C-H grid
around a circle enclosed in a rectangular outer
domain. The original grid in figure 2-a shows
smoothness and orthogonality characteristics obtained
through partial differential equation (PDE)
smoothing. Figures 2-b and 2-c show a modification
to the circular inner edge. In Figure 2-b the edge is
modified and the face is re-initialized with arclength
based TFI. Figure 2-c shows the effect of a face
deformation governed by the same change to the
circular edge. Note the preservation of the
smoothness and orthogonality characteristics in figure
2-c. This method is extended to 3D as will be
discussed in later sections.

BLOCK MODIFICATIONS

Volume modifications are accomplished using
standard algebraic methods for the re-initialization of
the block interior, or by deformation of the original
block interior based on changes defined by the six
faces.

GRID GENERATION:

b) Modified face with algebraic TFI

c) Modified face with face deformations

Figure 2 Example of Face deformation

The generation of the block interior is conducted
in a manner which is an extension of the 2D methods
of arclength based TFI described above. As
previously mentioned, a block may be automatically
subdivided by inserting intermediate faces, or "hard
planes" within the block. Each hard plane acts to
subdivide the block providing added control over the
quality of developing interior. Hard planes may be
directly input, as in the case where a PDE smoother
was used to obtain an optimal grid, or generated
internally using the 2D methods described above.

DEFORMATION:

A method similar to that described for face
deformation is extended to 3D for use in the
deformation of entire blocks. Once the deformations
are calculated for each of the six faces of a block,

arclength based TFI is used to blend the deformations
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into theblockinterior. Deformationsarethenappliedto theoriginalgrid pointsto obtain a deformed block.
Again this method of deformation facilitates the reusability of an existing volume grid. The overall quality
and characteristics of an existing block are maintained after face modification in the modified block.

Figure 3 shows the 3D deformation applied to the same C-H topology used previously in 2D. Figure 3-a
shows smoothness and orthogonality characteristics obtained through partial differential equation (PDE)
smoothing for the original block. Figures 3-b and 3-c show the same modification to the cylindrical inner
face. In Figure 3-b the face is modified with the adjacent faces and interior re-initialized with arclength
based TFI. Figure 3-c shows the effect of face and block deformation governed by change to the cylindrical
inner face. Again note the preservation of the smoothness and orthogonality characteristics in figure 3-c on
the block interior.

a) Original smooth orthogonal block b) Modified with algebraic TFI c) Modified with deformation

Figure 3 Example of block deformation

QRID QUALITY

A check of grid quality measures is included in the code for diagnostic output as well as limited control when
running in a batch environment. Cell volume and cell skewness are calculated on a block by block basis. A
histogram of cell skewness is provided with the code output showing the percentage of the grid possessing a

skewness over a range of 0 ° to 90 °. Minimum cell volume, maximum cell skewness, and maximum average
cell skewness controls are provided to trigger return codes which are used by the process controlling batch
execution. The return codes allow for the controlling process to exit the design loop without wasting
continued resources in the event the resulting volume grid is not suitable for use.

SENSITIVITY

Calculation of grid sensitivity to the design variables involves the automatic differentiation of the CSCMDO
code. This is accomplished using the Automatic Differentiation of C source (ADIC) processor from
Argonne National Labs. ADIC is a tool for the automatic differentiation of ANSI C programs providing
similar capabilities for C as ADIFOR l0 does for FORTRAN77. The ADIC tool operates on a given source
code using a specified set of dependent and independent variables, to produce an augmented C source that
computes not only the original scalar result, but also the partial derivatives of all of the specified dependent
variables with respect to the independent variables. ADIC employs the Sage++ programming environment
developed at Indiana University.

The cost of generating the sensitivities with the ADIC processed version of CSCMDO (CSCMDO.AD) has
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provento be negligible when compared to the overall cost of a CFD design cycle. With an ADIC processed
source code, the ratio between the cost of evaluating a gradient with n components and the cost of evaluating

the original underlying scalar function is not n+l, but is bounded by 5 at most 11. Preliminary testing of
CSCMDO.AD has produced reasonable results. These results have been compared to finite difference
calculations and show favorable agreement.

VISCOUS GRID CAPABILITIES

The methods presented herein have been successfully applied to viscous grids. Care must be taken to provide
surface geometry containing sufficient resolution to capture surface curvature. The use of block
deformation is very useful in the reuse of viscous grids which were originally refined using PDE techniques.

RESULTS

CSCMDO has been extensively tested on aerospace configurations at the NASA Langley Research
Center's (LaRC) Geometry Laboratory (GEOLAB). The test cases range from simple wing/body
configurations to full HSCT geometry with tail surfaces, engine nacelles, and canards. The code is also used
outside of the design loop in the GEOLAB for the rapid modification and quality check of existing CFD
volume grids.

Execution time is difficult to determine for the code due to the wide variety of execution schedules
available to the user. Typical timing, however, can be given as an example of two types of configurations.

The first is that of a simple double delta wing/body aircraft. The computational domain was broken into
two C-H block with a total of 350,000 grid points. Seven modified geometries were supplied along with the
baseline and the block topology. The geometry modifications included changes to wing sweep, camber,
span, crank location, etc.. All eight volume grids, baseline and seven modifications, were generated
sequentially on a Silicon Graphics Onyx workstation in double precision in under three minutes.

Figure 4 Complex HSCT configuration

The second case is that shown in figure 4. The configuration includes a double delta wing, tail surfaces,
two flow through engine nacelles with a plug insert, engine pylons, and a canard. The computational
domain contained seventeen blocks with at total of over 1.5 million grid points. This complex case required
on the order of three minutes for the generation of a single complete volume grid with modifications to a
variety of surfaces.

Figure 5 presents the results of the case involving the complex HSCT in figure 4. Figure 5-a shows every
third grid line in each computational direction on the surface of the configuration. A cut from the 3D
volume is shown in figure 5-b. The view is looking downstream at the nose of the aircraft.

FUTURE DIRECTIONS

Future plans include the addition of PDE smoothing of block faces and entire blocks within the CSCMDO
code. Also to be included are capabilities for complete domain decomposition within the code. Presently the
block topology, number of points, and relative spacing are required input to CSCMDO. Future plans are to
incorporate methods of defining these key features of a computational domain within the program.
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CONCLUSIONS

A CFD volume grid generator has been presented for which is designed around the needs of multi-
disciplinary design optimization. The code employs methods which make it ideal for the type of grid
modifications required by MDO. The code is robust, timely, platform independent, and ready to meet the
needs of multi-disciplinary design.
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a) CFDsurfacegrid for complexgeometry
(Note:every3rdgridline drawn)

\

Figure 5

b) Grid from cut normal to flow

Examples of complex volume grid
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SUMMARY

A new method for automatic multi-block grid generation is described. The method combines the

Modified Advancing Front Method as a P_redictor with an elliptic scheme as a corrector. It advances a col-

lection of cells by one cell height in the outward direction using Modified Advancing Front Method, and
then corrects newly-obtained cell positions by solving elliptic equations. This predictor-corrector type
scheme is repeatedly applied until the field of interest is filled with hexahedral grid cells. Given the config-
uration surface grid, the scheme produces block layouts as well as grid cells with overall smoothness as its

output. The present method saves human-time and reduces the burden on the user in generating grids for
general 3-D configurations. It was used to generate multi-block grids for wings in their high-lift configura-
tion.

INTRODUCTION

Grid generation is an essential and critical task for successful application of CFD in engineering
process. Grid generation has been, and still is, a labor-intensive and expertise-requiring task, especially for
complicated configurations. Configurations for which grid generation requires enormous amount of
human-time and labor can be easily found: Automobiles, underwater vehicles, and airplanes. One example

of further complication is that modem flying vehicles use high-lift devices, such as slats and multiple flaps,
during take-off and landing. Flow fields around such complicated configurations are generally decomposed
into several relatively-simple sub-domains. Once sub-domains are identified, it is relatively simple and

straightforward to fill each of them with structured meshes.

A sub-domain may either share a common interface with immediately adjacent sub-domains or be
overlaid with each other. The first strategy of using sub-domains with common interfaces is the subject of

this research, and is called a multi-block grid approach. Decomposition of physical flow fields into blocks,
so-called block generation, is the most challenging task in the process of multi-block grid generation.

Development of an automatic block generation algorithm is one of several highly-pursued topics in the
field of grid generation. (ref. 1 to 11). Many of existing block generation schemes generate block bound-
aries in their topological form. In other words, once the user is given those block boundaries, he/she should

distribute grid points along those block boundaries and generate internal grid points for each block to
obtain final multi-block grids.

In this paper, a new approach for automatic multi-block grid generation is presented. The new
approach generates multi-block grids in a single step, instead of generating block boundaries first and then

filling each block with a certain number of grid points specified by the user later. For realization of this
unique feature, the user provides configuration surface grids and the grid spacing in the advancing direc-
tion as input to the scheme. These user-specified surface grids are undoubtedly composed of several

blocks, especially for complicated configurations. This speculation is based on not only the fact that it is

* Work partially funded by Joint Research Interchange from NASA Ames Rese,'u'ch Center
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verydifficult and undesirable to discretize a complicated configuration surface with a single structured grid
but also the fact that the surface is likely to be described as a collection of relatively-simple segments by

geometry definition programs or CAD programs and the user may have, according to the expected flow

phenomena, a preference on the grid point distribution along the surface which is more easily accom-
plished by the use of multi-block surface grid. These user-specified surface grids will be the actual grid
points along the block boundaries in the resulting multi-block volume grids, and play an active role in gen-

erating final grids as explained in the following section.

METHOD

The new method uses the combination of the Modified Advancing Front Method as a Predictor

with an elliptic scheme as a corrector (MAP scheme). Kim introduced the MAP scheme for 2-D and used it
for multi-block grid generation around 2-D configurations (ref. 12). The MAP scheme advances a collec-

tion of surface grid blocks by one cell height at a time. In this method, the collection of surface blocks
which advances simultaneously is called a "front".

MAP scheme

As the name implies, the MAP scheme (an acronym of the Modified Advancing Front Method as a
Predictor with an elliptic scheme as a corrector) is a predictor-corrector approach. A front is advanced by
the predictor and smoothed by the corrector. Each front goes through this predictor-corrector step until the
flow field of interest is filled with multi-block grids.

Predictor step.-It advances a front using the Modified Advancing Front Method. The Advancing
Front Method (AFM) was originally developed for unstructured triangular meshes (ref. 13 to 15). In the

present research, however, this method has been modified for hexahedral mesh generation. The Modified
AFM not only enables simultaneous generation of a collection of hexaheral cells but also adjusts the dis-
tance and direction of advancement of each grid point according to the surrounding situation. It first inter-

polates the distance and direction of advancement for each internal point of a front from those values along
the boundary of the front. Then, all the points on the front are advanced, resulting in a new front, and the
same number of hexahedral cells as that of quadrilateral cells along the old front are obtained. In providing

a surface grid as initial fronts, (i,j) indexing of each surface block should be ordered in a consistent manner
so that its outward direction can be readily identified; e.g. right-handed rule to have the third k-axis as the

outward direction, ei × ej o,: ek" The new front, however, usually carries the non-smoothness, if any, of the

old front, and magnifies it, making further advancement impossible or meaningless, especially for concave
regions. This situation is avoided by adopting a corrector step.

Corrector step.-In the corrector step, Laplace's equations are used as the elliptic equations by fol-
lowing Cordova's approach (ref. 16). qb apply the elliptic corrector, an image of the old front with respect
to the new front is first introduced. Using these 3 fronts, 3-D Laplace equations are solved along the new

front with the other two as fixed boundary conditions. This procedure is illustrated in Fig. 1. In this exam-

ple, the initial front is composed of 3 blocks of surface grid, as shown in Fig. l(a). The predicted front by
the Modified AFM is shown in Fig. I(b). The image front and the resultant 3-front system are shown in (c)

and (d) of Fig. 1, respectively. As a solution to the elliptic equations, a smoother distribution of grid points
for the new front is obtained, as shown in Fig. l(f), compared to that of the predicted front, as reproduced in

Fig. l(e).

Advancement of fronts.-The distance and direction of advancement of each front is pre-decided by

the user ("free advancement"), except for the fronts which have adjacent fronts aligned in the direction of

their own advancement ("guided advancement"). If a front falls into the second category, the distance and
direction of advancement are decided by the adjacent fronts. The user-specified surface blocks can be

grouped into as many number of fronts as the user wants, and the way they are grouped affects the struc-
ture of final multi-block grids. Examples of different structures of final volume grids through different set-

ting of initial fronts are demonstrated for a simple hexahedral body in Fig. 2, Fig. 3, and Fig. 4. In Fig. 2,
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the 6 block surface grid of the hexahedral body is taken as a single front. As a result, the MAP scheme pro-
duces a 6 block grid, which shows a very smooth distribution of grid points along the outer block bound-

aries. On the other hand, Fig. 3 shows a different block structure due to different arrangement of initial
fronts. In this example, the body surface blocks are grouped into 2 fronts; one front with 5 blocks and the
other with one block. The two fronts are shown separated in Fig. 3(a). The resultant volume grid has 10

blocks (Fig. 3(b)), and the outer block boundaries are shown in (c). Fig. 4 shows a 26 block grid for the
same configuration. In this example, each of 6 surface blocks is taken as a front of its own. In the results

presented in this paper, two adjacent blocks are connected in the "complete" sense. In other words, they
share an exactly same interface as one of their block faces. Adoption of the "complete" inter-block connec-

tivity makes the total number of blocks in the resulting volume grids higher than that with the "partial"
connectivity.

Bridging of distant fronts

For multi-body configurations such as high-lift wings, two distant fronts can march toward each
other. One example is shown in Fig. 5: One front from the main wing and the other from the flap advance
toward each other. If this situation is not dealt with properly, the two fronts will pass each other and gener-

ate hexahedral cells in the region which is already occupied by other cells. If two fronts are found advanc-
ing toward each other and less than a specified distance away, then the scheme will "bridge" the two with a
third front. To bridge two distant fronts, proper grid lines along each front, "bridging edges", are first iden-

tified (A-B and C-D in Fig. 5).

Once the bridging edges are obtained, they are used to form a 3-D surface grid surrounded by the
bridging edges and additional edges connecting them (A-C and B-D). This newly-obtained surface grid is
called a "bridging" front. In general, the pair of bridging edges have a different number of grid points with

respect to each other. Fig. 6 shows bridging fronts of different structures due to the difference in the num-
ber of grid points along the bridging edges and along the edges connecting them. With the help of the
"bridging" front, the two distant fronts which were to collide with each other are connected with each
other, and the advancement of those fronts will be adjusted accordingly. The sequential advancement of

fronts continues until the user-specified outer boundary is reached. The scheme groups hexahedral cells
properly, resulting in a multi-block volume grid system with "complete" inter-block connectivity.

EXAMPLES

The first example is for a generic 3-D single-element wing. NACA 0012 airfoil is used as its wing
section, except the round wing tips which are formed by rotating the wing section at the last spanwise sta-
tion, resulting in a half body of revolution. Fig. 7(a) shows the user-specified wing surface grid together

with a surface grid for the wake-plane. Due to its geometrical shape, it is natural and easy for the user to
generate the surface grid for the wing-tip region in such a way that all the grid lines in the chordwise direc-
tion converge into a single point on each end of the half body of revolution. The user doesn't have to pro-

vide the wake-plane grid. By providing it as a part of input, however, he/she can be assured to have the grid
point distribution along the wake the way he/she wants. As explained earlier, a "front" is supposed to
advance in only one direction. This means that the wake-plane grid is composed of two sets of exactly

same grids glued to each other back to back. One set has a reversed ordering of index (i,j) with respect to
that of the other. The initial surface grid is composed of 6 surface blocks with "complete" connectivity; one
on the upper side of the wing, one on the lower side of the wing, two on both wing tips, one on the upper
side of the wake-plane, and the last on the lower side of the wake-plane. By taking those 6 block surface
grid as a single "front" and specifying the grid spacing in the advancing direction, the MAP scheme gener-

ates 6 block volume grid. The block edges of the resultant grid system are shown in Fig. 7(b). The block

boundary grid lines along the symmetry plane are also included. Generating this grid system can be
thought of as the analogy of blowing a balloon with the initial shape of Fig. 7(a). The outer block bound-
aries, shown in Fig. 7(c), and the internal block boundaries, shown in Fig. 7(d), indicate that the grid point
distribution becomes smoother and more evenly-spaced as the front advances outward.
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In thepreviousexample,the block structure of the resulting volume grid is naturally decided by
the block structure of the initial surface grid. With the MAP scheme, however, totally different block struc-

tures of volume grids can be easily obtained from the same initial surface grid by changing the arrange-
ment of initial fronts, and it is demonstrated in the next example. Fig. 8(a) shows the exactly same surface

grid as Fig. 7(a). In this example, the 6 block surface grid is divided into 3 fronts. One front has 4 surface
blocks; the upper wing surface, the lower wing surface, the upper wake surface, and the lower wake sur-
face. The other two fronts have one surface block from each wing tip. In this example, the two wake-plane

blocks do not have connectivity at both spanwise ends. The MAP scheme generates a 14 block volume grid

as an output. Fig. 8(b) shows the block edges. The outer block boundaries and the internal ones are shown

in Fig. 8(c) and (d). These first two examples show the flexibility of the MAP scheme.

The next example is for a simplified high-lift configuration wing. Fig. 9(a) shows a 6 block config-
uration surface grid; 3 blocks on the main wing and 3 on the flap. The wing tip of the flap is flat while that

of the main wing is round. The gap between the main wing and the flap is filled with a "bridging" front, as
shown in Fig. 9(b). The resultant 28 block volume grid is shown in Fig. 9(c) and (d). In this example, the

number of grid points along the leading edge of the flap is same as the number of points along the trailing

edge of the wing. This situation is not always true. The present wing-flap configuration is a simplified and
specific one, i.e. a full-length flap. One step toward generalization with the same configuration is to use a
different number of grid points in the spanwise direction for the wing and the flap.

Fig. 10(a) shows the same configuration wing as Fig. 9(a). In this example, however, the flap has
more grid points in the spanwise direction than the previous case. The "bridging" front should be formed in
accordance to the number of grid points along the bridging edges, and the result is shown in Fig. 9(b).
Once distant fronts are bridged with the help of a bridging front, the MAP scheme advances each front
until the outer boundary is reached. Block edges and outer block boundaries of the resulting 38 block vol-

ume grid are shown in Fig. 9(c) and (d) respectively.

CONCLUSION

The MAP scheme can generate multi-block grids in an automatic fashion. As an input for the

scheme the user provides a body surface grid and the grid spacing in the advancing direction. The user can
choose how he/she wants to group the surface blocks to form initial fronts. The present scheme produces

block layouts as well as grid cells of smooth distribution as its output. Due to its unique approach, the
present method saves human-time and reduces the burden on the user in generating grids for general 3-D

configurations. The configuration of the high-lift wings shown in this paper, however, is not general
enough. Generalization and improvement of the grid generation program using the MAP scheme for realis-
tic 3-D configurations is currently underway.
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(a) The old front (b) The predicted new front

(c) The image front (d) Accumulation nts

(e) The predicted new front, (b) (f) The corrected new front

Fig. 1 Procedure of the predictor-corrector approach
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(a) Initial front with 6 block

surface grid

(c) Outer block boundaries

(b) Block edges of the resulting
6 block volume grid

Fig. 2 6 block volume grid generation about a hexahedral body
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(a)2 initialfronts:Onewith5sur-
faceblocksandthe other with

1 block

(c) Outer block boundaries

(b) Block edges of the resulting
10 block volume grid

Fig. 3 10 block volume grid generation about a hexahedral body
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(a) 6 initial fronts: Each with 1
surface block from each face

/

! !
(b) Block edges of the resulting

26 block volume grid

(c) Outer block boundaries

Fig. 4 26 block volume grid generation about a hexahedral body
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A

4

Fig. 5 A generic high-lift configuration wing and bridging edges (A-B and C-D)

A B

C D

(a) Bridging edges (b) Bridging edges (A-B and B-
C) have the same number of
grid points

/ /

I

(c) A-B has more points than
C-D. A-C and B-D with
the same number of points

/ / / /
/ / //

/ / / //"

I

(d) A-B and B-C have a different
number of points. A-C and
B-D with a different number

of points

Fig. 6 Formation of "bridging" fronts
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(a) Single initial front (body surface and wake plane)

(b) Block edges of the resulting 6 block volume grid together with the
boundary grid lines along the symmetry plane

Fig. 7 Grid generation for a single swept-back wing with a single initial front
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(c) Outer block boundaries

(d) Internal block boundaries and the symmetry plane

Fig. 7 (Continued) Grid generation for a single swept-back wing with a single initial front
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(a) 3 initial fronts (body surface and wake plane)

(b) Block edges of the resulting 14 block volume grid

Fig. 8 Grid generation for a single swept-back wing with 3 initial fronts
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(c)Outerblockboundaries

(d)Internalblockboundaries

Fig.8(Continued) Gridgenerationfor asingleswept-backwingwith3 initialfronts
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(a) Initial fronts (main wing and flap)

(b) Gap between the main wing and the flap is filled with a "bridging" front

Fig. 9 Grid generation for a generic high-lift configuration (28 block volume grid)
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(c) Block edges of the resulting volume grid

(d) Outer block boundaries

Fig. 9 (Continued) Grid generation for a generic high-lift configuration (28 block volume grid)
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(a)Initialfronts(mainwingandflap)

(b)Gapbetweenthemainwingandthe flap is filled with a "bridging" front

Fig. 10 Grid generation for a generic high-lift configuration (38 block volume grid)
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(c)Blockedgesoftheresultingvolumegrid

(d)Outerblockboundaries

Fig.10(Continued)Gridgenerationforagenerichigh-liftconfiguration(38blockvolumegrid)
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SUMMARY

Elliptic grid generation methods have been used for many years to smooth and improve grids

generated by algebraic interpolation schemes. However, the elliptic system that must be solved is

nonlinear and convergence is generally very slow for large grids. In an attempt to make elliptic

methods practical for large three-dimensional grids, a two-stage implementation is developed where

the overall grid point locations are set using a coarse grid generated by the elliptic system. The

coarse grid is then interpolated to generate a finer grid which is smoothed using only a few iterations

of the elliptic system.

INTRODUCTION

Elliptic grid generation methods have become less applicable to large scale problems due to the

time required to solve the elliptic system of partial differential equations. The equations themselves

are nonlinear and are difficult to solve efficiently even using the traditional multigrid methods.

Although there are some variations of the equations, this report assumes the elliptic system is of
the form

gll(r_ + P r_) + g22(r,, 7 + Q rn) + gaa(rii + R re) + glut07 + glar_i + g23r,¢ = 0

where r = (x, y, z), giJ are the contravariant metric tensor components and the functions P, Q, and

R are used to control the distribution of grid points. The objective of this report is to demonstrate
that in many cases it is not necessary to solve the elliptic system to generate a smooth grid with the

required grid point distributions. If a coarse grid is first generated by solving the elliptic system,

then this grid can be interpolated to generate a finer grid and the fine grid can be smoothed with

only a few iterations of the elliptic difference equations. If this procedure is to work in practice, it is

essential that the interpolated grid be smooth and give a good approximation of the final solution

of the elliptic system on the fine grid. Thus, the fine grid iterations are primarily used to eliminate

interpolation errors which are local and of high frequency. The actual residual on the fine grid may

not be close to zero. This multilevel approach is efficient if only a few fine grid iterations are to

give a smooth grid. It is well known that if the initial grid deviates greatly from the final elliptic

grid, the first few iterations may generate large scale oscillations which decay very slowly. The

multilevel approach can also be used to generate grids with specified boundary orthogonality and

spacing. Coarse grid computations can be used to generate good initial approximations of control

functions which may be fixed or further adjusted during the fine grid iterations.

*This work was performed while the author held a National Research Council - NASA Langley Research Center

Research Associateship.
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The techniques described in this report can be easily implemented in existing software packages.

Coarse grids solutions have been used to generate starting values for the elliptic system in the

GI_IDGEN code of Steinbrenner and Chawner (refl 1) and the 3DGRAPE code of Sorenson (ref.

2). Eisman (ref. 3) has also employed a similar concept in using elliptic systems to distribute

control points for his algebraic grid generation scheme in the the GRIDPRO code.

It should be noted that the proposed scheme is not a true multigrid scheme. The scheme here is

a simple grid sequencing scheme progressing from a coarse grid to progressively finer grids. There

is no cycling between coarse and fine grids with the objective of eventually achieving a higher rate

of convergence to the solution of the elliptic system of partial differential equations on the finest

grid. Multigrid methods have been shown to increase convergence rates, but there have been no

applications to large systems with moving boundary points and adaptive control functions. Some
difficulties that may arise are discussed in the paper by Stiiben and Linden (ref. 4).

COARSE GRID ITERATIONS

The first step in the procedure is to coarsen the initial algebraic grid. This scheme that has
been used here is to remove every other grid point in each coordinate direction. This refinement

may proceed to several levels as long as the grid dimensions in each direction are odd integers.

For large grids, this reduces the size of the problem by approximately eight. A second coarsening

would reduce the original problem by a factor of approximately 64. Complementing the reduction in

problem size is an increase in the rate of convergence when going to a coarser grid. The coarse grid

iterations should be optimized for rapid convergence. For example, all coarse grid calculations here

have used locally optimal acceleration parameters. Any control function and boundary condition

options should be implemented so that the converged coarse grid has all of the desired characteristics

of the final grid.

INTERPOLATION

The interpolation scheme is a critical component in this procedure. Therefore, a tricubic Her-

mite interpolation procedure has been developed to generate a smooth grid. The slope information

is calculated using central differences on the coarse grid. There are two options for the bounding

surface grids. Either the original surface grids can be used or the surface grids can be redefined

using the same interpolation scheme used at the interior points. The choice can have a significant

effect on the success of the coarse grid solution in reducing the amount of work needed to obtain

a usable grid. If the coarse grid accurately resolves the surface so that there is little change is

curvature or spacings between grid points, then one can generally use the original fine surface grids

and still have a reasonably smooth grid to start the elliptic system on the fine grid. On the other

hand, if there are significant changes in surface or grid properties between the interpolated grid

and the original surface grids, then using the original grids on the boundary surfaces will result in

large changes in grid spacings and angles at the boundary, and possibly even some places where the

interpolated grid folds over the boundary. This would result in a poor starting grid for the elliptic

system and the main purpose in using the coarse grid solution would be lost.

The ability to prescribe grid distributions on the final grid is very dependent on the control

functions of the elliptic system. There are two options for calculating control functions which seem
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to work equally well. The control functions can either be calculated based on the initial fine grid

and then restricted to each coarser grid, or the control functions can be calculated on each grid from

restrictions of the initial grid to that level. It is generally recommended that the control functions

not be computed on the coarsest grid and interpolated to the finer grids. This will often result in a

loss of distribution on the finer grid. The only time that control functions have been interpolated to

finer girds is when using the control functions to control boundary spacing an orthogonality. Even

then, the interpolated control functions are blended with the control functions from the initial grid

so that the interpolated values are only effective near the boundary.

There is one important fact that should be emphasized when transferring control functions

between fine and coarse grids. When the control functions are restricted to a coarser grid, then

they should also be multiplied by a factor of two. This scaling factor is necessary so that the same

elliptic system is approximated on both the coarse and fine grids. Conversely, if the control functions

are transferred from a coarse to a finer grid, then the control functions should be interpolated and

divided by two. This assumes that the grid coarsening is done by removing every other point in

each coordinated direction. Other coarsening schemes would result in different scaling factors. For

example, if only every third point was retained in generating the coarse grid, then the factor of two

would be replaced by three.

FINE GRID ITERATIONS

At this point it is assume that the coarse grid iterations and interpolation procedure has resulted

in a smooth grid that has the desired distribution of grid points. In many cases this grid would

be good enough to compute a CFD solution. However, there may be a few ripples in the grid due

to the Hermite interpolation. If the original boundary surfaces are maintained, the grid may need

some additional smoothing near the boundary. Since the objective here is only to smooth the grid

and not to obtain convergence of the elliptic system, there should be a change in the relaxation

parameter so that the iterations are underrelaxed. Another effective way of smoothing the grid

while maintaining the existing distribution of grid points is to introduce a time derivative into

the partial differential equations, and solve the resulting parabolic system using a time marching
method.

EXAMPLES

Three sample grids will be considered to test the concepts of this report. All three initial grids

were generated using transfinite interpolation. All three also are obviously not suited for CFD

computations because of negative Jacobians or extremely skewed cells. After applying the elliptic

smoothing, in two of the three cases the final grid was free of negative Jacobians. In the other case,
a few negative Jacobians remained after using the elliptic methods, even when convergence of the

elliptic system was attempted on the original fine grid.

The first example is the grid in the interior of a duct. The duct is plotted in Figure l(a). The

cross section is very irregular. An initial grid was constructed with dimensions of 33 by 33 by 65.

There are a large number of grid points which fall outside of the duct as can be seem in the plot of

an interior grid surface in Figure l(b). This grid can be improved using elliptic methods, so that

no negative Jacobians appear. In fact, negative Jacobians can be eliminated without resorting to
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grid coarseningin only seveniterations. However,it takesmanymoreiterationsto givea smooth
grid. The negativeJacobiansin the initial grid causelargevaluesof the residualin the solution
of the elliptic system.Nonellipticphenomenalike ripplesandwavescandevelopin the numerical
solution.Theseperturbationsmaybeof largemagnitudeanddecayveryslowlyduringtheiterative
solution.Forexample,the plot in Figurel(c) is the sameinterior grid surfaceafter ten iterations
of the elliptic system.Ripplesin the grid appearastriangularshapedcellsin the lowerpart of
the surfacegrid. Now considerthe casewherethe originalgrid is coarsenedto givean 17by 17
by 33grid. Theelliptic systemcanbeconvergedon this grid in lessthan sixtyiterations,whichis
equivalentto lessthat eightiterationson thefinal grid. Thiscoarsegrid is interpolatedandfurther
smoothedto eliminateany roughspotsnearthe boundary.Forcomparisonwith Figurel(c), ten
iterationson the finegrid wasperformedafter convergenceon the coarsegrid, andthe resulting
grid plotted in Figure l(d). As a further comparison,the originalgrid wasusedto calculatea
convergedsolutionof the elliptic systemandit tookabouttwiceasmanyiterationsto convergeon
thefinegrid as it did on thecoarsegrid. Thus,whenconsideringboth the sizeof the grid andthe
convergencerate, it canbeconcludedthat the useof coarsegrid iterationsresultedin a reduction
in workbya factorof fiveoverwhatwouldbeneededto generateaconvergedellipticallygenerated
grid. Zerocontrolfunctionswereusedin all of thesecalculations.The grid points werefixedon
thewallsof the duct,but wereallowedto slidealongthetwo circularendcaps.

The secondexampleis a grid for a regionaboutan aircraftwing. Theinitial grid is a C-grid
constructedusingtransfiniteinterpolation.The grid wasconstructedasa four blockgrid eachof
whichwas33by 53by 33 for a total of slightly over230thousandgrid points. Theedgesof the
blocksareillustrated in Figure2(a) Thereareno negativeJacobiansin this grid, but the grid is
highlyskewedin regionsnearthewingtip ascanbeseenin Figure2(b). Severaloptionshavebeen
exercisedin this examplewhichtendto reducetherateof convergencefor theelliptic system.The
controlfunctionshavebeeninterpolatedfrom theblockboundaries(usingtheThomas- Middlecoff
technique)to maintainthe interiorgrid point distributionduringthesolutionof theelliptic system.
Thecontrolfunctionshavebeenallowedto adjustnearthe surfaceof thewing(as in the GRAPE
code)to generateorthogonalgrid linesat the wing surface.Finally, the grip points havebeen
allowedto float alongthe two planarboundarysurfacesintersectingthe endsof the wing. An
indicationof the slowrate of convergenceis evidentin Figure2(c). After 10 iteration, starting
with the original algebraicgrid, there is little differencebetweenthe grid generatedusingthe
elliptic differenceequationsandthe originalalgebraicgrid. Thereis someindicationof boundary
orthogonality. However,thereis considerabledifferencewhenexaminingFigure2(d) whichwas
generatingusing100coarsegrid iterationsfollowedby 10finegriditerations.Thecontrolfunctions
weretreatedasdescribedabove.Thecontrolfunctionswerefirst interpolatedfrom thecoarsegrid
to thefinegrid anddividedby two,sincethe coarsegrid wasgeneratedby takingeveryotherpoint
of the finegrid. Thesecontrolfunctionswerethenblendedwith the controlfunctionscomputed
from the initial interpolatedgrid. Forthis example,the originalsurfaceswereusedwith the fine
grid. It wasthereforenecessaryto continueto adjust the controlfunctionsduring the fine grid
iterationsto correcttheslight skewnessat the boundarywhichresultedfrom theinterpolation.

The final exampleis includedto demonstratethat this methodcanbeappliedto a grid with
highlynonuniformspacing.The initial grid wasagainconstructedusingtransfiniteinterpolation.
Thegrid wasto beusedto computeviscousflowaboutanHSCTconfiguration.Thewing/fuselage
configurationis plotted in Figure3(a). Sincethe HSCTconfigurationwassymmetric,only half of
the body wasusedto generatethe grid. The grid wasconstructedin two blocks,eachof which
was177by 81by 61. Thusthe total grid consistsof nearlyoneandthree-quartermillion points.
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Therearea largenumberof negativeJacobians.A comparisonof the initial grid andthe elliptic
grid after 100coarsegrid iterationsappearsin Figures3(b) and 3(c). Forclarity, only the coarse
grid points areplotted. The elliptic methodwasableremovemostof the negativeJacobiansand
still maintainthe spacingat the boundary.However,it couldnot removeall negativeJacobians
andgeneratea grid whichwouldbesuitablefor CFDcalculations.While this may beconsidered
afailureof elliptic methods,it is a successfulapplicationof the multilevelmethod.Knowingwhen
andwhereelliptic methodsfail to generatea suitablegrid will allow the userto proceedwith his
effortsin redefiningthe topologyor redistributingpoints.

CONCLUSIONS

Thediscussionandexamplescontainedin this reportshouldgivethegrid generatora guidefor
usingcoarsegriditerationsfor smoothingandimprovingcomputationalgridsfor CFDapplications.
The mainpoint is that the coarsegrid solutionshouldbeconvergedto somespecifiedtolerance.
After that, only a few fine grid iterationsareneeded.It is alsoimportant to treat the control
functionscorrectly to generatethe desireddistribution of grid points alongboundarysurfaces.
Simplyinterpolatingthesefunctionsfrom thecoarsegrid to the finegrid is generallynot sufficient.

Thereis oneareawherefurther studyis needed.Thereshouldbesomewayof projectingan in-
terpolatedvolumegridontotheoriginalboundarysurfaceswithout effectingtheoverallsmoothness
and orthogonalityof the grid. Onepossibleapproachwouldbe to includeboundaryinformation
into the interpolationscheme.
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Figure1. (a) Ductgeometry,(b) initial surfacegrid, andsurfacegridsafter 10iterations
startingwith (c) initial grid and(d) convergedcoarsegrid solution.
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Figure2. (a) Regionabout wing,(b) initial surfacegrid at wingtip, andsurfacegridsafter
10iterationsstartingwith (c) initial grid and(d) convergedcoarsegrid solution.
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Figure 3. (a) HSCT configuration, and (b) initial and (c) elliptic coarse grid

at wing fuselage junction.
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ABSTRACT

Detailed simulations of viscous flows in complicated geometries pose a significant challenge

to current capabilities of Computational Fluid Dynamics (CFD). To enable routine applica-

tion of CFD to this class of problems, advanced methodologies are required that employ (a)

automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers,

and (d) advanced software techniques. Each of these ingredients contributes to increased ac-

curacy, efficiency (in terms of human effort and computer time), and/or reliability of CFD

software. In the long run, methodologies employing structured grid systems will remain a

viable choice for routine simulation of flows in complex geometries only if genuinely automatic

grid generation techniques for structured grids can be developed and if adaptivity is employed

more routinely. More research in both these areas is urgently needed.

INTRODUCTION

Computer technology and algorithms for Computational Fluid Dynamics (CFD) have developed

to a point where CFD is now used routinely in the study of engineering and prototype flows. The

purpose of using CFD is to give concrete predictions of specific data, such as surface pressure dis-

tributions or heat transfer, and to enhance understanding of the characteristics of the flows. Un-

fortunately, current methodologies and software lack the desired accuracy and efficiency for routine

application to complicated viscous flows in complex geometries such as internal cooling passages of

turbine blades. For these flows, large human effort and computing time are typically required to ar-

rive at acceptable solutions. When structured grids are used in simulations, the process of arriving

at a final solution often involves first, a considerable effort in generating an initial grid system and,

thereafter, an iterative process involving obtaining a solution on the given grid, evaluating the solu-

tion, and refining or otherwise modifying the grid in preparation for computing another solution to

the same problem.

Because of the large human effort needed in the past to generate high quality structured grids,

many, whose interest is in the simulation of flows in complex geometries, have looked towards un-

structured grids (mainly triangles in two dimensions, prisms and tetrahedra in three dimensions) to

model the complicated geometries. Unstructured grids offer all the flexibility needed to model com-

plicated geometries, and the grid generation process for unstructured grids is far more automated

than that for structured grids. Also, algorithms for adapting unstructured grids to computed solu-
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tions, for examplethroughlocalmeshrefinement,arewelldeveloped(seee.g.,Ref 1). Theseadvan-

tageshaveled manyto believethat unstructuredgridsarethebest for usein simulationsof flows
in complexgeometries.However,unstructuredgridsalsohavedisadvantages,suchaslargemem-

ory requirementsand/or largecomputingtime (CPU time) requirements.Additionally,generating

high-qualityunstructuredgridsfor high Reynoldsnumberflowshasprovendifficult althoughrecent

progresshasbeenmade(seee.g.,Ref. 2-4).

Dueto difficultieslike thosementionedabove,high-fidelitysimulationsof viscousflowsin com-

plexgeometriesstill posea considerablechallengewhetherstructuredgridsor unstructuredareused.

If the difficultiescanbeovercomethroughimprovedsoftwareandsolutionmethodology,onecanuse
existingcomputingresourcesto tacklebiggerandmorecomplicatedproblemsthancannowbehan-

dled,andmakemoreroutinethe simulationof flowsnowanalyzedonly with greatdifficulty. For

organizationsemployingCFD, this translatesinto economicsavingsthroughbetter useof manpower

andcomputingequipment.In this paper,anadvancedCFDmethodologyis outlinedthat will over-
come at least some of the difficulties related to the use of structured grids. The ideas behind the

methodology are not necessarily new but they are rarely put forward in a systematic way as done

here. In the next section, the ingredients in methodology are discussed in general terms that apply

independent of grid structure. Following the general description, the role of grid structure is dis-

cussed and a specific strategy for structured grids is laid out. The paper ends with a short summary.

METHODOLOGY

The thesis of this paper is that in order to optimize the use of human and computing resources,

any methodology for simulating flows in complex geometries needs certain "ingredients." These in-

gredients are

(a) automated grid generation,

(b) adaptivity,

(c) accurate discretizations of the governing equations and efficient solvers,

(d) advanced software techniques.

All these ingredients or components contribute to the effectiveness and reliability of the software

used for flow simulation. The importance of each is discussed below. A diagram showing the impact

of integrating the components in a single methodology is shown in Fig. 1.

Automated grid generation is now recognized as an important step towards an effective simula-

tion methodology. It reduces the human effort needed to generate grids for complicated geometries

and can significantly cut the total time needed to arrive at acceptable solutions. In the past, the

time needed to generate a structured grid for a complicated geometry was often an order of mag-

nitude greater than the time needed to compute a solution. Today, this may still be true although
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newgrid generationmethodsandimprovedgraphicaluserinterfacewith the grid generationsoft-
warehaveremediedthis problemsomewhat.Grid generationmethodsfor unstructuredgridsare

typically muchmoreautomatedthan for structuredgrids.For instance,advancingfront techniques

for generationof triangular andtetrahedrameshesallowgridsfor verycomplicatedgeometriesto be

generatedquickly(in a matterof hoursor evenminutes)with little humanintervention.5-7Genera-

tion of unstructuredCartesiangridsisevenmoreautomatedandcanbecompletedin minutes.8

Adaptivity--i.e., automaticallyadjustingmeshresolution(h-refinement)or orderof accuracy

of the discretization(p-refinement)in responseto the computed solution--can also bring important

improvements to the overall solution process. The improvements include enhanced accuracy of the

computed solutions, reduced computational effort, and reduced human effort. Accuracy is enhanced

through improved resolution of important flow features, even when it is not known beforehand where

these flow features are located. Computational effort is reduced as adaptivity allows appropriate res-

olution to be used everywhere in the flow field, e.g., adaptive local mesh refinement produces fine

grids only where they are needed leaving appropriately coarser grids elsewhere. Possibly the great-

est benefit of adaptivity is the reduction or even elimination of the iterative process that typifies the

present use of CFD for complex flows, where a user, iteratively, computes a solution on a given grid,

evaluates the solution with respect to accuracy, and then modifies the grid "manually" in prepara-

tion for computing a new solution to the same problem. Adaptivity takes on added importance with

increasing demands for accurate solutions and for concrete error estimation for the computed so-

lutions. The increased demands for accuracy are evident, for example, in new editorial policies by

professional journals such as the Journal of Fluids Engineering. 9

The need for good discretizations and efficient solvers for flows in complex geometries is self ex-

planatory in the light of the large number of grid points needed for high fidelity simulations of such

flows. However, it is important to note that memory requirements of the flow solvers is also an issue

for problems involving a large number of grid points. The memory required by a flow solver is often

what limits the size of the problems that can realistically be tackled using that particular flow solver

on a particular computer.

The need for advanced software techniques arises inevitably as the increased automation of the

solution procedures and increased use of advanced solution algorithms makes the CFD software

more and more complicated. Increased generality of the software and improved user interface only

add to the complexity. Consequently, the software must be carefully and systematically developed to

ensure bug-free codes and reliable operation. Advanced software techniques, such as object oriented

programming is one way to achieve this. Modern programming languages that support object ori-

ented programming include C++, which supports object oriented programming without sacrificing

efficiency. 10 The new FORTRAN90 programming language also has some support for object oriented

program design. Object oriented programming techniques enhance the modularity, reliability and
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maintainability of computer codes, and contribute to the development of bug-free modules. They are

already in use for development of CFD codes (see e.g., Ref. 11, 12).

When all are combined, the ingredients discussed above can significantly enhance the capabili-

ties of CFD software and widen the range of applications that can be tackled on a given computing

platform. The results that are obtained will also be more reliable and the power of CFD can more

easily be exploited by users who are not experts in CFD or fluid mechanics.

STRUCTURED GRIDS FOR COMPLICATED GEOMETRIES

To a varying degree of sophistication, current CFD software makes use of some or all of the in-

gredients of the ideal methodology described in the previous section. With respect to automation of

the grid generation and adaptivity, CFD methodologies employing unstructured grids come closest

to the ideal. However, a persistent drawback of CFD codes employing unstructured grids is a large

memory requirement. Due to lack of structure in the grids, information about connectivity between

cells or nodes in the grid needs to be stored. Also coefficients related to reconstruction of the solu-

tion based on cell average values are stored in many codes. A total storage of about 180 double pre-

cision variables (over 1400 bytes) per solution element (e.g., cells in cell-centered schemes) appears

to be typical for flow solvers capable of simulating three-dimensional viscous flows (see e.g., Ref. 13,

14). In comparison, codes employing structured grids typically require between 45 and 70 double

precision variables per solution element. Thus simply from the perspective of storage requirements,

structured grids are preferable to unstructured grids for problems requiring high resolution of the

flow field since they allow larger problems to be tackled on a given computer.

In addition to requiring less memory, structured grids offer other advantages. First, due to the

regularity of the grid structure, various efficient schemes based on dimensional splitting can be ap-

plied on structured grids. For instance, ADI schemes and line-Gauss-Seidel methods can be used

effectively for implicit discretizations. Also due to the regularity of the grid structure, multigrid

schemes can be applied in a straightforward manner on structured grids to accelerate convergence

to steady state or to speed up the resolution of systems of equations arising from implicit discretiza-

tions. Finally, structured body fitted grids are well suited for simulations of viscous flows due to

good resolution of boundary layer regions.

Based on the considerations touched upon above, structured grids appear at the present time

to be better suited than unstructured grids for simulation of complex flows requiring high resolution

of the flow field. However, three questions arise immediately: First, can efficient structured grids

be generated for very complicated geometries? Second, can the generation of structured grids be

automated to the extent needed? Finally, can adaptivity be implemented in an effective manner?

If the answer to any of these questions is negative then structured grids will in the long run only
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be useful for a very limited class of flow problems. The first two questions will be addressed in the

remainder of this section. The last question will addressed in the next section.

Efficient Structured Grids for Complicated geometries

The first question to be answered regarding the use of structured grids is whether efficient struc-

tured grids can be generated for very complicated geometries. This question is best addressed by

posing it as two questions, namely for how complicated a geometry can a high quality structured

grid be generated and when are the grids efficient?

A number of strategies have been devised to generate structured grids for complicated geome-

tries. Two main approaches are to use "multiblock" grids (continuous block-structured body-fitted

grid systems) and "Chimera" grids. 15 Multiblock grids are generated by "carving up" the flow do-

main into multiple zones or blocks of reasonable size and shape such that a continuous grid can be

generated for the entire domain. In contrast, Chimera grids are created by independently generating

simple body-fitted grids around different components of a geometry, allowing the component grids to

overlap in an arbitrary manner. Multiblock grids have the greatest degree of continuity of all block

structured grids while Chimera grids have the least. A number of alternative structures have been

devised that, in terms of continuity across blocks boundaries, fall in between the two main struc-

tures.

The advantage of using Chimera grids is that such grids can be generated for almost any geom-

etry. In fact, the flexibility of Chimera grids closely approaches that of unstructured grids. Further-

more, grid generation effort is greatly simplified since the geometry can be broken up into compo-

nents for which simple, high quality grids can be generated. A disadvantage is that the flow solver

must deal with the arbitrary overlap between grids. In a sense, the difficulty in dealing with the

complicated geometry has been postponed from the grid generation stage to the flow-simulation

stage. Often, the interpolation needed to transfer data between component grids leads to noticeable

glitches in the computed solutions. Recently, new approaches have been proposed that promise to to

improve the communication between grids. One is to replace the region of overlap with an unstruc-

tured grid (DRAGON grids, see Ref. 16). Another is to eliminate the overlap region from one of two

overlapping grids and to enforce flux conservation at the surface (curve in two dimensions) of inter-

section between the two blocks. 17 Commercial grid generators such as ICEM-CFD 18 and Gridgen 19

are well suited for generating Chimera grids. A number of flow solvers are designed to use Chimera

grids, including OVERFLOW (developed at NASA Ames Research Center) and CFL3D (developed

at NASA Langley Research Center).

The advantage of multiblock grid systems is the high degree of continuity in the entire grid sys-

tem. In high quality multiblock grids, grid lines are at least C 1 continuous across block boundaries

(except at certain singular points in the grids). Consequently, implementation of schemes for multi-

block grids in flow solvers is relatively straightforward and block-boundaries become transparent
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to the solver. For instance, higher-order accurate finite volume discretizations can be implemented

without loss in accuracy at block boundaries. The disadvantage of multiblock grids is that it has

traditionally been considerably harder to generate high-quality multiblock grids than almost any

other type of grid system. Recently, however, new methods 20"22 and commercial software 23 have

become available that go a long way towards making multiblock grids competitive with Chimera

grids, both in terms of human effort in grid generation and in terms of capability to handle com-

plicated geometries. A sample grid multiblock grid system generated by the commercially available

GridPro 23 is shown in Fig. 2 and 3. The strength of this particular software package is that the only

input required, in addition to the geometry itself, is the topological structure of the grid system. Ex-

act specification of block interfaces is not needed. Flow solvers designed to use multiblock grids in-

clude TLNS-MB 24 and TRAF3D.MB. 25

Whether a structured grid for a complicated geometry will be efficient must be answered on a

case by case basis since the answer depends not only on the geometry but also on the resolution that

is required. To be efficient, each grid block should have at least few hundred nodes or cells (in three-

dimensions). Otherwise, too much memory and computer-time overhead will be involved in commu-

nicating data between blocks. In general, if high-fidelity simulations of viscous flows are planned,

the grid spacing required for accuracy of the solution will be orders of magnitude smaller than the

physical size of the blocks used in a multiblock or Chimera grid system to resolve the features of the

geometry. In most such cases then, efficient structured grids can be generated.

Automation of Grid Generation

The second question to be answered regarding the use of structured grids was whether the grid

generation can be automated. Unfortunately, up to this point little effort has gone into developing

truly automatic algorithms for generation of structured grids. It is therefore premature to judge

whether effective algorithms can be developed. However, some recent work has been published on

automatic generation of multiblock grids for two-dimensional geometries. In particular, Shoenfeld

and Weinerfelt 26 devised an algorithm based on an advancing front technique. This same technique

can be used to generate an initial topology of a grid system while other techniques can be used to

optimize the grid for that particular block structure. It therefore appears likely that automatic tech-

niques can be developed that work for two-dimensional geometries. For three-dimensional geome-

tries, other techniques based for instance on feature recognition may need to be used.

MESH REFINEMENT IN STRUCTURED GRIDS

The third and last question related to the use of structured grids in simulations of complex flows

was whether adaptivity could be effectively implemented for structured grids. As discussed earlier,

the objective of using adaptivity in flow simulations is twofold. First, to ensure that without human
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intervention all important features of the flow are captured to the desired level of accuracy, and sec-

ond, to minimize the computational effort required to achieve the desired accuracy. Two approaches

have been used to implement adaptivity in finite volume schemes. The first is to move grid points in

the grid system towards regions where higher resolution is needed, leaving coarser grids elsewhere.

The second approach is to locally refine the mesh where higher resolution is needed by adding points

(local Adaptive Mesh Refinement or AMR). The moving mesh approach can be used to maximize

the accuracy of a solution computed on a grid with a fixed number of nodes; in a sense, maximiz-

ing accuracy for a given cost. When used in structured grids it has the limitation that grid points

can only move a certain amount before grid quality (smoothness and orthogonality) degrades and

begins to counteract the advantages of increased resolution. Adaptive mesh refinement has no such

limitation and multiple levels of refinement can be used to achieve the desired accuracy (within the

limits of applied models such as turbulence models, etc.). Thus, AMR offers the needed flexibility to

automate adaptivity in the solution process.

To be compatible with the use of structured grids, an AMR algorithm should allow the flow

solver to take full advantage of the strengths of structured grid systems, including efficient solution

algorithms for implicit discretizations, various schemes based on dimensional splitting, and multigrid

schemes. In essence, this means that the algorithm should use a block structure for the refined grid.

To date, only a few methodologies of this nature have been proposed. One of the earliest was the

method of Berger and Oliger. 27 In their method, the refined grids are allowed to overlay the under-

lying coarse grids in an arbitrary manner. The blocks of the refined grids are constructed in physical

space based on the shape and size of the region to be refined. The resulting grids tend to align with

discontinuities and other features that determine the shape and size of the region.

Building on the work of Berger and Oliger, Berger and Colella 2s devised a methodology in which

the refined grids conform with the coarse grids, i.e., the boundaries of the fine-grid blocks are made

to coincide with grid lines of the coarse grid. In this method, the block structure for the refined

grids is created using a special algorithm that fits topologically rectangular patches over the regions

of the coarse grids where the estimated error in the solution is above a specified threshold value.

The blocks of the refined grids are then created by subdividing the coarse grid cells within each of

the patches. Advantages of the new approach include greatly simplified prolongation and restriction

operators for transferring data between a coarse grid and a refined grid, and that conservation at

interfaces between coarse and fine grids can be enforced in a rigorous manner. This approach has

been used extensively for Cartesian grids (see e.g., Ref 29, 30). Efforts to implement the algorithm

in structured grids, including Chimera grids, are ongoing. 31.32

A third AMR algorithm, proposed by Davis and Dannenhoffer 33, also involves creating the fine

grids by subdividing cells on the coarser grid. In this approach, however, the entire structured grid

system is divided up into a priori defined sub-blocks of uniform size and dimensions. During adapta-
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tion, each sub-block is refined either in its entirety or not at all. In a recursive manner, a sub-block

that has been refined is itself divided into sub-blocks, each of which can be refined. In the algorithm

of Davis and Dannenhoffer, directional refinement is used, i.e., the grid can be refined in one, two or

three directions at a time as desired.

To demonstrate the feasibility of using AMR in structured grids, results obtained using AMR in

simulation of a two-dimensional inviscid transonic flow over a NACA0012 airfoil are shown in Fig. 4.

The AMR algorithm used is that of Berger and Colella. 27 The adaptation of the algorithm to struc-

tured grids is described in Ref. 31. The discretization used for the governing equations is also de-

scribed in Ref. 31. The solution shown in Fig. 4 was computed using three levels of refinement with

a refinement ratio of two. The dimensions of the original coarse grid around the NACA airfoil were

32 x 96. Only about 20O7o were refined three times (to the finest level). According to available data 1

the error in the solution is minimal, less than 2% as measured by the location of the normal shock

behind the airfoil.

Based on the above review of AMR methods for structured grids, it is fair to say that the abil-

ity to use solution-adaptive mesh refinement to implement adaptivity in structured grids has been

demonstrated. Nonetheless, further demonstrations may be needed, particularly for three-dimen-

sional flows and for multiblock grid systems. Here it is appropriate to point out that implementing

AMR in a general purpose flow solver requires careful programming and the use of a modern pro-

gramming language. In fact, due to limitations of FORTRAN77, related to dynamic memory allo-

cation and advanced data structures, it may be impossible to write in that language a practical gen-

eral purpose flow solver that makes use of AMR. One can speculate that it is precisely because of

the limitation of that otherwise effective programming language for scientific computing that use of

AMR for structured grids is not already more wide spread.

SUMMARY

In order to optimize the use of human and computing resources, any methodology for simulating

flows in complex geometries needs the following ingredients: (a) automated grid generation,(b) adap-

tivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. For

simulations of viscous flows in complicated geometries or other flows requiring high resolution of the

flow field, structured grid systems offer clear advantages over unstructured grids due to less memory

usage and efficient flow-solver technology. However, in terms of automation of grid generation and

adaptivity, methodologies employing structured grids trail those using unstructured grids.

In the long run, structured grids will remain a viable choice for routine simulations of flows in

complicated geometries only if sufficiently efficient automatic grid generation techniques for struc-

tured grids are developed and only if adaptivity is employed in the solution methodology. At the
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presenttime, automaticgrid generationmethodsfor two-dimensionalgeometriesmaybeon the hori-

zon and adaptivity based on local adaptive mesh refinement schemes that are compatible with the

use of structured grids have been demonstrated or are under development. More research is urgently

needed in both areas.
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ABSTRACT

In this paper the capabilities of an automated CFD system which is currently available at NLR

are demonstrated. Transonic flow around the AS28(; wing/body configuration and hypersonic

flow through a generic three-dimensional mixed-compression airbreathing inlet are simulated. An

assessment of the level of automation of the current CFD-system is made. The problem-turnaround

time lies within the order of a week for both applications.

1. INTRODUCTION

Exl)erience with (?FD technology (multiblock structured grid methods) learns that the turnaround

time for generation of grids for Euler/Navier-Stokes calculations of complex aircraft configurations

is large. In order to efficiently contribute to aircraft design the problem-turnaround time must be

reduced to the order of a day or a week [1]. Unstructured grid methods offer the possibility to
t)ring about this reduction.

The level of acceptance of CFD technology in the aerodynamic design process is directly related

to the ability to produce accurate solutions. High accuracy of aerodynamic forces is especially

important so that the computed lift, drag and pitching moment can be relied upon to reduce the

risks involved in aircraft design.

In view of these aspects DLR and NLR started a cooperation entitled "CFD for complete aircraft"

to develop a fully automatic system for three-dimensional flow simulations. The algorithms used

are based on the unstructured grid approach [2] which is based on a Galerkin finite-element method

to discretise the three-dimensional Euler equations.

The objective of this paper is to demonstrate the capabilities of the CFD system which is cur-

rently available at NLR. The focus will be on the level of automation and accuracy of the CFD

system. The first application concerns three-dimensional transonic inviscid flow past the AS28G-

wing/body configuration. The second application is the study of an airbreathing inlet, which is

part of the AEOLUS programme, a joint industry project in the Netherlands [3]. The CFD sys-

tem is used to simulate hypersonic inviscid flow (no real gas effects included) through a generic

three-dimensional mixed-compression inlet with two ramps.

2. CFD SYSTEM AT NLR

At NLR an automated CFD-system for three-dimensional inviscid flow simulations is acquired. In

the current (_FD-system the following algorithmic steps are necessary to obtain a visual represen-

tation of the flow fiehl for a given aircraft configuration.

1. (;eometry definition.

1 Part of this investigation has been carried out under contract awarded by the Netherlands Agency for Aerospace

Programs
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2. Surface triangulation.

3. Three-dimensional grid generation.

4. Pre-processing.

5. Flow calculation.

6. Grid adaption.

7. Visualisation and post-processing.

The algorithmic steps 2-6 are fully automated, i.e. extensive user interaction is not required for

these steps. In this section these algorithmic steps are discussed.

2.1 Geometry definition

The geometry of an aircraft configuration is usually defined using a CAD system (e.g. I('EM-

(JFD) and described in a standard data format. Typically, the geometry is established in terms of

geometric entities, viz. support surfaces and curves. The relation between these geometric entities,

referred to as the topology, has to be defined explicitly. The respective entities are then modelled

by means of piecewise cubic surface and curve representations.

At present an application starts either with a user-defined aircraft configuration or an aircraft

configuration abstracted from a three-dimensional multi-block grid [4]. By adding the geometry

description of fat" field boundaries and the symmetry plane (optional) a three-dimensional flow

domain enclosed by bounding surfaces is defined. In such a way tile boundaries of the flow (lo)nain

are fully defined.

2.2 Surface triangulation

In order to perform a flow calculation the flow domain has to 1)e discretised, i.e. I><)undaries are

triangulated and a tetrahedral grid is generated in the interior of the flow domain. Firstly, the

boundaries of the flow domain are <liscretised resulting in a surface triangulation. To this purl)()se

a surfitcc triaTtgulatioT_ algorithm is employed which incorporates an equi-distribution algorithm f<))'

discretising curves and an advancing front-type generation algorithln for discretising surfaces. :\

distribution function controls the size of the edges and triangles in the surface triangulation.

This distribution function is detine<l 1)y parameters which are specified it) the backgro,i),d grid anti

in source I(,rms. Source terms are introduced in regions to refine regions (>fspecial in|crest. The

distribution function expresses a desired spacing in each 1)oin( of the flow domain.

2.3 Three-dimensiolla] gri<l g('m,ration

Subsequently, a three-dimensional grid of I)elaunay-type is obtained by employit,_; a thrcc-di,t(_._i,,,!

grid g_Tt(ratio_ algorithm. In this algorithm a prospective node is h)ca(ed at the 1)a)'ycentor ()f a

t'etrahedron. If this prospective node satisfies the I)elaunay criterion the no<le is inserted and (()),-

netted to the existing tetrahedral grid. In case the grid size, due to insertion ()f this node, be<'+)tnes

to small the prospective node is rejected. Smoothness of the three-dimensional grid is treated

explicitly by the distrihution function (as (tefined by the hackground grid and source terms). :\_

a result a three-dimensional tetrahedral grid is generate<l which is bounded by a topologically

tw()-<linmnsional surface triangulation.

2.4 [)r(,-l)roc(,ssing

714



Tile next algorithnlic slop is tile p_v-p'roccssi,zg algorithm. This algorithm is designed to optimise

tile flow calculation for the generated three-dinlensional grid. By employing a colouring algorithm

fi_r the edges in the three-dilnonsional grid a high degree of vectorisation in the flow calculation

can be reached.

2.,5 Flow calculation

In the Jtr, w calculatio_, algoriZhm three-dimensional inviscid flow is simulated. The incorporation of

an upwind solver makes the ('Fl)-systenl suited for the simulatiotl of subsonic, transonic, supersonic

as well as hypersonic flows. I_kJr the spatial discretisation of the threo-diniensional Euler equations

Roe's approxilnate Riemann solver [5] is utilised. Second-order accuracy is achiew'd by employing

a MUS(:L interpolation [6] for the state vectors, following_; the approach in [7, ,'4]. An entropy

lix is incorporated to prevent physically incorrect features in a nunierical solution. At. present

the boundary conditions are treated with first-order accuracy. Time integration is established by

adopting a Runge-Kut.ta time step a.lgorithm. (',onvergence acceleration is achieved by local time

stepping and residual averaging.

2.6 (',rid adaption

In case the flow calculation has suificiently converged (by taking a large nuniber of Runge-Kutta

lime steps) the grid adaptiolt algorithm can be oulployed. The grid adaption algorithm is based

on reuleshing. Based on the vahles of an adaption variable (for instance: del,sity, Mach nulnber or

pressure coelticient) an adaption indicator is calculated which is based on the undivided difference of

this adaption variable. According to the value of the adaption indicator sources ternis are generated

which are utilised l.o adapt the surface triangulation. Subsequently, the three-diniensiona] grid

gene:'ati_m algorithni is adopted to generate an entire new three-dimensional grid. By incorporating

the newly genorat_,d source teruis in tile exisling distribulion function a locally refined grid is

,)btained. For the adapted grid a nunierical sohation is then obtained by first eniploying tlie pro-

pr_wessing algorithnl and subsequenlly the flow calculation algorithul. This process can be repeated

until a uunierica] solut.icm of sufficient accuracy is obtained.

2.7 Visllalisalion and ImSt-lm_Cessillg

[.ii,ally. a p,_._t-pro,'_s._i_9 _UgoT"ith,m is adopted to calculate aerodynamic quantities. Flmv visuali-

sal.i{m is achi+'v+'d by using th+, cotnnt+,rcial package l)ala. Visualiser [.q]. [nterfaces are ava.ilab]e to

visllalise ltw go_Jtnoll'y definition, the surface triangulati<m and the nutnorical sohition.

3. At'PI_I(IATIONS

This soclion discusses lwo applications of the current (:FI) system at NLR. The first apl)lication

c_mcol'ns IransOiliC flow ar_mnd ca wing/body configuration and the second applicalion c_mcerns

hypers(mic fl(_w for a generic three-dimensional uiixod-conipression airbreathing inlet contiguration.

3.1 i\$28(', wing/body contiguration

hi tile fil':_t, a,tq)lication described here inviscid flow around the AS28(l wing-body configuration is

siniulated. The geOllletry iS defined by 14 support Silt'faces and 42 curves. ]'lie pliysical coordinates

of these silpport surfaces and curves are abstracted from a niulti-block grid. The SUl)port surfaces

contain approxinlately 17000 nodes. Far field boundaries and a symnietry plane are incorporated

to define a. closed flow doniain.

The surface triangulation shown in figure 2 is obtained. It can be observed that the nose region,
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tail region,wing leadingedge,trailing edgeand the tip are retinod. Sourcetermsare locatedin
theseregionsin oi"(1oi"to obtain sufficientresolutionof tire geometryof the AS28(; wing/body
configurationandto reduceexpectedlossesin total pressure.
Onesuccessiverefinementis employed.Thesurfacetriangulationof the adaptedgrid is shownin
figure3. Thedimensionsof the surfacetriangulationandthe three-dimensionalgrid for the initial
andtheadaptedgridcanbefoundin table1. Theproblemsizefor theadaptedgrid isal)proximately
twotimeslarger in comparisonwith the initial. (:pu-timesfor tile respectiw_algorithmicstopsare
shownin table2 and the convergencehistory is depictedin figure1.
In the flow calculationa three-stepRunge-Kuttatime stepschemewith a (:FL-numberof 0.9 is
utilised. Twojacobi iterationsareemployedto smooththeresiduMs.Tile flowcalculationalgorithm
uses81wordspergrid node,whichisrelativelylarge[10],and reachesa performanceof 253Mtlops
on the NECSX3.
Tile Mach-numberand total pressuredistribution areshownin figures4 and 5 respectively.A
relativelysmall amountof grid pointsis necessaryto resolvethe lambdashockon the upperside
of the wing. This is a promisingresult as for instancein a multi-blockstructuredcodemore
grid points arenecessaryto capturethe sameshockstructure. Nevertheless,largelossesin total
pressure(-t-25%)areexperiencedat the leadingedgeof thewing. This ismainlydueto fact.that the
boundaryconditionat the wingis only first-orderaccurate.A relativelargelossin total l)ressure
is alsoobservedon the uppersideof the wing(S%).

3.2 Three-dimensionalmixed compression airbreathing inlet

One of the most critical enabling technologies of advanced reusable launchers is the propulsion

system. For example a two-stage-to-orbit aerospace vehicle needs a propulsion system to power the

vehicle from take-off to sustained flight at Math numbers ranging from 6 to 7 {separation Mach

number of the rocket powered second stage fronl the a irbreathing first stage). Sustained flight of

airbreathing aerospace vehicles at these Math numbers is not feasible with todays technologies.

The inlet considered here is of mixe(l conlt)ression lyl)o [11, 12]. Belbre entering the inlel, I.tlo

oncoming air is decelerate(1 to a hypersonic Math number lower than the flight Math number 1)y

oblique shock waves (see tigure 6). Near the narrowest duct cross section, the throat, the flow passes

a normal shock wave. Behind lifts shock the flow is subsonic. Ful'thel' decelm'ation is required to

a velocity acceptable for 1.tlo combustion chanlber. The subsonic deceleration require> a diverging
duct called the diffuser.

The l)resent section discusses typical results for flow through the mixed compression airbreathing

inlet. Tile geometry of the inlet is (lescribed in full detail in reference [13]. The inlet geometry is

based on a two-dimensional (lesign that has been obtained t)y using engineering tools. Th(, inlet

considered here is (lesigned for" a freestream Math number of M<×, = 4.5. The forebody of the space

plane is not modelled. Hence, a Mach numl)er smaller than the flight Math number is considered.

Bleed slots are not taken into account since viscosity is neglected. Both the (:owl lip and the side

wall are modelled with finite dimensions.

The geometry of the inlet is define(l t)y 46 curw_s and lS support surfaces. The geometry contains

16 t)lanes and 2 cul)ic polynonfial represmltatiolls, namely the cowl lip and the leading edge of the

side wall. Figure 7 shows an inside view of the inlet from the upstream direction. The cowl lip

and the side walls are clearly visible. At tile top of the figure two raml)S can t)e el)served. The

large bounding planes at the right-hand and left-hand side are boundaries of the flow domain on

which symmetry conditions are imposed. In the inlet duct the right-hand bounding plane is also

defined as a symmetry plane. At the left-hand side the wall of the inlet duct can t)e observed. An

impression of the surface triangulation on the side wall (left-hand side of figure 7) is shown in figure

8. Sufficient grid points are generated to obtain an accurate representation of tile cowl lip.
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For thefl'eostroamMach-mmiborM,×, = 4.5 a typical "unstart" condition is obtained, see figure 9.

This means that there is a strong bow shock in front of the duct inflow plane providing; subsonic

flow throughout the duct. In windtunnol experiments a "s(arted" condition is obtained by opening

the throat significantly so that the shock can pass. ())ice the shock has been swallowed, the diffuser

lhr()at area is decrease(I, while simultaneously th(' pressure ratio of the pressure of the outlet of the

(liff51ser with )'espect t.o the ft'e('slr,,am t))'essu)'e is itlc)'ea.sed s() lha.t the shock is caused t.() move t.()

t)m (lif['tlser throat [l,1].

I)uring numerical simtdations, however, the variat.iotl ()f the geometry is not trivial to simulate. To

solve this l)t'ol)lem the, ('al('ulati(,tl is started with a higher Math mlmt)er :II<_,, = 5.0 s() that elfective

throat area is increased. This results in a glol)ally correct pattern of oblique shock waves. The

"uxtstart" condition is not ,_xl)erienced as the effe('tiv(, throat area is too wide for that particular

Math number. Sul)sequen(ly, the Math number is gradually towered to the required value 3.I.,, =
1.5.

Xl(,ro()ve)'. l() ()l)(aiu lhe final shock ill the diffuser throat and a('c()rdingly sut)s())lic ()utth)w, the,

I))'essut'+ ' at (he difI+lJs(,r <mtl+,t has t.o be imposed. The location of the final shock is a funcli()n ()f

lh+, value (,f)he pt'ossure, which can I)e found 1)y emph)ying m)rmal shock r('lalions and usiug the

fact that the, [)()w is i._et_tt+ol)ic t)ehitJd the final shock (see refer(,nce [15)).

l"i_;u)'e tO sh()ws a side view <)f the "s(a)+led ,' cot,(lit)on with a final sh()ck l+ehin(l the th)'<)al (+f th,,

<lu(). It can I)e ()])s+,rv+,(i tha l the ol)liqu+' shocks and tile final sh<)('k are resolved quit+, accurately.

1. I+I,;VI.;I+ ()F AI!TC)MATI()N

A r+'(lu('ti()ll in ('FIt l)r()l)letu-turnar()tJnd time can l)e :etch)eyed by an increa_se(l level ()I+aut()ulation.

This se('ti,)ll '+','ill f,,('us (,I, llw aut<)t)tation hwel ()f the current (IFI) syst.eln for the al)F, li(.ations

(lis('usso(I in section 3. Those a.lgorit.hmic steps in the (ulrrenl (:FIt system descril)(,d in section 2

which t'equiro user-itlteractio)l at++, )den)if)eel. This identifi(:ati()tl is necessary it) order t() assess the
l)()tential fit)' an )not'eased level ()f atlt()mation.

A With rosl)e(:t to geonletry (lefinitiotl (step 1) an aircraft c()nfiguration is usually defined in

tertns ()f stat)(la)'d (:AI) data format. Extensive user interaction is re(luired to _enerate a

tmtlti-t)lock grid (such as f()r the wing/body ('()tltip4uration) which is stilted as input f()r the

('u)'ret)l (:Fit-system. (lons+'(luet+tly the l)roblenl-(urt)ar'()llnd-titt|e is larp_;e for multi-l)h)ck
t)a.sed geometries.

The (l('finiti()tl of far tield I)outl(laries (step 1) (such as for the wing/1)ody configuration)

)'e(ttlires user" itlter'a(+ti<)tl. The tel)elegy of a three-(limetlsional fat" tMd cube, the (lintensions

<)f the cult+, a,tld the relati()tk with between cube and the air('raft ('ontiguration have to 1)e
(_sl ._l)/i:-;he(l.

(_
The (let)tit)ion ()f the distril)ution function (steps 2 and 3), whi<'h contr<:)ls the size and shape of

triangles in the surface iria)tgulat.i()n and tetrahedral elements in the three-dimensional grid,

requires user interaction. Visualisation of the generated surface triangulation is necessary

in order t() inspect, the i))ttue)lce of the (listril)utiot_ function. A surface triangula(ion is

a('('el)tod if sutlicie)_t resolution of details of tile aircraft contiguration (like wing lea(ling and

t.railit)g e(tge) is obtained. After modification of the distril)ution fun(+tion it is nt'('essary to

)'+'generate the surface triangulation. It is observed that the definition era suitable distribution

function does not guarantee a suc('essftd t.hree-ditnonsionat grid gone)'atiot_ algorithm. An

intolerably ]arp;e tmml)er of totrahedral elom(,nts may t)e generated in ('aso parameters defining

l he distribution functiot_ a.t+o chosen too small. For the, ('t£rront (iFD-system an expert laser
is ro(luired to Sl)o(-ify the distribution function.
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I) It is necessaryto detineboundarytypes (like sytnmetryplane,far field or solid wall) for
eachsurfaceof the flowdomain(step4). This requiresonly a.relativesmallamountof user
interaction.

E This requirementalsoholdsfor the specificationof flowcalculationparameters(step5), such
asfor instance:Math-number,angleof attack, ('.lPI,-number,numberof Runge-Kuttatinle
stepsand Restart-option.

F Inspectionof the flow solutionby visualisation(step 7) can havea negativeinfluence(m
the t)roblem-turnaround-timeif the numberof notlesin the three-dimensionalgrid ix large.
Thiseffectcanbeattributed to the fact that the handlingof a largedata-fih"in a multi-user
environmentand the operationsnecessaryfor visualisation,sucha.szooming,pivotingand
moving,arerelativelyslow.

G In the grid adaptionalgorithm(step6) userinteractionis requiredto assessthe levelof grid
refinement.Initially, default valuesfor the grid adal)tionparametersare taken. Visual in-
spectionthen learnswhetherthe surfacetriangulationhasbeenadaptedsut_ciently.If the
generatedsurfacetriangulationis not acceptable(for instancethe levelof refinementis too
high) thegrid adaptionalgorithmhasto berepeatedwith modifiedinput-parameters.More-
over,thenumberof nodesgeneratedin thethree-dimensionalgrid (afteradaption,remeshing)
is verysensitiveto the valuesof the parametersspecifiedin the grid adaptionalgorithm. If
the numberof nodesgeneratedbecomestoo largeit is necessaryto repeatthe grid a.daption
algorithmandthe three-dimensionalgrid generationalgorithm.

In thenearfuture thefocusison the respectiveparts requiringextensiveuserinteraction,)m.mely
itemsA, (?andG. It is foreseenthat tile remainingitemsB, D and F requiringmorethanminimal
userinteractioncanbeautomated.

By'constructingan interfacewith a standard(TAI) data format the generationof a multi-block
grid a.sinput for theCFl)-system can be avoided {item A). The data structure in the current (!FD

system ix capable of handling a. standard (:AI) data format. This would ah'eady significantly reduce

the amount of user interaction.

The' influence of the distribution function (background grid and sour('e terlllS) and the grid atlat)(.i()n

parameters on the three-dimensional grid generation algorithm remains difficult |(, estimate (item

(? and (',). Ideally, a functional r(,lationship between these parameters and the number of n()des

generated in the lhree-dimensional grid could contribute here. tlowever, for ('on_plex geometries

this relationship is difficult to assess.

5. (',()N(:LI!SI()NS

The capabilities of the (_FD system have been demonstrate(l for twoapplicalions. For the AS2S(;

wing/body configuration and tile three-dimensional mixed compression airl/reathing inl¢'t ('()nligu-

ra'tion the results so far indicate the potential for short turnaround times. An assessment of those

parts in the (?FI) system which re(tuire user interaction shows that (he automation level ('an t)e

increased. The actual problem-turnaround time (geometry definition, surface triangulati()n, 3D

grid generation, flow calculation, grid adal)tion, flow visualisation and t)ost-processing) lies in the

order of a few days for both applications.

Moreover, the results indicate that the current (:FD-system produces accurate solutions. The

Ul)wind-based flow calculation algorithm yields a spatially second-order accurate solution. How-

ever. the boundary conditions are currently only first-order accurate.
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Surfacetriang.
Grid nodes triangles

Initial 22275 44546
Adapted 30744 61484

3I) Grid Generation Flowcah'.
nodes elmnents edges time steps

737396
1600926

105786 609338
222359 1348274

500
2000

Table1: Numberof nodesandtrianglesin thesurfacetriangulation,numberof nodesandm,ml)m'
of elenmntsin three-dimensionalgrid for the initial grid and the a,daptedgrid for the AS28(1
wing/body configuration

Algorithm ct)u-tilne cpu-time Mflops COml)uter

(initial grid) (adapted grid)

Surface triangulation

3D grid generation

Pre-processing

Flow calculation

(;rid adaption

3hn 20s

5m 54s

1m 18s

46m 1 Is

2m 58s

14m 16s

3m 3s

8h 5m 68

4

4

3

253

5

SGI-Onyx

NE(', SX3

NE(? SX3

NE(', SX3

NE(' SX;I

Table 2: ('pu-times for the respective algorithmic steps for the AS28( l wing/body ('ontigurati(m

;-E
5

.a

8

500 1000 1500 200171 2500

Runge-Kutto t;me steps

Figure 1: (?onvergence history of the flow calculation algorithm for the AS28(; wing/body config-

uration on the initial grid and the adapted grid
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Figure3: Surfacetri_ul_ul_t;ioufor t,h¢,AS2,_Gwing/body ('onti_;ur_tiona,fterone,_uccessivereliue-
nlollt
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Figure 4: Mach number distribution for the AS28G wing/body configuration on the upper side of
the wing after one successive refinement
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Figure5: Total pressuredistribution scaledwith respectto the freestreamvaluesfor the AS2,_G
wing/body conSgurationon theuppersideof the wing afteronesuccessiverefinement
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Figure7: Impression of the three-dimensional mixed compression airbreathing inlet geometry mod-

eUed by cubic surface and curve representations
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Figure 8: Surface grid at side-wall with refinements at the side wall and the cowl lip
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Figure 9: Side view of the M_ch number distribution. The flow condition represents "unstarted"

flow: strong bow shock and subsonic flow in duct
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Figure10: Sideview of the Machnumberdistribution. The flow conditionrepresents"started"
flowwith a final normalshockin the duct
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Figure 11: Detailed view of the Mach-number distribution at the intersection of the side-waU ramp

and the cowl lip. The flow condition represents "started flow" with a final shock in the duct
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A PROCEDURE FOR AUTOMATING CFD SIMULATIONS
OF AN INLET-BLEED PROBLEM

Wei J. Chyu*
National Aeronautics and Space Administration

Ames Research Center
Moffett Field, California 94035

Mark J. Rimlinger¶ and Tom I-P. Shih§
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Pittsburgh, Pennsylvania 15213

SUMMARY

A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD)
simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate
with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor
called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified
(either interactively or via a namelist), it will automatically generate all input files needed to perform a three-
dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and
OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system
and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT
are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presentedto illustrate its capability.

INTRODUCTION

Effective control of shock-wave induced boundary-layer separation by using bleed is vital to the
successful operation of inlets in supersonic aircraft. This is because the strong external/internal shock waves
generated in a mixed compression inlet often induce boundary-layer separations that can cause the potentially
dangerous unstart to occur. The importance of bleed in controlling shock-wave/boundary-layer interactions
has led to a number of experimental and computational studies. Although all experimental studies showed that
bleed can control shock-wave induced flow separation, they failed to show how bleed-hole geometry and flow
conditions about the bleed holes influence the effectiveness of the bleed process. Computational studies of
shock-wave/boundary-layer interactions with bleed fall into two groups. The first group modelled the bleed
process by using boundary conditions which treated bleed holes collectively as a slot or as a porous surface
without resolving the flow through the bleed holes (refs. 1 - 6). The second group studied the bleed process in
detail by resolving the flow through each bleed hole (refs. 7 - 16). The second group, in early stages of their
work, performed two-dimensional (2-D) studies in which each bleed hole is modelled as a slot on a flat plate
(refs. 7 - 12). Later, three-dimensional (3-D) studies were performed where air in the boundary layer above a
plate was bled through circular holes into a plenum (refs. 13 - 16). These studies showed the complex nature
of shock-wave/boundary-layer interactions with bleed. These studies also showed that the bleed process is
sensitive to many design and operating parameters with different ones dominating under different conditions.

Since a very large number of design and operating parameters need to be investigated for the inlet-
bleed problem, computational fluid dynamics (CFD) simulation is an attractive approach to get the required
information. But, in order for CFD to be useful and cost-effective, the turn-around time must be good in
addition to obtaining meaningful results. There are several factors which affect the turn-around time of CFD

simulations. Of these, grid generation is the most critical. For complicated geometries, the generation of good
quality grids require not only substantial time, but also considerable expertise from the user. Thus, an
automatic grid generator would greatly reduce turn-around time. To further reduce turn-around time, input

Research Scientist, High-Speed Aerodynamics Branch, Applied Aerodynamics Division.
¶ Graduate Student, Department of Mechanical Engineering.
§ Professor, Department of Mechanical Engineering.
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files thatcontaininitial andboundaryconditionsaswell asotherinformationneededby theCFDcodein order
to generatesolutionson thecomputeralsoshouldbegeneratedautomatically.

In this study,a CFD preprocessor,calledAUTOMAT,wasdevelopedto reduceturn-aroundtimefor
CFD simulationsof an inlet-bleedproblem. With AUTOMAT, once data for geometryand operating
conditionshavebeenspecified(eitherinteractivelyor via a namelist),it will automaticallygenerateall input
files neededto simulatethe prescribedinlet-bleedproblemby usingthe PEGASUS(refs. 17and 18)and
OVERFLOW(ref. 19)codes.Theinput files generatedby AUTOMATincludethosefor thegrid systemas
well as initial andboundaryconditions. The inlet-bleedproblemsetupby AUTOMAT is one in which a
numberof geometricandoperatingparametersof importanceto realistic inlet-bleedsystemsin supersonic
aircraftcanbe investigated.

The organizationof therestof this paperis asfollows. First,descriptionis givenon the inlet-bleed
problemsetupby AUTOMAT, including the geometricandoperatingparametersthat canbe varied for
parametricstudies. Next, the formulationandthe numericalmethodof solutionareoutlined. This is then
followedby a descriptionof AUTOMAT, its operationandthebuilt-in knowledge-basedsystem.This paper
concludeswith somesampleinlet-bleedproblemssetupby AUTOMATalongwith somesamplesolutionsfor
theflow field. A descriptionof all inputparametersintoAUTOMATis givenin theAppendix.

DESCRIPTIONOFTHE INLET-BLEEDPROBLEM

Theinlet-bleedproblemof interestin this studyinvolvesa subsonicor supersonicturbulentboundary
layerflowing pasta flat plate,bleedof theboundarylayerthroughoneor morecircularholeswhichcanbe
normalor inclinedandarrangedin differentpatterns,anda plenumwherethebleedis discharged.Figure1
showsa typicalexampleof suchan inlet-bleedproblemin whichair abovethefiat plateis bledthroughfour
rowsof inclinedholesarrangedin astaggeredfashion.For thisproblem,thedomainis theregionboundedby
thedashedlineswhichincludestheregionabovethefiat plate,theplenum,anda numberof "half' bleedholes
in thecaseof multiplerowsof holes. Only"hall" bleedholesneededto beincludedin thedomainbecauseof
thesymmetryin thespanwisedirection.

The aforementionedinlet-bleedproblemis selectedfor studybecauseit enablesthe investigationof
someof the mostimportantdesignandoperatingparametersrelevantto inlet-bleedsystemsin supersonic
aircraft. Morespecifically,thefollowinggeometricparameterscanbeinvestigated(seeFig. 1):

• bleed-hole pattern (either one hole, three-holes in line, or rows of holes arranged in a staggered

fashion),
• number of rows if staggered arrangement (N),
• spacing in streamwise direction (Lx, measured between centers of holes),
• spacing in spanwise Direction (Ly, measured between centers of holes),
• diameter of bleed holes (D),
• orientation or inclination of bleed holes (a),
• thickness of flat plate (Lt), and

• plenum dimensions (Lp1, Lp2).

The operating parameters that can be investigated by this inlet-bleed problem include (see Fig. 1):

• with or without incident shock wave impinging on the boundary-layer next to flat plate,
1 *• shock-wave-generator half ang e ([_) ,

• inviscid-shock-impingement point on flat plate (measured from the center of holes in the first row),
• freestream Mach number (Moo),
• freestream static pressure (Pool
• freestream static temperature (Too),
• adiabatic or isothermal wall,

Note that the shock-generator half angle and the freestream Mach number must be such that the incident and reflected shock
waves can be analyzed as a one-dimensional problem. Very weak oblique shocks become two-dimensional when

approaching a fiat plate.
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• boundary-layermomentumthickness(0), and
• plenumbackpressure(Pb)-

FORMULATIONAND NUMERICAL METHODOFSOLUTION

The inlet-bleedproblemdescribedin the previoussectionwasmodelledby the density-weighted,
ensemble-averagedconservationequationsof mass,momentum("full compressible"Navier-Stokes),andtotal
energywrittenin generalizedcoordinatesandcastin strongconservation-lawform. Theeffectsof turbulence
weremodelledby theBaldwin-Lomaxalgebraicturbulencemodel(ref. 20).

In orderto obtainsolutionsto theconservationequations,boundaryandinitial conditionsareneeded.
The boundaryconditions(BCs) setupby AUTOMAT for the differentboundariesshownin Fig. 1 are as
follows. At the inflow boundary where the flow is supersonic everywhere except for a very small region next
to the fiat plate, two types of BCs are imposed. Along segment A-B, all flow variables are specified at the
freestream conditions except for the streamwise velocity (which has a turbulent boundary-layer next to the fiat
plate) and the stagnation temperature (which is kept constant everywhere including the boundary layer so that
the static temperature varies in the boundary layer). The velocity profile in the turbulent boundary layer is
described by using the method of Huang, et al. (ref. 21). Along segment B-C, post-shock conditions based on
inviscid, oblique, shock-wave theory are specified. These post-shock conditions are also specified along the
freestream boundary (segment C-D). At the outflow boundary where the reflected shock wave exit the
computational domain, the flow is also mostly supersonic except for a small region next to the flat plate so that
all flow variables are extrapolated. Here, linear extrapolation based on three-point, backward differencing was
employed. When there are symmetry boundaries as shown in Fig. 1, the BCs imposed are zero derivatives of
the dependent variables exccpt for the velocity component normal to those boundaries which was set equal to
zero. At the exit of the plenum where the flow is subsonic, a back pressure (Pb) is imposed, and density and
velocity are extrapolated in the same manner as the variables at the outflow boundary. At all solid surfaces, the
no-slip condition and adiabatic wails are imposed.

Even though only steady-state solutions are of interest, initial conditions are needed because the
unsteady form of the conservation equations are used. The initial conditions employed in this study are as
follows. In the region above the flat plate, the initial condition is the two-dimensional, steady-state solution for
an incident and a reflected oblique shock wave on a flat plate based on inviscid, oblique, shock-wave theory.
Thc streamwise velocity profile, however, is modified according to the method of Huang, et al. (ref. 21). This
nccessitated the density and static temperature to be modified as well in order to maintain constant stagnation
temperature in the boundary layer. The initial conditions used in the bleed hole and plenum are stagnant air at
constant stagnation temperature (To) and static pressure (Pb)-

Solutions to the ensemble-averaged conservation equations along with the corresponding initial and
boundary conditions are obtained by using the OVERFLOW code (ref. 19). The OVERFLOW code contains
many algorithms. The one used in this study is as follows: Inviscid flux-vector terms in the _-direction are
upwind differenced by using the flux-vector splitting procedure of Steger and Warming (ref. 22). Inviscid
flux-vector terms in directions normal to the _-direction are centrally differenced in order to reduce artificial
dissipation in those direction. Diffusion terms in all directions are also centrally differenced. The time-
derivative terms are approximated by the Euler implicit formula since only steady-state or quasi-steady-state
solutions are sought. The system of nonlinear equations that resulted from the aforementioned

approximations to the space- and time-derivatives are analyzed by using the partially split method of Steger, et
al. (ref. 23). In OVERFLOW, Jacobians and metric coefficients are interpreted as grid-cell volumes and grid-
cell surface areas, respectively. In this regard, all algorithms in OVERFLOW are implemented in the finite-
volume manner. However, BCs in OVERFLOW are implemented in a finite-difference manner in order to
enhance flexibility and ease in investigating different problems. Grid systems that are needed to obtain
solutions are described in the next section.

THE PREPROCESSOR AUTOMAT

For the inlet-bleed problem shown in Fig. 1 and described in the previous two sections, once data
describing the geometry and operating conditions have been specified, the preprocessor, AUTOMAT, will
automatically generate all input files needed by PEGASUS and OVERFLOW to perform CFD simulations.
The data input into AUTOMAT can be interactive or non-interactive. If it is interactive, then it relies on
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PLOT3D(ref. 24) for the graphicsoutputon the screen.Thus,PLOT3Dmust be availableon whatever
computerbeingusedif interactivemodeis desired. Whetherthedatainput is interactiveor non-interactive,
outputsof AUTOMATareasfollows:

• agrid systemin PLOT3Dformatfor inputto OVERFLOW(grid.in),
• anintial conditionfile in PLOT3Dformatfor inputto OVERFLOW(q.save),
• adatafile for inputto OVERFLOW(bleed.inp),and
• an inputfile for PEGASUSto createthefort.2file neededby OVERFLOWfor overlappinggrids.

In the next section,how AUTOMAT interfaceswith the user in an interactivesessionis described(see
APPENDIXfor anon-interactivesession).Afterwards,theknowledged-basedsystembuilt intoAUTOMATto
generategrid systemsis briefly outlined.

UserInterface

AUTOMATis writtenin Fortan77. Onceinstalledon acomputer,AUTOMATis invokedby entering
"automat"andthenpressingreturnor enter.OncomputerssuchasanIris workstationwithPLOT3Davailable,
the interfacewith theusercanbe interactiveor non-interactive.If PLOT3Dis not available,thenonly non-
interactivesessionsarepossible.For interactivesessions,theuserwill bepromptedonthescreenfor the input
data. Fornon-interactivesessions,the inputsareall containedin anamelistfile, whichcanbemodifiedby the
uservia anyeditor(e.g.,vi in unix). Here,it is notedthatthenamelistfile requiredfor non-interactivesessions
is automaticallygeneratedaftereveryinteractivesessionto minimizeeffort neededto input datafor future
sessions.

A typicalinteractivesessionwithAUTOMATproceedsasfollows:
>Enter"automat"to invokeprogram.
>interactiveor non-interactive?

Entery or yesfor interactive,andn or no for non-interactive.
If interactive,thenall inputswouldbepromptedfor on thescreen.
If non-interactive,thenall inputscanbeplacedin a namelistfile. Aftereachinteractivesession,a
namelistfile is createdautomaticallyto facilitatefuturesessions.

>units(Englishor metric)?
Entere for English,andm for metric.

>Requestsfor input onoperatingparametersoneat a time(freestreamMachnumber,freestreamstatic
pressure,freestreamstatictemperature,gasconstant(universalgasconstant/ gas molecular weight),
Reynolds number per unit length (based on freestream density, velocity, and viscosity), boundary-
layer momentum thickness, with or without incident shock (y for shock, n for no shock), shock-
generator half angle (only asked if there is an incident shock), plenum back pressure).

>Requests for verification on inputted operating parameters. Enter y or yes to accept inputs. Enter n
or no to modify inputs.

>Requests for inputs on geometric parameters one at a time (bleed-hole pattern (either one hole or
rows of holes arranged in staggered fashion), bleed-hole diameter, bleed-hole inclination, number
of rows, spacing between hole centers in streamwise direction, spacing between hole centers in
spanwise direction, plate thickness, shock impingement location on flat plate under inviscid
condition (measured from the center of holes in the first row), plenum dimensions).

>Requests for verification on inputted geometric parameters. Enter y or yes to accept inputs. Enter n
or no to modify inputs.

>Shows grid generated in bleed hole on workstation.
>Requests for acceptance. Enter y or yes to accept grid generated. Enter n or no to modify grid

generated.
>Shows grid generated above fiat plate on workstation.
>Requests for acceptance. Enter y or yes to accept grid generated. Enter n or no to modify grid

generated.
>Shows grid generated in plenum on workstation.
>Requests for acceptance. Enter y or yes to accept grid generated. Enter n or no to modify grid

generated.
>Requests for amount of overlap above and below flat plate. Enter number of grid lines.
>Program outputs grid.in, q.save, bleed.inp, and an input file for PEGASUS, and then terminates.
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This completesa typical interactivesessionwith AUTOMAT. As notedearlier, sessionscan be
interactiveor non-interactive.Non-interactivesessionsdonot showplotsof thegrid systemgeneratedon the
screen,butprovidethesameoutputsastheinteractivesessions(namely,grid.in,q.save,andbleed.inpneeded
by OVERFLOW,andaninput file for PEGASUSto get thefort.2 file whichis alsoneededby OVERFLOW).
Typically,aninteractivesessionona workstationrequiresaboutfive minutes.Non-interactivesessionrequire
lesstime(in fact,only onlya fewsecondson theCray).

At the conclusionof a successfulsessionwith AUTOMAT, a job can be submittedto the Cray
computerto runPEGASUSandthenOVERFLOW.A typicalgrid systemgeneratedbyusingAUTOMATfor
the inlet-bleedproblemshownin Fig. 1 is given in Figs. 2 and 3. Typical solutionsobtainedby using
OVERFLOWandPEGASUSarcgivenin Figs.4 and5.

InternalKnowledge-BasedSystem

ThissectionoutlineshowAUTOMATusestheinputinformationto generatethegrid systemneededtoobtainsolutions.

The domainsizeis basedon the following inputs: bleed-holepattern(singlehole or rowsof holes
arrangedin staggeredfashion),bleed-holediameter,bleed-holeinclination,numberof rows,spacingbetween
holecentersin streamwisedirection,spacingbetweenholecentersin spanwisedirection,platethickness,withor
withoutincidentshock,shock-wave-generatorhalf angle,andinviscid-shock-impingementpoint on flat plate.

Somerulesin computingdomainsize(namely,L andH in Fig. 1)areasfollows:

• AB > 4 (boundary-layer thickness),
• AB = (2/3) AC,
• EF = (1/3 to 2/3) DF,

• the leading and trailing holes are at least five diameters away from the inflow and outflow
boundaries, respectively.

Before describing the rules used to determine grid spacings, it is emphasized that grid generation has
the greatest influence on the turn-around time of CFD simulations. Thus, it must be automated as much as
possible in order to rcducc turn-around time. The ability to automate grid generation depends very much on
the grid structure selected. For the inlet-bleed problem, a grid structure based on overlapping, multi-block
structured grids has a number of attractive fcatures that make complete automation of the grid generation
process possible. This is because if grids can overlap, then the domain regardless of its geometric complexity
can be partitioned and molded into sub-domains with simple geometries that make both grid generation and
hence its automation easy. Also, because each grid of the overlapping grid is optimized for a particular region,
each of those grids is of high quality in terms of resolution, smoothness, and orthogonality. However,
overlapping grids are not without problems. Many users have reported difficulties with conservation errors
because the interpolation schemes used to transfer data between overlapping grids are not conservative. Others
havc observed errors associated with incrcased artificial diffusion in the overlapped region due to sudden
changes in grid alignment and spacing. Thus, care must bc exercised while generating such grids in order to
minimize these errors.

In AUTOMAT, the grid structure used is the overlapping grid (sec Figs. 2 and 3). Basically, an H-H
grid structure is used for the region above the flat plate and in the plenum. In the bleed hole, a combination of
O-H and H-H structures arc used, and they overlap each other. The grids in the bleed holes also overlap the H-
H grids above the tlat plate and in the plenum. The reason for using the H-H structure above the plate and in
the plenum is obvious. For the bleed hole, the reason for using the O-H structure is to capture the geometry of
the hole boundary, and the reason for using the H-H structure at the hole center is to eliminate the centerline
singularity associated with O-H grids.

The grid spacings in AUTOMAT arc based on the following inputs: bleed-hole pattern (single hole or
rows of holes arranged in staggered fashion), bleed-hole diameter, bleed-hole inclination, number of rows,
spacing between hole centers in streamwise direction, spacing between hole centers in spanwise direction, with
or without incident shock, shock-wave-generator half anglc, and inviscid-shock-impingement point on flat
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plate,boundary-layermomentumthickness,y+ of first fewgrid pointaboveflat plate,amountof clusterabout
incidentandreflectedshock,andamountof protrusionof grid in bleedholeaboveandbelowplate.

Somerulesusedto determinegrid spacingsareasfollows(seeFigs.1to 3):

• If resultsareto becomparedfor severaldifferentbleed-holeconfigurations,thenthe grid above
theplatemustbe the samefor all bleed-holeconfiguration.This is necessaryin orderto ensure
thattheflow abovetheplateis the samein the absenceof bleed. Thus,thecasewith the largest
bleedzone(i.e., from leadingedgeof first hole to trailing edgeof last hole) will be usedto
generategrid abovetheflat plate.

• Above the flat plate, the grid system has an H-H structure.

• In a region about the bleed holes (i.e., 2D before and after the first and last hole), the grid spacing
in the streamwise direction is uniform, at least for all practical purposes because of the following
constraint: grid lines pass through the leading edge, center, and trailing edge of each bleed hole
along the two symmetry boundaries. This constraint was imposed in order to facilitate plotting of
the surface pressure along a line in the streamwise direction that passes through the centers of the
bleed holes.

• Away from the bleed zone, the grid spacings in the streamwise direction first become coarser and
coaser, and then nearly uniform as the inflow and outflow boundaries are approached.

• In the direction normal to the flat plate, grid points are clustered next to the wall to resolve the

boundary layer. The first five grid points away from the wall are set so that y+ is equal to 1, 2, 3, 4,
and 5.

• Grid points are also clustered about the incident and the reflected shock waves in order to maintain
their "sharpness" before and after interacting with the boundary layer.

• The grid in the plenum is also an H-H grid with grid points clustered near all walls and the bleed
holes.

• The grid in the bleed hole is made up of two overlapping grids -- an O-H grid to capture the
geometry of the hole boundary, and an H-H grid at its center to eliminate the centerline singularity
associated with O-H grids.

• Grid spacings for the bleed-hole grids in directions normal to the plate match those above and
below the flat plate in the region where they protrude above and below the plate.

• Grid spacings for the O-H grid in the bleed hole are clustered next the wall of the bleed hole.

• The aspect ratio of the grids is near unity for the grid in the bleed hole, especially in the region

near the top of the flat plate.

• When ot is not 90 degrees, grid spacing in the azimuthal direction is based on identical arc length,

not degrees.

Additional details about the clustering as well as other aspects of the automated grid generation process

can be obtained by perusing the Fortan program.

RESULTS

To illustrate the capabilities of AUTOMAT, the following steps were taken. First, AUTOMAT was used

to generate several grid systems to demonstrate that geometric parameters such as bleed-hole inclination and
the number of bleed holes can indeed be varied in parametric studies of the inlet-bleed problem. Next,
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solutionswereobtainedto show that AUTOMAT doesindeedprovideall inputs files neededto do CFD
simulationsof theinlet-bleedproblemandthatthegrid systemgeneratedcangivemeaningfulsolutions.

Figures2 and3 showthemulti-blockgrid systemgeneratedby AUTOMATfor an inlet-bleedproblem
with fourrowsof normalbleedholesarrangedin a staggeredfashion. To furtherillustratethe automaticgrid
generationcapabilitiesof AUTOMAT,grid systemsweregeneratedfor thefollowingtwo inlet-bleedproblems
withoutan incidentshockwaveimpingingon theboundarylayer: eightrowsof normalbleedholes(Fig. 6),
andeightrowsof slantedbleedholes(Fig. 7). Fromthesetwo figures,it canbeseenthatsimilar to thegrid
systemshownin Figs.2 and3, grid lines areboundaryconformingand areclusterednearall solid walls
whetherthebleedholesarenormalor slanted.Also, therearea sufficientnumberof grid linesclusteredahead
of thefirst rowof bleedholesandafterthe lastrowof bleedholes.

Figures4 and5 showthe solutionsobtainedfrom PEGASUSand OVERFLOWby using the grid
system(shownin Figs.2 and3) andotherinputfilesgeneratedby AUTOMATfor an inlet-bleedproblemwith
four rowsof normalbleedholesarrangedin a staggeredfashion.Thesesolutionshavebeenshownto begrid
independentasfar assurfacepressureandbleedratesinto thebleedholesareconcerned(ref. 16).

To further illustrate the parameters-- both geometricandoperating-- that can be investigated,
solutionswereobtainedfor aninlet-bleedproblemin whichthebleedholescanbenormalor slantedandthe
numberof bleedholescanbeoneor threein tandemfor arangeof pressureratios(Pb/P**).For thecaseswith
a singlebleedhole,the incidentobliqueshockwavewasadjustedsothatit wouldimpingeat thecenterof the
bleedholeunderinviscidconditions.Forthecaseswith three-holes-in-tandem,thatshockwavewasadjustedto
impingeat thecenterof themiddlehole. Thegrid systemsusedin this parametricstudyarenot shown,but
canbe foundin ref. 15. Someof theresultsobtainedfor this parametricstudyareshown,andaregivenin
Figs.8 to 13. Figures8 and9 showtheeffectsof bleed-holeinclinationon thesurfacepressureasa function
of Pb/P_. Figures10and11showtheeffectsof bleed-holeinclinationon thesurfacepressurewhenthereare
threeholesin tandem.Figures8 to 11canbecomparedwith eachotherto examinetheeffectsof havingan
upstreamanda downstreambleedholeon thebleedprocess.Figures12and 13showtheflow coefficientin
eachbleedholeasafunctionof Pb/Ps,wherePsis theaveragestaticpressureoverthebleedholewhenthereis
no bleed(Pshasa different valueover a differentbleedholedue to the incidentand the reflectedshock
waves).Theflow coefficientis definedastheactualbleedratedividedby anidealbleedrate. Theidealbleed
rateassumessonicflow in theentirebleedholewithstagnationpressureandtemperatureequalto thoseoutside
of theboundarylayer. Analysisof theresultsshownin Figs.8 to 13canbe foundin ref. 15,andhencewill
notbe repeatedhere.

The resultspresentedin this sectiondemonstratethat AUTOMAT canbe usedto automateCFD
simulationsof an inlet-bleedproblem. Theseresultsalsoshowthat a relativelywiderangeof geometricand
operatingparametersof importanceto inlet-bleedsystemsin supersonicaircraftcanbe investigated.Thefast
turn-aroundtime affordedby AUTOMAT through the automatic generation of grid systems and other input
files enables a broader range of design variables to be investigated.

SUMMARY

A CFD preprocessor, called AUTOMAT, was develop to generate all input files needed by
OVERFLOW and PEGASUS to generate solutions for an inlet-bleed problem that possesses many of the most
important geometric and operating parameters relevant to realistic inlet-bleed systems in supersonic aircraft.
This paper described the inlet-bleed problem that AUTOMAT automatically sets up by along with the
geometric and operating parameters that can be investigated. This paper also described the user interface as

well as the knowledge-based system built into AUTOMAT to generate grid systems. Results obtained by using
AUTOMAT, namely grid systems and computed solutions for the flowfield, demonstrated the usefulness of
AUTOMAT.
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APPENDIX

DESCRIPTION OF INPUTS INTO AUTOMAT

As mentioned in the section on User Interface, for interactive sessions, the user will be prompted on the
screen for the input data. For non-interactive sessions, the inputs are all contained in a namelist file, which can
be modified by the user via any text editor (e.g., vi in unix). Also mentioned was that the namelist file
required for non-interactive sessions is automatically generated after every interactive session to minimize
effort needed to input data for future sessions. In this appendix, the input file, namelist.inp (default name
given by AUTOMAT to the input file) is described in detail. A typical namelist.inp file is as follows:

no ! Not an interactive session
$flow

metric = .T. , fsmach = 1.60, pinf = 61803.00, tinf = 198.41,
rgas = 287.200, redl = 0.37130E+08 , momthick = 0.91400E-03 ,
shock = .T., thetwdge = 7.50,
Send

$pattern

axmaj = 0.2540E-02, axmin = 0.2540E-02, nhole = 4,
pitchx = 0.8799E-02 , pitchy = 0.5080E-02, halpha = 90.00,
depth = 0.1016E-01 , shockx = 0.17598E-01 ,
Send

$holepar
finrad = 0.25 ,fover = 3.00,
dhmao = 0.5E-04, dhmai = 0.1E-03 ,
dhmio = 0.5E-04, dhmii = 0.1E-03,
delhent = 0.1495E-05, delhmid = 0.2E-03, delhexit = 0.5E-04,
darc= 0.1814E-03,
Send

$platepar

finfx= 4.00,foutx= 2.00,ferri= 1.00,ferro= 1.0,
fskirtu = 2.00, fskirtd = 2.00, finfz = 6.00,
din = 0.1270E-02 ,dout = 0.7620E-03, dbl = 0.6226E-03,
delstream = 0.3E-03, delspan = 0.1E-03,
Send

$plenumpar
flwall = 1.00, finfz = 5.00,
dlw = 0.8E-04, dbw = 0.5E-04 ,
dmidz = 0.1270E-02 , delhexit = 0.5E-04,
Send

$overlapar
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mop= 4, nbot= 10,
Send

$backpress
prback= 0.3,
Send

An explanation of each parameter in the above namelist is given below.

• First line should always have the word "no". This alerts the program to use a non-interactive

session.

$flow:

metric:

fsmach:

pinf:
tinf:

rgas:
re dl:
momthick:
shock:

thetwdge:

Parameters related to flow conditions.

T implies SI units, and F implies English units. All parameters having a numerical
value should be given in the units chosen here.
freestream mach number at inflow (M,_)

pressure at inflow (P,_)
temperature at inflow (T_,)
gas constant for fluid
reynolds number per unit length
momentum thickness of boundary layer (0)
T or F indicating the presence of an incident shock wave
half-angle in degrees of shock generating wedge (13)

$pattem:

axmaj:

axmin:
nhole:

pitchx:
pitchy:
halpha:
depth:
shockx:

Parameters related to bleed holes.

radius of hole on major axis (if bleed hole is inclined, then it appears as an ellipse on
the fiat plate; for normal holes, axmaj = axmin = D, D = diameter of hole)
radius of hole on minor axis (same comment as that for axmaj)
total number of holes (N)
spacing between hole centers in x (streamwise) direction (Lx)
spacing between hole centers in y (spanwise) direction (Ly)
angle between bleed hole centerline and fiat plate (ct)
thickness of plate (L t)
location of where the incident shock wave impinges on the flat plate under inviscid
conditions measured from the center of the first bleed hole (i.e., the origin of the

coordinate system for the final grid)

$holepar:

finrad:

fover:

dhmao:
dhmai:
dhmio:
dhmii:
delhent:
delhmid:
delhexit:
darc:

Parameters used in generating the bleed hole grids

the inner radius of the O-H bleed hole grid

axmaj* finrad
determines the overlap of the H-H and O-H
how many grid lines will be overlapped)
O-H grid spacing in radial direction at outer
O-H grid spacing in radial direction at inner

is given as rimajor = romajor *finrad =

grids in each bleed hole (fover specifies

edge of major axis
edge of major axis

O-H grid spacing in radial direction at outer edge of minor axis
O-H grid spacing in radial direction at inner edge of minor axis
spacing in z (depth) direction at the entrance of both hole grids
spacing in z (depth) direction at the midplane of both hole grids
spacing in z (depth) direction at the exit of both hole grids
O-H grid is equally-spaced in the circumferential direction (darc is the arclength of
that spacing)

• $platepar: Parameters used in generating the fiat plate grid

740



finfx" usedto specifythex-locationof the inflow

foutx:

ferri, ferro:

skirtu,

fskirtd:
finfz:

din:
dout:
dbl:

delstream:
delspan:

$plcnmpar:

flwall:
finfz:
dlw:
dbw:
dmidz:

delhexit:

$overlapar:

ntop:
nbot:

$backpress

prback:

Procedureisasfollows:
Specifytheheightat whichtheshockwaveentersthecomputationaldomain. In
orderto determinethis height,chooseit assomemultipleof the boundarylayer
heightattheinflow. Zshockinflow= finfx*blthick
Calculatethex positionof theinflow planebasedupontheequationof the
straightlinedescribingtheimpingingshockwave.

usedto specifythex-locationof outflow(sameprocedureareabove;Zshockoutflow
= foutx*blthick)

Note: If thereis noshockwavepresent,finfx andfoutxrepresentthenumberof
bleedholediametersupstreamof first bleedholeanddownstreamof lastbleedhole
to placetheinflow andoutflowplanes;Xinflow= (finfx)*2*axmaj.

errorcontingenciesfor locatingtheinflow andoutflowplanes

In caseswheretheincidentor reflectedshocksaresteep,the inflow andoutflow
boundariesmight be locatedtoo closeto the bleedholes. The locationsare then
forcedto beasfollows:

Xinflow= (fskirt+ ferri)*2*axmaj
Xoutflow= (fskirt+ ferro)*2*axmaj

determinesthesizeof theequi-spacedregionupstreamanddownstreamof the bleed
hole

pattern; Xup_eqsui_start = Xholel - fskirtu*2*axmaj
determines the height of the domain; Zto p = finfz*blthick (the code checks to ensure
that the shock inflow position and the domain height are compatible, i.e. finfz >
finfx)
spacing in
spacing in
spacing at
blthick to

spacing in
spacing in

streamwise direction at inflow plane
streamwise direction at outflow plane
the top of the boundary layer (there is an equally-spaced region from z =
2*blthick)

streamwise direction above the bleed hole pattern
the spanwise direction.

Parameters controlling plenum grid generation

location of left wall in plenum; x = (flwall+fskirtu)*2*axmaj
location of lower wall in plenum; z = -(depth + finfz*axmaj*2)
spacing at left wall
spacing at bottom wall
spacing in z direction at location halfway between the exit of the hole and the bottom
wall

spacing in the z direction at the top wall (matches the spacing at the outflow of the
hole)

Parameters governing the overlapped regions above the plate and into the plenum of
the hole grids.

number of grid lines to extend the hole grids above the plate
number of grid line to extend the hole grids in the plenum

ratio of back pressure to freestream pressure (Pb/P_)
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A TECHNIQUE FOR OPTIMIZING GRID BLOCKS
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ABSTRACT

A new technique for automatically combining grid blocks of a given block-structured grid into logica]ly-

rectangular clusters which are "optimal" is presented. This technique uses the simulated annealing op-

timization method to reorganize the blocks into an optimum configuration, that is, one which minimizes

a user-defined objective function such as the number of clusters or the differential in the sizes of all the

clusters. The clusters which result from applying the technique to two different two-dimensional configura-

tions are presented for a variety of objective function definitions. In all cases, the automatically-generated

clusters are significantly better than the original clusters. While this new technique can be applied to

block-structured grids generated from any source, it is particularly useful for operating on block-structured

grids containing many blocks, such as those produced by the emerging automatic block-structured grid

generators.

INTRODUCTION

Traditionally, the block-structured grid generation process has been called "complete" when a set of blocks

and grid points which provide adequate resolution for a given configuration has been defined. While the

location of the grid points is usually carefully controlled to provide the required spacings and grid quality,

the location of the block boundaries is chosen arbitrarily to aid in the grid generation process.

Unfortunately, the location of the block boundaries can have a strong influence on the overall perfor-

mance of the flow solver, especially when employing one of today's advanced computer architectures. For

example, for a vector computer one typically wants as few blocks as possible, while simultaneously keeping

the blocks as "long" as possible in order to maximize use of the vector pipelines. Alternatively, for a

parallel computer (or a network of workstations) one typically wants the blocks to be as load-balanced as

possible in order to minimize idle time. To compound the problem, the computer architecture which will

be employed to obtain the flow solution is not always be known at grid generation time. Therefore, it is

desirable to have a procedure which can recombine blocks (that is, create clusters) of any block-structured

grid, regardless of the software used to generate it.

In addition, a new class of block-structured grid generators is emerging which "automatically" generates

block-structured grids for a variety of configurations[I, 2]. A genera] property of the grids which these

procedures generate is that they produce a very large number of grid blocks, sometimes running into the

*Senior Research Engineer
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tensof thousands.This new clusteringprocedurecouldbeusedin suchcasesto significantlyreducethe
numberof clusters(blocks)onwhichthe flowsolverwouldhaveto operate.

Theobjectiveof this work is to developa generaltechniquefor automaticallycombiningblocksof a
givenblock-structuredgrid into logically-rectangular"clusters"soasto minimizea user-definedobjective
function.

TECHNICAL APPROACH

The Clustering Problem

Considerthe block-structuredgrid configurationshownin Figure1. It consistsof sevengrid blocks(the
sevensquareslabeledA throughG) whicharearrangedsoasto fill an L-shapeddomain;alsoshownare
eight "removable"edges(whichare labeled1through8).

Simplystated,the objectivein theclusteringproblemis to find the setof edgeswhich,whenremoved,
yieldsboth a "valid" configurationandwhichminimizessome"score". Fornow,assumethat the "score"
is the numberof clusters.A "valid" clusteringisonewhichsolelyconsistsof (logical)rectangles;L-shaped
clustersareinvalid.

Onecould reducethe scoreof the clusteringin Figure 1 by removingany edge;for example,when
edge7 is removed,the clustersshownin Figure2 result,with the scorenowreducedto the better value
of 6. To further reducethe score,eitheredge1, 2, 3, 4, or 6 canbe removedto yield a valid clustering
and a reducedscoreof 5. But removalof either edge5 or 8 yieldsa cluster(for example,clusterEFG in
Figure3) which is not logically-rectangularandthus invalid. This processcanbecontinued,yieldingthe
optimal scoreis 2 whichis producedeitherby retainingonly edge2 or by retainingonly edges3 and4.

Optimization Procedure

The optimization problem considered here is one which is characterized as a combinatorial minimization

problem. That is to say, the design space cannot be characterized as an N-dimensional surface defined over

N smoothly-varying design parameters. Rather it is a design space which is described by a set possible

configurations. Other problems of this combinatorial nature include VLSI circuit layout[3] and the infamous

traveling salesman problem[4].

There are two major difficulties associated with combinatorial optimization problems which do not arise

in more traditional optimization problems. First, the design space can become extremely large because

the configurations generally are describable by a sequence of events (the number of which, when taken

together, grows factorially). Second, because the design variables can only take on discrete values (such as

"on" and "off"), any procedure which exploits the concept of gradient is not relevant.

One technique which has proven very successful at solving the combinatorial optimization problem

is the simulated annealing algorithm, which was first proposed by Metropolis[5] and which is described

extensively by Aarts and Korst[6].

Stated very briefly, the simulated annealing algorithm is: starting from a known valid configuration,

randomly select a change of state; any change which results in lower objective function value or which results

in an objective function value which is not "too much worse" than that of the previous configuration is

accepted. This process is repeated with the definition of "too much worse" tightening as it proceeds, until

no proposed changes to the configuration yield any reduction in the objective function.
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Thisproceduregetsits namefromananalogywith thethermodynamicprocessof annealing,or freezing,
of liquids into solids. In the beginningstagesof the solidificationprocess,moleculesmovefreely in an
attempt to form crystallinestructureswhich havelow internal energies(the objective function). For
annealing,the temperatureis slowlyreducedand the mobility of the moleculesis gradually restricted,
resultingin minimumenergycrystals. Alternatively, for quenching,the temperatureis quickly reduced,
resultingin a crystallinestructurewhichhassignificantlyhigherenergy.

Thesesameconceptscanbeappliedto optimization.The initial stepsof annealing(whenthe control
parameteris high) is similar to a random-walkprocedure,which is known to be an effectivestrategy
for getting into the neighborhoodof a globaloptimum. The final stepsof annealing(whenthe control
parameteris low)is similar to a hill-climbingprocedure,whichis knownto beeffectivein thevicinity of an
optimum.The annealingscheduleprovidesan orderlymechanismof transitioningfrom oneto the other.
It shouldbenotedthat quenchingis analogousto hill-climbingalone,whichis notoriousfor getting stuck
in localextrema(asareall greedyalgorithms).

In termsof pseudo-code,the algorithmcanbestatedasfollows:

* initializethe configurationandcomputeits objectivefunction O

* set an initial value for the control parameter T

* do { (outer loop of generations)

* do { (inner loop of attempts)

* propose a random change to the configuration

* compute the change in objective function AO of the proposed change

* if (AO < 0 or random(0 -. 1) < e -'_°/T) then

- take the step and adjust O

} until (stop criterion is met)

* decrease the control parameter T

} until (there were no successful proposals at the previous T)

In order to use this algorithm for optimizing block clusters, one needs to provide the following:

Configuration (a method of describing the current "state" of a configuration). For the current appli-

cation, the current configuration can be described as a table that says which edges currently exist (or
conversely, which edges have been removed);

Rearrangements (a method for proposing and carrying out changes to the configuration). Here the

procedure is to pick an edge at random, and if it exists, remove it; alternatively if it has already been

removed, then re-insert it. In this way, the effects of any previous rearrangements can be undone (which,

by the way, is generally an important property when using simulated annealing);

Objective function computation (an efficient procedure for computing the change in objective func-

tion given any proposed change to the configuration). One of the nice features of using the simulated

annealer is that, except for the initial configuration, one only has to calculate the change in objective
function AO that results from a proposed configuration change. This is indeed fortunate, because for the

clustering problem, the change in objective function can be computed in a small, fixed amount of work

(that is, independent of the problem size), whereas the work to compute the actual objective function

scales with N (the number of removable edges in the configurations); and
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Annealing schedule (a recipe for controlling the decrease of the control parameter T). This is the least

rigorous part of the simulated annealing algorithm. In general, a suitable annealing schedule can only be

found by experimenting.

Objective Function Formulation

In addition to the selection of suitable "design variables" (discussed above), the application of the simu-

lated annealing algorithm to the clustering problem requires the definition of the "objective function" and

"constraints".
First consider the objective function, O. The most obvious choices include:

Minimize number of clusters This objective function is appropriate when one wants to minimize the

number of concurrent processors which are needed to perform some calculation. A suitable form might be

0 = Nclus

where Nclus is the number of clusters.

Minimize size of largest cluster When running a calculation on a parallel processor or on a group

of workstations, one typically wants to distribute the work as evenly as possible across the processors. A

suitable objective function might be
O = Nsize

where N_ize is the size of (number of grid points in) the largest cluster. (Note that by itself, this objective

function might arrive at the solution that each original cluster should remain unchanged.)

Hybrid Clearly a hybrid objective function could be formed which combines the above, with suitable

coefficients, as in
O = ,kdu_ min (Ndus, Ldu_) + ,k_izemin (Nsi,e, L_i_¢)

where ,kdus and ,k_i,¢ are weighting coefficients and Lclu_ and Lsi,¢ are user-specified limits. These limits are

particularly useful for tuning the objective function in a variety of ways. For example, one could minimize
the number of clusters with the restriction that no cluster to be larger than some specified size (as might

be imposed by a memory restriction in some processor). Similarly, given the number of clusters, one could

minimize the size of the largest cluster (in essence, this amounts to load-balancing).

Notice that in the hybrid formulation of the objective function, the "weak" constraints imposed by Lsize

and Ldus are actually written as part of the objective function. There is in addition a "strong" constraint

on this problem, namely the requirement that all clusters be logically rectangular. This can be accounted

for by adding another "penalty" term to the objective function, or

0 = Aclus min (Nclus, Lclus) + )_sizemin (Nsize, Lsize) +/_brakNbrak

where Nbrak is the number of edges which would have to be re-inserted to yield all logically-rectangular

clusters. In general, Abr_k > Adu_ to ensure that the final clusters are all well shaped.
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COMPUTED RESULTS

As demonstration cases, results were obtained on several two-dimensional configurations; two of them are
shown here.

The first test case is for an internal-flow passage containing eight circular posts (hence the test case is

called "posts"). The original grid for this case, which contains 5543 nodes in 89 clusters (each block was

initially assigned to its own cluster), is shown in Figure 4a.

For the first experiment on the "posts" test case, the simulated anneaJer was applied to minimize

the number of clusters (the user-supplied constants are given in Table I). Intermediate results, that is

the clustering at the end of each setting of the control parameter T, are shown in Figures 4b-e. Notice

that most of these intermediate results contain many badly-shaped clusters (that is, they are not logically

rectangular). The final clustering, which is shown in Figure 4f, contains 19 clusters, where the largest
cluster contains 969 nodes. Table I summarizes these intermediate and final results.

For this case, as well as all others shown here, the control parameter was initially set to T = 5.0 and

was reduced at the end of each generation (the outer loop) by a factor of Tnew/Tola = 0.75; these values,

which were determined through numerical experimentation, have been found to be sufficient for all test

cases executed to date. Also, the stopping criterion at the end of the attempts (inner) loop was taken

to be the first of: 10N successful attempts or 100N total attempts, whichever comes first (where N is

the number of removable edges). Again, these values were determined by numerical experiments and were
found to work well for all cases which have been tried to date.

In order to better understand how the simulated annealer works, a convergence history for this case

was plotted in Figure 5. The abscissa represents the successful attempt number while the ordinate shows

the current value of the objective function (9. The circles indicate those times when the control parameter

T is decreased. There are a number of interesting features evident in the Figure:

* the objective function (9 does not strictly decrease, but rather tends toward an optimum;

• there is a "noise band" corresponding to the concept of "not too much worse". As expected, the

width of the band decreases as the control parameter decreases; and

• the number of successes between control parameter reductions decreases, corresponding to the fact

that as T gets smaller, it is more difficult to find a success.

It should be noted that the simulated annealing algorithm is stochastic because of the random number

generator used both to select a proposed change and in the acceptance check. In theory then, the results

which it produces cannot necessarily be repeated. In order to determine the sensitivity of the present

results to the random number seed, a few of the test cases have been re-executed many times. In all cases,

the "optimum" solutions were very close to each other and were very far from the initial solution.

One further point should be made about the algorithm. The work required to reach "convergence" is

bounded by N × M, where N is the number of design variables (the number of removable edges) and M

is the number of times which the control parameter T needs to be decreased. Although in the worst case

M _ oc, test cases of varying sizes seem to indicate the M is approximately constant, with a value of

about M _ 10. In fact, even though in the current implementation a limit of M = 20 has been hard-coded

(to protect against infinite looping), it has never been exercised.

For the second experiment on the "posts" test case, the number of clusters were again minimized, but

with an upper limit Lsize = 500 on the size of any one cluster. The clustering which results for this case,

which is shown in Figure 6a and is summarized in Table I, is very different from that discussed above.

A third experiment on the "posts" test case was conducted, wherein the size of the largest cluster was

to be minimized with the constraint the the number of clusters be bounded by Lclus = 25. The results of
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this test are shown in Figure 6b and again in Table I. Again the clusters which are formed are different

from the above two cases, and in general not intuitively obvious.
A second test case, corresponding to a gas-turbine combustor cross-section (and hence call "combustor")

is also shown here. The Figures 7 and 8 and Table II summarize its results. The results, which are very

similar to those obtained for the "posts" test case, serve to demonstrate the broad applicability of the new

clustering technique. As in the "posts" test case, all cases executed in less than two minutes of CPU time.

CONCLUSIONS

A new procedure for optimizing "clusters" of grid blocks has been described. The procedure, which uses

the simulated annealing optimization algorithm, has been executed on many configurations; it has been

demonstrated here on two different two-dimensional configurations. In all cases, the new algorithm has

yielded clusterings which are "good" in the sense that they have either significantly reduced the total

number of clusters (with and without a limit on the maximum cluster size) or have balanced the cluster

sizes (with a given number of clusters). Even though the simulated annealer does not guarantee that an

actual global extremum has been achieved, the results of the automatic algorithm were at least as good as

the clusterings which were manually generated. All cases executed required less than two CPU minutes on

an Silicon Graphics Indigo2-R4400 for problem sizes of about 100 removable edges; numerical experiments

indicates that the time should scale linearly with problem size. While this procedure is applicable to

block-structured grids generated by any software, it is particularly well-suited to those generated by the

emerging "automatic" block-structured grid generators.
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Figure
4a

4b

4c

4d

4e

4f

6a

6b

1.00 1 2.00 0.001 0 89 0 425

23 28 1666

22 26 1543

28 16 1027

31 13 850

19 0

1.00 1 2.00 0.100 500 23 0

1.00 25 2.00 0.001 0 25 0

969

455

441

Table I: Summary of results for test case "posts".

Figure

7a

7b

7c

7d

7e

7f

8a

8b

1.00 1 2.00 0.001 0 80 0 273

30 19 633

31 17 978

21 14 1356

36 4 533

16 0

1.00 1 2.00 0.100 500 22 0

1.00 25 2.00 0.001 0 25 0

828

468

468

Table II: Summary of results for test case "combustor".
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Figure 1: Original configuration. Score=7.
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Figure2: (Valid) configurationwith edge7 removed.Score=6.
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Figure3: (Invalid) configurationwith edges7 and8 removed.

758



a: original

-1

b: first generation

c: second generation d: third generation

I

e: fourth original f: final

Figure 4: Minimization of the number of clusters for test case "posts".
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SUCCESS

Figure 5: Convergence history for test case "posts". Only every 50th successful change is plotted. The

circles show the times when the control parameter T was decreased.

]

a: Lsiz¢ = 500 b: Ldus = 25

Figure 6: Final clusters for alternative optimizations for test case "posts".
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a: original b: first generation

c: second generation d: third generation

e: fourth original f: final

Figure 7: Minimization of the number of clusters for test case "combustor".
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u_

a: Lsize = 500 b: Lclus = 25

Figure 8: Final (:lusters for alternative optimizations for test case "combustor".
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A COMBINED GEOMETRIC APPROACH FOR

COMPUTATIONAL FLUID DYNAMICS ON DYNAMIC GRIDS

John W. Slater 1
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Cleveland, Ohio 44135

SUMMARY

A combined geometric approach for computational fluid dynamics is presented for the analy-

sis of unsteady flow about mechanisms in which its components are in moderate relative motion.

For a CFD analysis, the total dynamics problem involves the dynamics of the aspects of geom-

etry modeling, grid generation, and flow modeling. The interrelationships between these three

aspects allow for a more natural formulation of the problem and the sharing of information

which can be advantageous to the computation of the dynamics. The approach is applied to

planar geometries with the use of an efficient multi-block, structured grid generation method to

compute unsteady, two-dimensional and axisymmetric flow. The applications presented include

the computation of the unsteady, inviscid flow about a hinged-flap with flap deflections and a

high-speed inlet with centerbody motion as part of the unstart / restart operation.

INTRODUCTION

The computation of the unsteady fluid dynamics about mechanisms with components in

relative motion has become an important topic in computational fluid dynamics (CFD) [1-5].

One example of such a mechanism is the NASA Variable Diameter Centerbody (VDC) inlet in

which the axisymmctric centerbody can translate and change diameter to adjust the mass flow

rate and stabilize the flow [6,7].

The CFD analysis process involves the aspects of geometry modeling, grid generation, and

flow modeling, as shown in figure 1. When the components of the mechanism are not in relative

motion, the geometry model, if one exists, is used to generate a grid, which is then used in the

flow model and computation. The flow may, or may not, be a function of time. If no solution

adaptive grid method is used, the grid remains fixed for the time interval of the analysis. This

process is sequential with information being passed in one direction from the geometry model
to the grid to the flow model.

When the components of the mechanisms are in relative motion, the geometry modeling,

grid generation, and flow modeling all become a function of time. The main flow of information

continues to be from the geometry model to the grid to the flow model. However, the geometry

modeling and grid generation take on an increased importance. The interrelationships between

the geometry modeling, grid generation, and flow modeling become more important and are

discussed. The approach presented here attempts to use these interrelationships advantageously
to enhance the overall computation of the total dynamics problem.

The focus of the approach is placed on the establishment of a geometry model, which is

composed of a collection of geometric entities representing the components of the mechanism.

This allows for accurate modeling of the mechanism and specification of the geometry motion.

The existence of a geometry model allows the possibility for transfer of geometry data in the

I NationM Research Council Associate, CFD Branch, Internal Fluid Mechanics Division
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formof standardized computer-aided-design (CAD) file formats such as the NASA-IGES format

[8]. The work here considers planar geometry with the motion of a geometric entity assumed to

be a rigid body motion.
The flow domain is the enclosed control volume in which the flow equations are solved.

The modeling of the boundary of the domain is generally considered part of the geometry

modeling because the domain boundary entities usually have the same mathematical form as

the geometric entities. The approach presented here places a greater distinction between the

geometric entities and tile domain boundary entities because of the possibility of the relative

motion of the geometric entities.
When there is relative motion of the components of the mechanism, it is possible that the

grid will be regenerated in some manner at each time step of the computation. This requires
an efficient grid generation approach. A multi-block, structured grid topology is used in the

work presented here. This choice of topology is due to the desire for accurate and efficient

computation of unsteady, viscous flows. It is assumed that the block topology remains fixed

during the time interval of the computation. This restricts the extent of the geometry motion
to moderate levels. The approach presented here involves the full use of the geometry and flow

models in the grid generation. The grid generation information is associated with the geometric

and domain boundary entities to ensure accurate generation of the boundary grid and grid

dynamics. The association provides a natural formulation of the grid generation problem, which

is used to implement some automation into the grid generation problem. An algebraic, sub-block

method is used to efficiently generate the grid while providing for high grid quality. The same

approach is used to compute the grid dynamics.
A mixed Eulerian-Lagrangian description of the integral form of the Navier-Stokes equations

accounts for the motion of the geometry and flow domain. These equations are discretized for

a cell-vertex, finite-volume approximation. The motion of the cell-faces of the finite-volume are

based on the grid speeds. A time-accurate method is used to integrate the finite-volume equa-

tions. The approach presented here associates the flow boundary conditions with the geometric
and domain boundary entities; allowing a natural specification of the boundary conditions and

improving the association of the flow with tim geometry model and grid.

The approach introduced above attempts to use the interrelationships between the aspects of

geometry modeling, grid generation, and flow modeling for the full benefit of the computation of

the total dynamics problem. Because of these interrelationships and the focus on the geometry

modeling, the approach is referred to as the combined geometric approach for CFD.
The details of the approach are presented in the following sections. Some applications of the

approach are presented in the analysis of a hinged flap with sinusoidal flap motion and the VDC

inlet during the urlstart / restart operation involving the motion of the centerbody.

GEOMETRY MODELING

A mechanism is assumed to consist of a set of components defined by some assembly infor-

mation. The components may move relative to each other according to some kinematic relation

as a function of time. The configuration of the mechanism is the spatial relationship of the

components at a certain time. The work presented here assumes that each component moves as

a rigid body in translation and rotation about a point; and not as a deformable body.
A mechanism used to illustrate the concepts of the approach is the NASA Variable Diameter

Centerbody (VDC) inlet [6,7]. The VDC inlet is a mixed-compression inlet being studied at the

NASA Lewis Research Center as a concept for a high-speed inlet for transport aircraft. Figure
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2 showsthe mechanicaldesignof the VDC inlet. The VDC inlet is designedto operateat a
cruiseMachnumberof 2.5with a 45%internal contractionof the flowusinga biconicforward
centerbody.The secondand aft conesof the centerbodyconsistof overlappingleaveswhich
form anumbrellamechanismwhirl, allowsthe diameterof the centerbodyto changeto varythe
massflowof air into the inlet. The centerbodymayalsotranslateto adjusttile massflow rate.
Thereis a bleedslot in the centerbodyand bleedholesoll the forwardinterior of the cowlfor
the stabilizationof the normalshockandimprovementof thepressurerecovery.

The geometrymodelof the mechanismconsistsof a collectionof geometricentities which
modelthe individual components.The geometricentitiesaredefinednumericallyusinga para-
metric coordinaterelatedto the arclengthalongthe entity. The methodsof computer-aided-

design (CAD) provide standard procedures for generating such models as mathematical curves

and surfaces [9]. An effective numerical representation of the geometry is the non-uniform ra-

tional B-spline (NURBS) representation. The NASA-IGES format [8], a subset of the Initial

Graphics Exchange Standard (IGES), provides a standard format for transfer of geometry data.

In a design environment, one might expect a geometry model would already exist as part of the

CAD effort and would be available for the CFD analysis.

The work presented here considers a planar geometry model as would be needed for a two-

dimensional or axisymmetric CFD analysis. Each component of the mechanism is modeled as

a single geometric entity (m), represented either as a line segment or a cubic spline curve using

the parametric coordinate (u), which corresponds to the arclength along the geometric entity.

Figure 3 shows the planar geometry model for the VDC inlet with the individual geometric
entities identified.

Each geometric entity is assumed to move as a rigid body, which allows an efficient modeling

of the geometry using the parametric coordinate since the mathematical description of the curves

only needs to be computed once, at the start of the computation.

The variable centerbody of the VDC inlet is modeled by specifying the dynamics of certain

entities. The change in diameter of the centerbody is modeled by the rotation of the geometric

entities defining the second and aft cones about their respective points of rotation as shown in

figure 3. The translation of the centerbody is modeled by the translation of the geometric entities

defining the centerbody nose, second cone, aft cone, and aft centerbody. The dynamics of these

geometric entities are defined by simple kinematic relations. Figure 4 shows a variation of the

centerbody in which the centerbody has translated forward and the second-cone has rotated to

match the angle of the nose cone.
Geometric information is obtained from the geometry model as a function of the geometric

entity (m), parametric coordinate (u), and time (t). Information that is available is the position

coordinates (r-'), velocity (r-'), tangent vector ([), normal vector (h), acceleration (r'), second-

derivative (_'"), and curvature (n). A single subroutine in the code provides this information

by referencing the geometry model and entity kinematic state for the given time.

This approach for the geometry modeling may seem excessive for a simple planar geometry,

but it sets a framework for the handling a more complex geometry model for three-dimensional
mechanisms.

DOMAIN MODELING

The domain modeling involves defining the boundary of the flow domain. Part of the bound-

ary will consist of the geometric entities of the geometry model. The remaining part of the

boundary requires domain boundary entities to be defined such that the flow domain is en-
closed.
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Thedomainboundaryentitiesaredefinedmathematicallythe sameasthegeometricentities
of thegeometrymodel.Thus,thedomainboundaryentitiesmaybespecifiedin thesamemanner
asthe geometrymodel. In figure 3, the domainboundaryentitiesincludethe inflow, farfield,
andoutflowentities.

The relativemotion of someof the geometricentitiesof the geometrymodel requiresthat
somedomain boundaryentities be of variablegeometricrepresentation. Theseentities are
called variable domain boundary entities. For the planar VDC inlet model shown in figure 3,

the bleed slot entity will be of variable shape as the second cone and aft cone are rotated. As the

centerbody is translated, the axis-of-symmetry and aft centerbody entities will change shape.

Figure 4 shows the change of shape in these variable domain boundary entities.
Defining the flow domain is a secondary task in the CFD analysis and one suited for automa-

tion. Such automation will require the use of information about the geometry and flow models.

The approach presented here provides a framework for providing that information.

GRID GENERATION

When there is relative motion of the geometric entities, the grid becomes a function of time.

The grid will then be regenerated in some manner for each time step in the CFD analysis. This

requires an efficient grid generation method.
The work presented here uses a multi-block, structured grid topology with grid lines matching

contiguously across blocks. The choice of this topology was due to the desire for accurate and

efficient computation of viscous flows. Further, the problems of interest (VDC inlet) did not

warrant a more general grid topology such as overset or unstructured grids. Yet, many of the

ideas of the approach are applicable to other grid topologies.

For the planar domains of this work, a block is a quadrilateral. A face of the quadrilateral

is defined by specifying the entities which comprise the face. To enclose the quadrilateral, block
interface entities may have to be defined. The block interface entities also divide two blocks in

the domain. These are represented in the same mathematical form as the geometric and domain

boundary entities. Thus the block interface entities may be specified in the same manner as the

geometry model. Figure 3 shows the block interface entity for the VDC inlet.

The block represents a (_,rl) generalized coordinate system. The generalized _-coordinate

of the structured block is commonly directed in the streamwise direction while the generalized

y-coordinate is commonly directed in the transverse flow direction. To reduce the amount of

work required to generate a grid, each block is limited to only one entity in the r/-direction (_,_in

and _max faces).
It is assumed that the topology of the block remains fixed throughout the computation. This

imposes a limitation on extent of the motion of the components and limits the generality of the

approach, but it minimizes the amount of work required to regenerate the grid at each times

step.
The grid generation is performed efficiently by the use of algebraic methods. Quality grids

are obtained by sub-dividing a block into sub-blocks according to the geometric features of the
entities. Each sub-block is usually small enough to approximate the shape of a generalized

"rectangle". A face of a sub-block contains at most one entity and may contain only a portion

of an entity.

Figure 5 shows how the domain for the VDC inlet has been divided into two blocks with sub-
blocks. The first block extends from the inflow boundary through the diffuser to the compressor

face. Block 2 extends from the inflow boundary over the cowl to the exterior outflow boundary.
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Sincethere is only one entity along in the ??-direction of a block, the entities that define

the r/-constant boundaries of each sub-block are defined. The _-constant boundaries of the sub-

block are either the _,_i_ boundary of the block, the _,_ boundary of the block, or a sub-block

boundary. The sub-block boundary is defined using a two-point cubic spline with the endpoint

tangents specified as the normal vectors of the entities on the r/,_i,_ and T/m_x faces of the sub-

block. Figure 5 shows how these sub-block boundary curves intersect the entities at right angles.

This orthogonality helps generate an interior grid that is orthogonal to the entities.

The endpoint normal vector used to construct the sub-block boundary curve may have

different directions if the slopes of the entities at a junction of two entities do not match. This is

illustrated in figure 6. The choice of which normal vector to use is based on the flow boundary

conditions for the entities. For example, if entity B is a solid wall boundary condition while

entity A is a freestream boundary condition, the normal vector from entity B would be used

since it is felt that it is more important to resolve the solid wall flow than the freestream flow.

One feature of" the combined geometric approach is that the grid generation information

such as grid density, grid spacing along the boundary, and grid spacing normal to the boundary

is associated with the geometric entities. This allows for a more natural procedure for the

specification of this information. One can sense the number of grid points and the spacings that

may be needed to resolve the flow along and normal to an entity. One constraint is that the

number of grid points need to match across the block and not introduced excessive grid line

skewing.

Once, the geometry of the sub block is defined, the grid density and spacing are defined along

the boundaries. A hyperbolic tangent method is generally used to distribute the boundary grid

points with respect to the parametric coordinate of the geometric entity [10]. Each boundary

grid point is associated with a parametric coordinate on a geometric entity. This ensures that

the boundary grid will always adhere to the time-dependent geometry.

The association of the grid and geometry allow geometric information such as position coor-

dinates (_, velocity (_, tangent vector (t_), normal vector (h), acceleration (r-*), second-derivative

(#'"), and curvature (n) to be available for use in the grid generation methods.

In a CFD analysis, grid generation is a secondary activity in that it is a means to an

end: the computation of the flowfield. Ideally, grid generation should be fairly automatic and

transparent to the analyst. Proper automation of grid generation requires information on the

geometry and flow conditions. The interrelationships between the geometry model, grid, and

flow model as highlighted in this approach lends itself to an automated procedure for determining

the grid density and spacing along the entities. Using information on the geometric properties

of the entity, the flow boundary conditions, and grid quality parameters such as minimum and

maximum grid spacing, maximum grid spacing ratio, and minimum and maximum grid aspect

ratio, the appropriate number of grid points and their spacing are determined along each entity.

Once the grid points are distributed along the sub-block boundaries, the volume grid can

be generated using a transfinite-interpolation method. Since a sub-block maintains a fairly

"rectangular" shape, a transfinite-interpolation works well.

Figure 7, 8, 9 show examples of grid generated using the sub-block, algebraic grid method.

The grid for the VDC inlet is shown for the entire domain in figure 7, while figure 8 shows a

close-up of the grid in the throat region of the VDC inlet with the centerbody moved. Figure 9

shows the grid for the hinged-flap at a 15 degree angle-of-attack.

The motion of the geometry requires the grid motion to be computed for each time step.

Several strategies are investigated for generating the dynamic grid and computing the grid

speeds. First, one can regenerate the grid at each point in time based on the current configuration
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of the geometric model. The grid speeds can then be determined through a time-difference of a

sequence of grids. A second strategy is to start with an initial grid and deform it as a geometric

entity is moved. Again the grid speeds can be determined through a time-difference. A third

strategy is to start with an initial grid and directly compute the grid speeds as a boundary-

value-problem using the knowledge of the velocities of the entities. The time-dependent grid is

then obtained through a time-integration of the grid speeds.

FLOW MODELING

The integral form of the Navier-Stokes equations for a time-varying control volume is

d Iv UdV + Js H-ridS = 0 (1)-_ (t) (t)

where U is the algebraic vector of conservative variables,

(p, pc, E,) (2)

where for a perfect gas,

[Et=p e+_

and p and p are the primitive variables of pressure, and density.

Cartesian coordinates is
_=ui + vj.

The H is the flux dyadic, which for a mixed Lagrangian-Eulerian description [11] is,

The velocity vector, V, in

(3)

H = F-_U. (4)

The _ is the velocity vector of the boundary of the control volume. In Cartesian coordinates, it

is
= x_ + y_L (5)

An Eulerian description is obtained for _ = 0 while a Langrangian description is obtained for

_=_.
The F is the Cartesian flux dyadic for the two-dimensional, unsteady Navier-Stokes equa-

tions. The flow equations are complete with Sutherland's formula, the definition of the Prandtl

number, and the assumptions of a perfect gas (air) and laminar viscous flow. A Reynolds av-

eraging is used to approximate turbulence effects and a turbulence model provides the eddy

viscosity.
The flux dyadic can also be expressed as

H = C - D, (6)

where C is the portion of the flux dyadic containing the convective terms,

o :
and D is the portion of the flux dyadic containing the non-convective terms.

(7)
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Equation 1 can be expressed in a compact form of

where

dO
+ = 0 (8)

dt

0 = [ U dV (9)
Jv (0

and

[_ = ¢ H. hdS. (10)
./s (t)

The solution of the flow equations require the specification of the flow boundary conditions.

One feature of the combined geometric approach is that the boundary conditions are associated

with the entities of the geometry model. For example the curves defining the surfaces of the inlet

(i.e. nose cone, cowl, etc...) are specified to be solid wall boundary conditions which are slip

surfaces for inviscid flow analysis and non-slip walls for viscous flow analysis. The flow domain

boundaries not representing the inlet surfaces are specified to be inflow or outflow boundaries.

Associating the flow boundary conditions with entities allows the possibility that for a moving

geometry and grid, the boundary grid points move from one geometric entity to another. Thus,

the grid point may change the type of boundary condition with which it is associated.

One issue that arises is what boundary condition to impose at a grid point located at the

junction of two entities if the entities are associated with different boundary condition types?

These issues are resolved by defining a hierarchy for the flow boundary conditions. For example,

at the junction of an entity defined as a non-slip wall and an entity defined as an inflow boundary,

the non-slip wall would get more priority and the boundary grid point would be imposed as a

non-slip boundary condition.

The existence of a geometry model allows its use by the flow boundary condition modeling.

The physical boundary condition for a slip wall can be specified as

PB ( V, - ffB )'h = rh,. (11)

Commonly, h is computed from the local grid. Since the boundary grid point is associated to a

geometric entity through a parametric coordinate, the exact normal vector can be determined

easily. Further, the pressure at the surface can be determined through a normal projection of

the of the momentum equation at the wall,

cOp _ (12)

Again the geometry model can be accessed to obtain the tangent vector [ and the curvature of
the wall a.

TIME-DEPENDENT COMPUTATION OF THE DYNAMICS

A ceU-vertex, finite-volume approximation is applied for the spatial discretization of equation

8. The discretization allows for two-dimensional and axisymmetric planar flow domains. The

temporal discretization is applied using an explicit, two-stage Lax-Wendroff method [12]. The
time-marching algorithm for a time step Ar is of the form

^ * " n R..:Ui,j = Ui,j + A r ,,3, (13)
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= R i,j ,Ui,j U_,j + Ar ^ * (14)

and
U. _+1 1

,,.7 2 { ^ n ^ **=- u ,j + u ,j }. (15)

The /) and R denote the algebraic vectors of the generalized conservative variables and flux

residual, respectively. The /J is defined as

= V V, (16)

where V is the volume of the finite-volume cell. The /_ is defined as

k,.j = - + - (17)

where the flux vector for a cell face is defined as

[' = H . ridS. (18)

The inviscid fluxes are computed using the Roe flux-difference splitting with a TVD limiter

as presented in reference [12]. The viscous fluxes are computed using differences and averages

computed at the cell faces. The time step is computed using the CFL condition.
Characteristic boundary conditions are used to compute the solution points on the bound-

aries. The flow conditions at the compressor face boundary of the VDC inlet were applied using

a variation of the method discussed in reference [13]. This involved specifying the average Mach

number at the compressor face, which allowed the pressure to vary and was shown to be a

non-reflecting boundary condition.
The V needed to decode /J is computed from the geometric conservation law as discussed

in references [14] and [15]. The geometric conservation law relates the change in volume of the
cell to the motion of the cell faces and is derived from the flow integration equations with the

assumption of a uniform solution for the conservative variables. The geometric conservation law

follows the form of equations (13) to (15) with/) = V and R = 2 where 2 is the vector sum of

speeds of the cell faces.

APPLICATIONS

Some preliminary inviscid computations involving dynamic grids are presented below.

Simple Hinged Flap

A simple mechanism with relative motion of its components is a plate with a hinged flap

at the end of the plate. The flap is specified to rotate about its hinge in a sinusoidal manner

with an amplitude of 15 degrees and a period of 0.03 seconds. The time scale of the motion is

perhaps unrealistic for a flap or aileron motion on an aircraft; however, it serves to demonstrate

the dynamic grid capabilities.
The analysis assumes an inviscid flow with a freestream Mach number of 2.0. The steady-

state flow is obtained with the flap at zero degrees deflection and no movement of the geometry.

Once the steady-state flow has been obtained, the flap is set in motion. Figure 9 shows the grid

with a flap deflection of 15.0 degrees. The time-variation of the Mach number contours is shown

in figure 10. The time-varying formation and disappearance of the shocks and expansions can be

seen. To get some evaluation of the accuracy of the flow computation, the variation of the Mach
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number at the midpoint of the upper surface of the flap during the first and third periods of the

flap motion was compared to the Mach number computed from steady flow, inviscid supersonic

theory [16]. Figure 11 shows that the comparison is fairly good. The computed Mach number

for the compression portion of the flap motion compares well to the steady flow theory ; however,

in the expansion portion, the Mach number compares less. This suggests that dynamic effects

may be more significant in the expansion region.

The flap motion problem is similar to other problems of interest in aeropropulsion. One such

problem is the unsteady flow about a thrust-vectored nozzle.

NASA VDC Inlet

The unsteady flow through the VDC inlet during the unstart / restart operation is now

analyzed. At the cruise conditions, the inlet is in a supercritical mode in which a normal shock

is positioned just aft of the centerbody bleed slot. This allows for a shorter diffuser, which saves

on weight of the inlet, and for a maximum total pressure recovery. The disadvantage of this

shock placement is that the shock is sensitive to flow perturbations and may unstart. During

unstart, the shock moves forward in the inlet. Once past the throat, the shock is forced to be

expelled from the inlet. This creates a bow shock ahead of the cowl lip, resulting in significant

drag. A buzz cycle will develop if the inlet is not restarted. For the VDC inlet, restart is

achieved through a slight forward translation of the centerbody, a reduction in the diameter

of the centerbody, and an opening of the bypass doors to reduced the back pressure at the

compressor face.

A preliminary inviscid flow computation is presented to show the nature of the flowfield

during the unstart / restart operation. The steady-state flow is computed for a freestream Mach

number of 2.5 with the inlet at an angle-of-attack of 0.0 degrees. The Mach number at the

compressor face was set at 0.31, which is just slightly greater than the design compressor face

Mach number. This places the terminal shock at a position x/rcowt = 3.25, which is greater

than the design position of x/rco_ot = 2.73.

The computed pressures along the forward portion of the centerbody compared very well

with data from wind tunnel tests [7]. However, comparisons in the diffuser were not comparable

since the actual flow is dominantly viscous.

The inlet is forced to unstart through an impulse at the compressor face of the Mach number

of a magnitude of -0.12 over a time interval of 0.01 seconds. The pressure pulse that is created

at the compressor face travels upstream in the diffuser and interacts with the terminal shock,

which is then forced forward. The shock passes ahead of the throat. When the shock reaches

the shock sensor, the restart process begins with a start in the motion of the centerbody. For

this analysis, the centerbody was set to translate a distance of 0.2 units forward and the second

cone angle rotates from an angle of 18.5 degrees to a angle of 12.5 degrees, which is equal to the

angle of the nose cone. The centerbody motion occurs over a time interval of 0.05 seconds. The

compressor face Mach number is increased from a value of Mach 0.31 to 0.50 to simulate the

opening of the bypass doors and the reduction of the back pressure. Figure 12 shows a sequence

of Mach number contours for the unstart / restart operation. The shock is expelled from the

inlet and proceeds a short distance ahead of the cowl lip before returning to the cowl lip and

entering the inlet. A new terminal shock begins to form in the diffuser as the flow ahead of it

becomes supersonic. Once the terminal shock is formed, the centerbody returns to its design

position and the compressor face Mach number returns to a value of 0.31.

The analysis of the unstart / restart flowfield continues. At this point it is evident that the

motion of the centerbody is significant to the restart operation.
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CONCLUSIONS

For the CFD analysis of a mechanism involving the relative motion of its components, the

aspects of geometry modeling and grid generation become a function of time, as does the flow

modeling, and take on an increase importance in the problem. The combined geometric approach

presented in this paper has examined some of the interrelationships between the geometry mod-

eling, grid generation, and flow modeling and has shown that these interrelationships provide for

a more natural formation of the problem and can be used advantageously in the computation

of the total dynamics problem.
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Figure 1: The aspects of the CFD analysis process: geometry modeling, grid generation, and

flow modeling

Figure 2: The mechanical design of the NASA Variable Diameter Centerbody (VDC) inlet
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Figure 3: The entities of the planar geometry, flow domain, and block interface for the VDC
inlet
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Centerbody Translation: - 0.2 x / rcowl

Figure 4: An example of the geometric variation of the VDC inlet
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Figure 5: The block and sub-block boundaries for the grid for the VDC inlet
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Figure 6: The junction of two entities of a planar geometry
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Figure 7: The multi-block grid for the inviscid analysis of the VDC inlet during the unstart /

restart operation
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Figure 10: The sequence of Mach number contours for the inviscid analysis of the hinged flap

with a freestream Mach number of 2.0 _nd zero degrees angle-of-attack
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Figure 11: The comparison of the time-variation of the computed Mach numbers with the

steady-state, oblique shock theory at the midpoint of the top surface of the hinged flap
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SUMMARY

Relational Geometric Synthesis (RGS) is a new logical framework for building up precise definitions of

complex geometric models from points, curves, surfaces and solids. RGS achieves unprecedented

design flexibility by supporting a rich variety of useful curve and surface entities. During the design

process, many qualitative and quantitative relationships between elementary objects may be captured

and retained in a data structure equivalent to a directed graph, such that they can be utilized for

automatically updating the complete model geometry following changes in the shape or location of an

underlying object. Capture of relationships enables many new possibilities for parametric variations

and optimization. Examples are given of panelization applications for submarines, sailing yachts,

offshore structures, and propellers.

INTRODUCTION

Relational Geometric Synthesis (RGS) [1, 2] is a novel approach to 3-D geometric design, with

many advantages over previous technology:

(1) RGS provides a new, transparent, object-oriented conceptual framework for building up complex

models from a logical hierarchy of point, curve, surface and solid entities.

(2) A wide variety of useful point, curve, surface and solid entities are supported in a unified way, so

that they can be used essentially interchangeably in the construction of other objects.

(3) During the design sequence, qualitative and quantitative relationships between objects are

captured in such a way that they are automatically enforced during updates of the model,

following changes in underlying objects.

(4) To a great degree, RGS avoids the common difficulties of surface-surface intersections and

trimming that plague conventional B-rep solid modeling, by providing convenient ways to create

surfaces that join accurately in the first place, and that remain accurately joined through capture

and enforcement of this qualitative relationship.

(5) RGS models can be stored in an extremely compact format conveying only the "logical model", i.e.

the "genetic instructions" for recreating the model from scratch, including all defined relationships

between objects.

RGS clearly has some features in common with Armit's TAG [3] and Boeing's AGPS [4, 5, 6].

The extent of similarities to these systems is difficult to judge from the available references, but we

believe RGS provides much more pervasive use of dependency relationships than AGPS, and a much

richer entity set than either TAG or AGPS. Automatic update of geometry following changes is also

characteristic of "constraint-based" modeling systems [7]. In our opinion, RGS is qualitatively different
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from constraint-basedmodelingand in particular is muchmoreadeptatsupporting 3-Ddesignwith
free-formcurvesand surfaces.

Comparedwith NURBS-basedcurveandsurfacemodeling,RGS'sexplicit supportof many
entitiesnot preciselyrepresentableby NURBShaslargeadvantagesin modelingconvenienceand
accuracy.

RGSis thebasisof AeroHydro'sMultiSurf (R)surfacemodelerfor IBM-PCcompatibles(DOS
and Windows) [8].UNIX workstationversionsareunderdevelopment.All themathematicaland
logical functionsof MultiSurf areavailablein anANSI Clibrary RGKERNEL,for incorporationinto
third party applications.Patentapplicationsarependingwhich claim manyof thenovel featuresof
RGS.

RGSlendsitself to ahighly interactive,highlyvisual 3-Ddesignenvironmentfor creation,
viewing, revisionand analysisof models.Largelymotivatedby marinedesignneeds,RGSprovides
newsolutions to manypanelizationandgridding problemsfor CFDandFEMapplications.

RGSFUNDAMENTALS

Definitions:

entity -- an abstract type of geometric object, e.g. point, line, plane, B-spline surface

object -- a particular concrete instance of an entity; e.g. an absolute point at (0., 1., 2.)

In conventional computer-aided geometric design (CAGD), the nouns entity and object are

applied more or less interchangeably to either of these concepts. In RGS, the two concepts are

semantically distinguished by the above defined usage. An entity is like a blank form with spaces to be

filled in with data such as object name, color, visibility, coordinates, names of other objects. An object is

like a filled-in copy of that form. RGS entities and objects correspond to the "classes" and "objects" of

object-oriented programming terminology.

In RGS, every object -- point, curve, snake, surface, etc. -- has a unique object name. The object

name may be used to reference the object whenever it is used in construction of other objects. This is
the essential means by which many qualitative relationships are captured. The object name can also be

used to select, edit and interrogate the object while constructing and editing a model interactively.

Entities can be broadly classified first according to their dimensionality, and secondarily

according to their embedding in other objects. Table 1 is a hierarchical listing of currently implemented
RGS entities.

Under Points (0-dimensional entities) there are 4 classes:

3-D points (constructed in various ways)

Magnet - a point embedded in a surface

Beads - a point embedded in a 3-D curve

Rings - a point embedded in a snake
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UnderCurves(1-dimensionalentities)thereare3classes:

3-Dparametriccurve
Subcurve-- acurveembeddedin acurve
Snake-- acurveembeddedin a surface

UnderSurfaces(2-dimensionalentities)thereare2classes:

3-Dparametricsurfaces
Subsurface-- a surfaceembeddedin anothersurface

TableI lists manyspecificentitiesin eachclass,with anexplanationof theessentialdatarequired for
each.

Generally,curvesareformed from points,in avarietyof waysasindicatedin Table1.For
example,thedatafor aLine issimply thenamesof two points.Thedatafor aB-splinecurve is a list of
pointsspecifiedby their objectnames.Any typeof point object(point,bead,magnet,ring, etc.)will
serveasapoint, and differentpoint typescanbefreelymixed.

Surfacesare formedin somecases(e.g.B-splinesurface,NURBSsurface)from anetof points;
usually (e.g.Coonspatch,loftedsurfaces)from a setof curves;or sometimes(e.g.SubSurface,Fillet)
from a setof snakeson oneor moreunderlyingsurfaces.In eachcasethesupporting point, curve,and
snakeobjectsareall specifiedby usingtheir objectnames;anykind of point, curveor snakecanbe
used,andthesecanbefreelymixed.

Most of thebasiccurveand surfaceentitiessupportedunder RGSarewell known. The
differencelies in how thedatais organizedand obtainedto evaluatethecurveand surfaceobjects.
Somenovelentitieshavearisenby recognizinggapsin the logicalstructureof RGS;for example,the
B-loftedandBlendCentersurfaces,whichareusefulgeneralizationsof theB-splinesurfaceand Coons
patch.

SixRGSsurfaceentities(Ruled,Arc-Loft,Foil-Loft,B-Loft,C-Loft,X-LoftSurfaces)areclassed
as"loftedsurfaces",and shareacommonstructure.Eachlofted surfaceis supportedby 2or more
mastercurves,dependingon thesurfacetype. Evaluationof a singlepoint at parametersu,v ona
loftedsurfaceis a3-stageprocess:

(1) Evaluateeachof themastercurvesat aparametervaluet = u
(2) Constructthecurveof appropriatetype(Line,Arc,Foil,B-splineor C-spline)which usesthese

points asdata
(3) Evaluatethecurveatparametervaluet = v

SurfaceEntity
Ruled

No.of MC's

Arc-lofted 3

Foil-lofted 3 or 5

B-lofted >1

C-lofted >1

X-lofted >1

Lofting Curve
line

circular arc

NACA foil

B-spline

interpolating spline

explicit spline
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FigureI is anexampleof anRGSmodelfor a30-ftsailboathull. 'hull' isa C-Loftedsurface,
supportedby 3mastercurves'MCI', 'MC2','MC3'.Eachof themastercurvesis aB-splinecurve,
supportedby 4absolutepoints.Thesurfaceis displayedby showingsomeof the longitudinal "lofting"
C-splines.

Another way to view RGSis asaprogramming or representation language. The data base ("Model

File") for the model of Figure I is given in Table 2 as an example. Each line in the Model File creates an

object. The entity names 'AbsPoint', 'BCurve', etc. may be viewed as commands or functions, which are

followed by required parameters in prescribed order. The language has a prescribed syntax. Models

can be created and modified by editing text files adhering to this syntax. Dependencies are represented

by the occurrence of object names as parameters for other objects.

Since the model file contains only concise instructions for building the absolute model, it is

extremely compact compared with conventional CAD representations. Model files average about 35

bytes per object, whether the object is a point, curve or surface.

Snakes are generally formed from magnets, in a variety of ways as indicated in Table 1. (Rings

also qualify as "magnets" for this purpose, since a ring is logically constrained to the surface to which

its snake belongs.) The snakes are highly parallel to the curve entities, so they work in a consistent
fashion. Snakes can also serve as curves in the construction of surfaces.

"Relative" entities are specified by coordinate or parameter offsets from another object of the

same class. For example, a relative bead is specified by a parameter offset dt from a basis bead. It lies

on the same curve as its basis bead, at a fixed offset in parameter space. If the basis bead is moved

along the supporting curve, the relative bead automatically moves also, to maintain its (parametric)

distance away. Use of these relative entities is an important mechanism for capturing and enforcing

quantitative relationships between objects.

All curves and snakes are parameterized from 0 to I in a parameter t. All parametric surface

patches are parameterized from 0 to I in each of two parameters u,v, in most cases inheriting the

parameterization of their supporting curves. Beads, rings and magnets are located using these

parameters. Thus, objects located on a curve or surface will automatically shift to "similar" positions

following a change in their supporting curve or surface. Uniformity of the ranges of parameterization

is an important key to the interchangeability of various curve, snake and surface types in construction

of other objects.

Dependencies of objects on other objects are always represented by references using object

names. These take several forms; for example:

(a) a Relative Point depends on its basis point.

(b) a Relative bead depends on its basis bead, and indirectly on the curve that supports both beads.

(c) a Coons patch or lofted surface depends on each of its supporting curves, and indirectly on the

points that support them

(d) a B-spline Snake depends on each of its supporting magnets, and indirectly on the surface that

supports them, and all the curves and points supporting that surface, etc.
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Dependencycanextendto anarbitrary numberof levels.Thedependencystructureof a model
is representableby a directedgraph(digraph),which issometimesa usefulway to contemplatethe
topologicalstructureof amodel.(Figure2is thedependencydigraph for themodelgiven in Figure1/
Table2).Thedigraph structurecanalsobeusedadvantageouslyby theprogramto selectivelyupdate
only theobjectsaffectedby agivenchange,i.e.,thesetof objectsthat dependdirectly or indirectly on
theparticularobjectthat waschanged.

It is thecaptureandmaintenanceof thesedependenciesthat enablestheautomaticupdate
featureof RGS,providing adramaticallynew paradigmfor geometricdesign.Weenvisage
conventionaldesign,computer-aidedor otherwise,asa linearprocess,asequenceof forward stages,
eachdependingoncompletionof theprior stage.In sequence,eachbasiccomponentisdesignedand
frozen,sothat othercomponentsthatdependon it canbedesignedona firm foundation.At some
point, thewholedesignis evaluated,andusually found deficientin somerespects.At thispoint, it is
very costly to goback to anearlystage,alteringearlycomponents,because all the intermediate design

stages have to be repeated.. With RGS, the intermediate design steps are captured in the model, and the

entire model can be cheaply updated at any time. This is a whole new dimension of freedom in design.

Instead of segmenting design into a series of stages, and freezing components in non-optimal states,

RGS allows the entire geometric design process to be fluid and integrated end-to-end.

Qualitative model properties which result from the capture and enforcement of these

relationships, and are thus conserved under changes in underlying objects, are referred to as "durable"
properties.

Avoidance of surface-surface intersection problems is accomplished in several ways:

(1) Two lofted surfaces of the same type and the same number of master curves, whose master curves

share endpoints, will join accurately and durably along their common edge.

(2)RGS supports several surface entities that interpolate 2 or 4 arbitrary boundary curves. Two such

surfaces A and B that share the same curve as data will have a durable common edge along that
curve.

(3) Suppose surface B is required to join surface A accurately, not along an edge of A, but somewhere

out in the middle of A. This can be accomplished durably by using a snake on A as an edge curve

for B, then using a surface for B that interpolates this edge curve.

Although the above methods eliminate the need for intersection and trimming in the great

majority of situations, there still arise some modeling situations in which projection or intersection

entities are required. These are met by a set of "projection" and "intersection" entities; for example, a
ProjSnake is the projection of a curve onto a surface; an IntBead is at the intersection of a curve with a

plane or surface. The projection and intersection entities involve iterative solutions, and are therefore

subject to all the ills which intersections are heir to: possible nonexistence; possible multiple solutions;

possible failures to converge; computational expense, etc. However, under RGS these evils are

substantially alleviated by the possibility of providing good starting values for the iteration. For

example, the data for an IntBead can be a bead (which identifies the intersecting curve, and provides a

starting value for t) and a magnet (which identifies the intersecting surface, and provides starting
values for u and v).
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PARAMETRIC DESIGN

"Parametricdesign"is acapabilityto specifyafamily of relateddesignshavingN numeric
parametersxi, i=l...N, sothat thespecificationof suitablevaluesfor all N parametersproducesavalid
instanceof thefamily. Theparametersxi spanann-dimensional"designspace"within which, for
example,anoptimal designcanbesought[9].

In RGS,ahigh degreeof separationbetweentopologicalandmetricalcomponentsof geometry
providesa strongcapability for generatingparametricallyvaried modelshaving durabletopologyand
otherdurable shapecharacteristics.Essentially,eachrealnumberoccurringin themodel file is a
potential parameter;for the mostpart, thesearetheX,Y,Zcoordinatesor offsetsof points,or the
parametervaluesof beads,magnetsand rings.Thenon-numericcontentof themodel file, especially
thespecificationof interobjectrelationshipsthrough useof objectnames,conveysthetopology.

A strongerparametriccapabilitycurrently underdevelopmentarisesfrom permitting useof
numericvariablesand expressionsin themodel file.This is currentlybeingsimulatedby useof model
file preprocessors.

PANELIZATION USING PATCHES AND SUBSURFS

Sinceall parametricsurfaceobjectsin RGSaretopologicallyrectangularpatches,it is quite
simpleand direct to usethemeshof isoparametriclineson any fully wettedpatchto generate
quadrilateral or triangular panels.Thesubdivisionof anysurfaceinto ameshis part of its
specification,andcaneasilybechangedto controlpanelcounts.

Panelsizevariations,e.g.cosinespacingon foil elements,ishandledthrough ageneralfacility
for reparameterization("relabeling")of curvesandlofted surfaces.Thesurfacemeshdivision responds
to therelabelingof its supportingcurves.Figure3showssomepaneldistributions availablethrough
relabelingof awing surface.

Often, thereareportionsof abasesurfaceobjectwhich arenot wetted (e.g.,theportion of a
fuselagecoveredby thewing root or wing root fillet), andwhich should thereforenot bepanelized.
TheembeddedSubSurfprovidesageneralsolution for thissituation:thewettedportion iscoveredby
quadrilateralSubSurfpatches.It is generallypossible,in facteasy,to durablycoordinatethe
subdivisionsof adjacentpatches,e.g.wing and fuselage,sothat neighboringpanelson thetwo
surfaceshaveidentical cornerpoints, sincethetwo patchessharesnakesascommonboundaries.
Figure4 showsafilleted wing-body examplewith this property.

EXAMPLES OF PARAMETRIC DESIGN AND PANELIZATION

Tension-legPlatformExample

Figure5showsseveralmembersof a4-parameterfamily of tension-legplatforms (TLP's).TLP's
arebuoyantstructures,mooredto theseafloorby taut cables,commonlyusedfor offshoredrilling
platformsin relativelydeepwater.Theverticalcylindersarecalled"legs"andthehorizontal members
are"pontoons".Panelmethodsareusedto analyzetheresponseof TLP'sand theirmooring systemsto
gravity wavesin theoceanenvironment.
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In thismodel family,both legsandpontoonsarecircularcylinders;the4 parametersare:

legdepth
legradius
pontoondepth
pontoonradius

Eachparameteris associatedwith asinglerealnumberin themodel file. Figure5 showsthebase
modeland4variants,with oneparametervariedat atime.

Theessentialstructureof themodel is asfollows:

(1) Exploiting symmetry,only 1/8 of themodelneedsto beexplicitly constructed.
(2) Themodelbeginswith abasehalf-cylinder(RevSurf)for the completelegsurface.
(3) A circleisconstructedto definethepontoondepth andradius.
(4) Thecircleisprojectedhorizontallyonto the leg,makinga ProjSnake.
(5) Thepontoonsurfaceis aruled surfacebetweenthecircleandtheProjSnake.
(6) Thewettedportion of the leg (outsidethe ProjSnake)iscut by snakesinto 3SubSurfs.
(7) Thebottomis aRevSurfmadefrom aradial line asmeridian.

Note thedurableneatjoin betweenneighboringpanelsacrossthepontoon-legandbottom-leg
junctions,detailedin Fig.6.

SailingYachtExample

Figure7showsapanelizationof theunderwaterportionsof asailing yachthull, keeland
rudder. Theyachthull providesbuoyantsupport for thevessel;thekeelprovideshorizontal lift to
resistsideforcesfrom thesails;therudder providesdirectionalcontrol andstability.Thelift and
induceddrag performanceof thecombinationarecrucial to sailing performance.Thesecharacteristics
aretypically analyzedby panel-basedpotentialflow solutions.

In this example,thekeel,keeltip, rudder, and rudder tip surfacesarefully wettedpatches.A
problemtypical of panelmethodsin hydrodynamicsis that only aportion of thehull surfaceis wetted,
i.e.,the portion below the water level and outside the keel and rudder root areas. This is handled with

a single SubSurf covering this area. The edge of the SubSurf along the waterline is an intersection

snake; the edge along the centerplane is a PolySnake which follows the centerplane where possible, but

is indented around the keel and rudder. The SubSurf has one degenerate edge (a magnet) at the aft

ending of the waterline, producing one row of triangular panels at this corner. The neat join between

neighbor panels at the keel-hull and rudder-hull junctions arises from use of snakes on the hull surface

to define both the root junctions and the centerline PolySnake. These properties are durable with

respect to many possible variations in the hull, keel, and rudder geometries.
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Submarine Example

Fig. 8 shows the base model and several variants on a parametric submarine design. The hull is

a body of revolution; the conning tower or sail is a B-lofted surface attached to a snake on the hull.

Available parameters include:

hull diameter

bow and stern prismatic coefficients
nose radius

sail height

sail length
sail width

sail longitudinal position.

The lower hull is a fully wetted patch; the wetted portion of the upper hull is a SubSurf built around

the snake at the sail-hull junction. The panelization is topologically invariant with respect to all shape

parameters, except the longitudinal position of the sail; if this changes too much, there needs to be

some reparametrization of the dorsal PolySnake to avoid skewed panels.

Propeller Example

Fig. 9 shows a member of a parametrically generated propeller series. The data for this example

is a standard propeller sheet (Table 3) giving chord, thickness, camber, rake and skew at selected radii.

An auxiliary program performed curve fitting and smoothing on the radial variations of these shape

parameters, generating a MultiSurf model file which reproduces the specified blade geometry. The
modeled blade is a B-lofted surface using FoilSnakes on concentric cylinders as master curves.

VOLUME GRIDDING USING RG SOLIDS

A straightforward extension of RGS to 3-D parametric solids has been made at a pilot level.

This appears to have important potential for 3-D gridding. A parametric solid is a vector function of

three parameters: x = x(u,v,w). It is easy to formulate RG solids constructed in several ways analogous

to various surface entities; for example:

RuledSolid -- linear interpolation between two surfaces

BSolid -- trivariate tensor product using a 3-D array of control points

CLoftSolid -- spline interpolation through 2 or more surfaces

BlendSolid -- trivariate linear blending of 6 boundary surfaces

TranSolid, SweepSolid -- a surface patch swept along an axis curve

A parametric solid can easily be subdivided along isoparametric surfaces to create a structured

mesh. It appears that the same techniques that produce neat, durable joins between neighboring
patches in 2-D will extend naturally to solids, allowing continuity of elements between adjacent blocks.

CONFIGURATION OPTIMIZATION

As diagrammed in Fig. 10, MultiSurf can serve as a geometry and panelization engine in a

closed-loop optimization system including an optimizer and one or more analysis programs. The

optimizer treats the model as a point in design space, and feeds design-space parameters to a model

file generator. The resulting model file is read into MultiSurf, which generates a standard output file
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of surfacemeshes.A preprocessorcaststhis meshdatainto theparticular formatrequired for input to
theanalysisprogram.Theanalysisprogramis run, andits output file is inspectedby apostprocessor
which extractstherequiredperformancemeasuresandreturnsthevalueof theobjectivefunction to
theoptimizer.

CONCLUDING REMARKS

Wehaveoutlined theprinciplesof RelationalGeometricSynthesisandgiven severalexamples
of applicationto panelizationandgridding problems.Thecapabilityof RGSto defineparametric
familiesof topologicallyinvariatedesignsandto generategeometricrepresentationsof them,
includinghigh quality panelizationsfor analysis,promiseslargereductionsin theskilled labor
currently requiredfor applicationof CFDandFEMin practicalengineeringdesign.
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Table 1. MultiSurf entities

Points (0-dimensional), including:

3-DOF points: Absolute Point -- X,Y,Z coordinates
Relative Points -- X,Y,Z offsets from another point

Polar coordinates relative to another point

2-DOF points: Magnets -- points constrained to lie on a surface

Absolute Magnet -- u,v parameters

Relative Magnet -- u,v offsets

Projected Magnet -- projection of point onto surface

Intersection Magnet -- intersection of surface with a curve

1-DOF points: Beads -- points constrained to lie on a curve

Absolute Bead -- t parameter
Relative Bead -- t offset

Intersection Bead -- intersection of curve with plane or surface

Rings -- points constrained to lie on a snake

Absolute Ring -- t parameter

Relative Ring -- t offset

Intersection Ring -- intersection of snake with plane or curve

0-DOF points: Projected Point -- point projected onto a plane
Mirror Point -- point reflected in a plane

Offset Point -- offset along normal to surface

Tangent Point -- offset along the tangent to a curve

Curves (1-dimensional), including:

Line -- 2 points

Circular Arc -- 3 points

Conic sections -- type, 3 points, 2 parameters

NACA Foils -- 3 points (half section) or 5 points (full section)

B-spline Curve -- type, N points

C-spline Curve -- type, N points
X-spline Curve -- type, N points, end slopes or moments

NURBS Curve -- type, knotlist, N x ( point, weight )

SubCurve -- portion of a curve between 2 beads

PolyCurve -- concatenation of N curves

Relative Curve -- curve, 2 points, graph

Projected Curve -- curve projected onto a plane

Mirror Curve -- curve, plane

Offset Curve -- snake, 2 offsets, graph

Snakes (1-dimensional) -- curves constrained to lie on a surface:

Line Snake -- 2 magnets

Arc Snake -- 3 magnets

Foil Snake -- 3 magnets (half-section), or 5 magnets (full section)

B-spline Snake -- type, N magnets

C-spline Snake -- type, N magnets
NURBS Snake -- type, knotlist, N x ( magnet, weight )
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Snakescontinued:

SubSnake-- portion of asnakebetween2rings
PolySnake-- concatenationof N snakes
RelativeSnake-- snake,2magnets
EdgeSnake-- type,surface
ProjectedSnake-- projectionof acurveontoa surface
IntersectionSnake-- intersectionwith aplaneor surface

Surfaces(2-dimensional),including:

RevolutionSurface-- curve,axisline, 2angles
TranslationSurface-- 2curves
Coonspatch-- 4curves(nominallyend-to-end),2graphs
DevelopableSurface-- 2curves
RuledSurface-- 2curves
B-splineLoftedSurface-- type,N curves
C-splineLoftedSurface-- type,N curves
X-splineLofted Surface-- type,N curves,4graphsfor endconditions
Foil-loftedSurface-- type,3 or 5curves
B-splineSurface-- utype,vtype, N x M points
NURBSSurface-- utype,vtype, 2knotlists,N x M x (point,weight)
OffsetSurface-- surface,4offsets
RelativeSurface-- surface,4points
Blister-- type,2snakes,curve
Fillet -- 2 snakeson eachof 2surfaces
SubSurface-- 4 snakes(nominallyend-to-end)
ProjectedSurface-- surface,plane
Mirror Surface-- surface,plane
SweepSurface-- surface,curve
PolySurf-- concatenationof N surfaces

Miscellaneous:

Planes-- nonparametricplanes,specifiedseveralways (e.g.,3points)
Contours-- setof parallelplane,cylindrical, or sphericalsections
Knotlist -- knot vector,usedin NURBSentities
Wireframe-- nameof awireframefile,point
Graphs-- univariatefunction of parameter
Frames-- localorientablecoordinatesystem
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Table 2. Model file for the example of Figure 1.

MultiSurf 0.35 /y

Rem demo of C-lofted surface with 3 B-spline MCs

AbsPoint PII 14 1 0.000 0.000

AbsPoint PI2 14 1 1.367 0.000

AbsPoint PI3 14 1 2.324 0.000

AbsPoint PI4 14 1 3.000 0.000

BCurve MCI ii 1 i0 * 2

{ Pll P12 P13 P14 };

AbsPoint P21 14 1 15.000 4.815

AbsPoint P22 14 1 15.000 5.046

AbsPoint P23 14 1 15.000 3.603

AbsPoint P24 14 1 15.000 0.000

BCurve MC2 ii 1 i0 * 2

{ P21 P22 P23 P24 };

AbsPoint P31 14 1 30.000 3.500

AbsPoint P32 14 1 30.000 3.500

AbsPoint P33 14 1 30.000 2.500

AbsPoint P34 14 1 30.000 0.000

BCurve MC3 ii 1 i0 * 2

{ P31 P32 P33 P34 };

CLoftSurf hull i0 1

{ MCI MC2 MC3 };

XContours

ZContours

EndModel

3.600;

0.602;

-0.800;

-0.900;

2.560;

0.628;

-0.870;

-1.175;

I0 1 20 1 0 3

stations 12 1 0 i0

waterlines 13 1 0 0

2.760;

1.320;

0.120;

0.120;

1.8 2.735;

0. i.;
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Table3. Datasheetfor parametricpropellerdesign.

R/R

DESIGN DATA PROPELLER 0000 -R.H.

DIAMETER = 12.00 INCHES SHIP ( 304.8 MILLIMETRES SHIP )

PROJECTED

AFT. AFT. RAKE SKEW

P/D CHORD/D T/D CAM/D RAKE/D (DEGREES) (DEGREES) R/R

2O0

300

400

5OO

6O0

7O0

80O

9O0

95O

960

970

980

990

000

1 .

i.

i.

i.

i.

I.

i.

5358

5125

4592

3858

2958

1975

0958

9958

9483

9383

9292

9196

9108

9013

1735

2283

2750

3125

3375

3475

3342

2808

2192

2021

1800

1521

.1146

0.0000

.0434

.0357

.0294

.0240

.0191

.0146

.0105

.0067

.0058

.0054

.0053

.0051

.0050
0.0000

00583

00933

01058

01067

00950

00800

00633

.00442

.00317

.00292

.00250

.00208

.00183

0.00000

.00000 0.

.00000 0.

.00000 0.

.00000 0.

.00000 0.

.00000 0.

.00000 0.

.00000 0

00000 0

00000 0

00000 0

00000 0

00000 0

00000 0

00 0

00 9

00 18

00 28

00 36

00 45

00 54

00 63

00 67

00 68

00 69

00 70

00 71

00 72

00

29

79

01

75

43

23

.ii

.76

.72

.68

.65

.61

.59

.200

.300

.400

.500

.600

.700

.800

900

950

960

970

98O

990

1 000

SECTION CAMBER DISTRIBUTION

SECTION THICKNESS DISTRIBUTION

EXPANDED AREA RATIO

PROJECTED AREA RATIO

MEAN WIDTH RATIO

BLADE THICKNESS FRACTION

RAKE ANGLE AT BLADE TIP

PROJECTED SKEW ANGLE AT BLADE TIP

LINEAR RATIO

NACA A:0.8 MEANLINE

NACA 66 (TMB MODIFIED)

.7253

.5701

.2848

.0488

0.0000 (DEGREES)

72.5880 (DEGREES)

1.0000
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Fig. 1. A C-lofted hull surface with 3 B-spline master curves, each supported by 4 points.

Fig. 2. Digraph of object dependencies
for the hull example in Fig. 1FFable 1.
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Fig, 3. Typical variations in spanwise and chordwise panel distributions available by
relabeling the supporting curves of a wing surface.

Fig. 4. Panelization of a filleted wing-body junction using SubSurfs on the wing and body.
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Fig. 5. Parametric variations in tension-leg platform geometry and panelization. Topologically similar
panelizations are produced automatically as geometry is parametrically varied over wide ranges.

798



f r--- _-_._

Fig. 6. Detail of a tension-leg platform panelization showing neat joins between pontoon, leg, and

bottom panels.

0 •

Fig. 7. Panelization of sailing yacht hull, keel, and rudder combination. The hull panels are a SubSurf
between an intersection snake along the waterline and a PolySnake along the ventral edge.
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Fig. 8. Parametric submarine example, showing hull and sail variations, with instant repanelization by
SubSurfs.
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EXAMPLES OF GRID GENERATION WITH IMPLICITLY SPECIFIED SURFACES

USING GridProTM/az3000 [1]: FILLETED MULTI-TUBE CONFIGURATIONS

Zheming Cheng and Peter R. Eiseman

Program Development Corporation

300 Hamilton Avenue, Suite 409

White Plains, NY 10601

SUMMARY

With examples, we illustrate how implicitly specified surfaces can be used for grid generation

with GridPro/az3000. The particular examples address two questions: (1) How do you model

intersecting tubes with fillets? and (2) How do you generate grids inside the intersected tubes?

The implication is much more general. With the results in a forthcoming paper which develops

an easy-to-follow procedure for implicit surface modeling, we provide a powerful means for rapid

prototyping in grid generation.

INTRODUCTION

The theory for implicit surface formulations has its roots in algebraic geometry and asymp-

totics. The implicit form, as opposed to explicitly defined parametric surfaces, is given by a function

U of the embedding space variables: the Cartesian x, y, and z. The surface definition is then a level

surface of the function U(x, y, z). A level surface is just the set of points for which the specified

function is a constant. Level surfaces, for example are commonly used to graphically display the

contour lines of some variable. Since we are interested in only one level surface, there is no loss of

generality in forming U(x, y, z) in such a way that our desired surface appears when U(x, y, z) is 0.

This can always be made to happen for if the desired surface appeared with a value of U equal to

another constant C, then we would merely replace U by U - C. Geometric modeling with implicit

surfaces has been considered by [2].

As with contour lines in graphics, it is clear that the surface can have a richer topology. In

the case of intersecting tubes, which serves as an example to illustrate the use of implicit surfaces,

the topology is such that the surface has holes at the openings of each tube. Unlike the parametric

constructions, this surface cannot be smoottfly contracted to a point: it has non-trivial homotopy

and cohomology groups. The parametric constructions such as NURBS surfaces are not general

enough. They can o_y be a_)plied in a local piecewise sense: not a global sense.

To explore fully the potential of implicitly specified surfaces in grid generation, there are

two important aspects need to be addressed: 1). How can a given implicit surface be used by a

grid generator. This is the topic of this paper. 2). How can a user setup implicit surfaces for

his/her particular application with ease. This aspect falls in the general area of what can be called

implicit surface modeling. Tiffs will be addressed in a forthcoming paper, where a well defined and

easy-to-follow procedure for general implicit surface modeling is developed.

Altogether, implicit surfaces represent a very useflfl and powerflfl facility to specify geometries.
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In manysituations,it is moreadvantageousthan the explicitly (parametrically) defined surfaces.

Often, a simple function can represent a rather complex geometry as is the case shown in this

paper. It can be used to define generic shapes of surfaces. Therefore, a grid generator that accepts

implicit surfaces is very well suited to perform rapid prototyping in grid generation.

The general implicit surface definitions by level surfaces is one of the surface types that can

be directly taken by the grid generator, GridPro/az3000 [3, 4], for either global or local surface

specifications. In fact, for any grid generator to be considered really advanced must be able to deal

with implicit surfaces efficiently.

GridPro/az3000 is the multiblock grid generator with automatic zoning. Aside from surface

geometry, the prima, y user iaput is the pattern of grid lines or surfaces. This pattern is referred to

as the grid topology. The definition of grid topology is given by a topology input language (TIL).

This is also used to specify the number of grid points and clustering criteria. Once the TIL code is

in place, the grid is generated as a batch job in a manner which is steered by a dynamic schedule

file. The latter file allows the user a great deal of flexibility. For example, rather than just run

the case and write out the results, the user may desire to start with fewer grid points or lesser

clustering and then to gradually increase at latter steps in the evolution toward convergence. A

common motivation is for more efficiency when only modest computational resources are available

for the size of problem at hand.

Our discussion will start with the implicit geometry modeling for filleted intersecting tubes

and will continue with the development of TIL code for the generation of high quality (smooth

and nearly orthogonal) grids inside the multi-tube configurations. Examples will be given to show

the variety of configurations, the grid and surface quality, and the ease with which these items can

be created and presented for analysis. The multiplely branched tubes are frequently encountered

surfaces in geometry modeling and grid generation for a variety of different fields. As a natural

consequence, the mathematical formula for the surface model should be of considerable interest on

its own right.

MULT-TUBE GEOMETRY MODELING

The question of modeling the geometry of tube intersections has been addressed before in a

piecemeal fashion. The typical approach is to first find the intersection between the tubes. Once

the intersection is known, the next step is to move away from that curve of intersection to create

displaced curves on each tube at some reasonable distance from the intersection. This displacement

is most often formed moving a fixed distance along geodesic paths that emanate orthogonally from

the curve of intersection. With these displaced curves along each tube, the fillet is formed by a curve

of interpolation between them. This starts on one tube with the displaced position and available

geodesic tangent direction asld ends on the other with the same conditions. When taken together,

a collar type surface is formed. The collar connects the tubes with first derivative continuity. This

process requires the solution of a surface surface intersection problem, the computation of geodesic

distances to produce the displaced curves, and the act of interpolation to construct the collar

surface. For this work, there are three surfaces required to define the intersection of two tubes in

a T-type configuration. The result is only first derivative continuous. For each application of this

technique, a collar is added. For example, with full tubes along the each coordinate axis, there

would be 12 surfaces (the tubes for x, y, z, -x, -y, and -z plus 6 collars). Moreover, should a

tube aspect ratio or squareness be added, then the associated problems of construction would be

more intensive.
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Figure 1: (a). The zero set of U = 1 - xy is shown. (b). The merge of all axial channels are shown.
The curved walls are given by either U = 1 - x2y 2 or the more general U = a + bx 2 + cy 2 - x2y 2.

(c). The coefficient b is blended from -1 along x < 0 to 1 along x > 0.

Unlike the traditional means for fillet creation, we offer a technique which does it all with one

infinitely differentiable surface. Moreover, each tube can be assigned a cross-sectional squareness

and aspect ratio.

Two dimensional models

Our examination of the geometry modeling process will start with two dimensions and will

lead by intuition. This should provide simplicity and clarity to the discussion of the implicit

methodology. In keeping with this objective, our first problem is to attempt to define the geometry

of four channels which follow the (x, y) coordinate axes and come together at the origin. If we

examine the function y = 1/x , then immediately we have two curves which asymptote to the axes.

As we go towards plus and minus infinity, it approaches the four semi-axes. Unfortunately, there

are only two curves associated with this function. One is in the first quadrant while the second is

in the third quadrant. Thus, only one half of each channel can be bounded. In order to correct this

deficiency, we note that general shape is close to what we want, but that we need to also get the

same curves on the opposite side of each semi-axis. This can be readily accomplished by simply

taking the square of the equation that we started with. This means that both the original equation

y = 1/x as well as the additional equation y = -1/x are satisfied when we use x 2 = 1/y 2. It is the

additional equation that inserts the previously missing curve components for the second and fourth

quadrants. The result is symmetric as is the equation. These are illustrated in Fig 1 (a) and (b).

The above equations between x and y can also be readily expressed in the form of U(x, y) = O.

In particular, the symmetric equation is defined with U(x, y) = 1- x2y 2. Alternatives are provided

by a multiplication with any strictly positive or negative quantity. Such multiplication's will not

change the 0 set of U(x, y). That is, the level curves at constant 0 as defined by U(x, y) = 0 will

be the same. With the current choice, the value along each axis will be unity. This will decay

as the axial regions are departed. The decay will continue through the level curves that bound

the channels and be negative outside of them. Because of this continuous decay, the gradient of

U(x, y) will be pointing into the channels from each point on the channel walls. As we will see,

a requirement for the surface definition is that it be oriented in such a way that the wall normal
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vectors point into the region to be gridded. Thus, this choice of sign, will at least, possess the

convenience of providing the gradients with the preferred orientation. To complete the definition of

the physical region, each channel must have an end. This is easily accomplished by specifying four

straight lines which successively cap off each channel with a perpendicular slice and with normals

that are oriented into the physical region. In level surface form, a straight line with normal (a, b)

is given by U(x, y) = ax + by + c (Fig 1 (b)). Should a surface be given where the normal is not in

the correct direction, then a reversal of orientation can also applied in the TIL code with the flag

_' w O" •

As one might wish to make the channels arbitrarily long with constant cross-section, a defi-

ciency immediately appears. That is because the channel width is decreasing at a rate inversely

proportional to the distance away from the origin. A partial solution to this problem is to insert

a parameter a into the level surface definition to arrive at U(x, y) = a - x2y 2. Then, at least,

the value of a Call be chosen relative to the distance from the origin. This will assure that the

cross-section at the cap is not too close to 0. However, it will also mean that tile channels may be

too fat at closer distances. Thus, a more substaaltial correction is needed. For this purpose, the

flmction U is generalized to adnfft a more desirable asymptotic behavior. It is given by

U(x,y) = a + b. x 2 + c. y2 - x 2.y2 (1)

The strategy, here, is to add pure quadratic terms in both x and y so that as either x or y becomes

large near an axis, one of the new terms will become significant to the same order of the last term in

the expression. Since each of the 4 channels behaves in the same manner, we need to examine only

one to see what is happening. Thus, we will focus our attention on the positive x-axis. Specifically,

if the position vector r = (x, y) is moved away from the origin but stays in the region near the

positive x-axis, then the ordy significant term in U(x, y) is x2(b- y2). Thus, the channel "radius" is

nearly y = _ which means that the chamM cross-section is nearly twice that. In a more analytical

sense, we can rearrange the equation U(x, y) = 0 to cast it into the form

y2_b - a+c'Y 2

Upon examination, the numerator on the right hand side is clearly bounded since the position

vector lies near the x axis which in turn implies that y cannot become arbitrarily large. However,

the denominator does become arbitrarily large as we go arbitrarily far along the positive x-axis.

As a consequence, the right hand side becomes progressively smaller as we travel along the positive

x-axis. With this clear observation, we see that the equation rapidly reduces to something like that

of setting the left hand side to 0. The error term (call it E) in tlfis process is then the right hand

side. It tells us how much deviation there is from our desired asymptotic lines. The asymptotic fines

are at y = v_ and y = -V_. As the channel bomldaries emerge from the jlmcture near the origin,

they approach the asymptotic fines from the outside. To insure that they stay on the outside, E

must be positive for the actual channel "radius" is y = V_ + E. Tiffs positivity condition then

becomes a conditio_ on the r_arameters which is that a + bc must be positive. With v/b and v_

given as the radii of the channels along the respective x and y axes, the condition really becomes

a condition upon the choice of a (Fig 1 (b)).

At this stage, we have successflflly constructed a level surface flmction for the 2D case of four

channels which smootlfly come together at the origin. The next step is to see if it can be generalized

to a system of fewer channels. For tlfis purpose, we consider the basic form of U(x, y) that was

already seen to be successflfl. Upon examination of the last equation where the right hand side

was considered to be a positive error term E, the prior solution would not exist if b were negative
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rather than positive. With a constant negative value for b, the left hand side is strictly positive

and bounded away from 0 while the right hand side approaches 0 with larger values of x. This

means that the equation cannot be satisfied for large x. Thus, it must be bounded in x. In fact,

by solving for x as a fimction of y we get

l a + cy 2x= + -b+y2 (3)

which is certainly well defined when b is negative. This function gives the contour on either side of

about the x-a,xhs and crosses it with a value of ±_---_b" The asymptoticthe y-axis. It is symmetric

the contour will bulge out a distaslce of _ - _ as it crosses thehnes locatedare at ±v _. Thus,

x-axis, ff a = -bc, then there is no bulge. This can also be seen by a direct substitution into the

above equation since it then reduces to x = +v _. The result is that the chaunel walls are exactly

the asymptotes.

As we have just witnessed, a negative value of the parameter b means that there is no tube

in the corresponding x-axis directions. Unfortlmately, it kills off the channels on both tile positive

and negative x-axis at once. This leaves the rather mffnteresting case of a single straight channel.

To get to the next level of interest, we need to have a channel on one side but not the other.

We shall thus consider the case for a channel along the positive x-axis wlffch fillets into a channel

along the entire y-axis. This will reqlfire b to be negative along tile negative x-axis and positive

along the positive x-axis. It also means that b must depend upon x as opposed to its previous

role as a constant. Since it still represents the square of the chamwl radius, it must, at the very

least, approach a constant value with increasing x. This will then assure us of a channel with

fixed cross-section. To achieve that fixed state within the physical region lm(ler consideration, it

is important to have the approach be slffficiently rapid. With these motivational facts, we need to

use an asymptotic blending function wittl a rate which cast 1)c controlled. An ideal candidate for

tiffs purpose is the hyperbohc tangent. To allow all possibihties, we shall write b in the form

b = p. f(x) + q. [1 - f(x)] (4)

where f(x) = [1 + tanh(wx)]/2

The allowed concta_tts zlong the respective positive and negative x-axis are respectively p and

q. To consider the case of interest, the value of q is negative while the value of p is positive. This

means that we will only have a channel of radius v_ along the positive x-axis. As the blending

function f(x) leaves the origin, it approaches 0 along the negative x-axis and 1 along the positive

x-axis. The rapidity with which it approaches each value is controlled by the damping factor w.

(see Fig 1 (c)). While the hyperbohc tangent construction is convenient, it is certainly possible to
consider alternatives which can serve the same purpose.

One attractive alternative is to consider a rational polynomial. Since the level surface function

U(x, y) is a polynomial, tiffs would represent the most pure method since it would keep the entire

operation within the domain of polynomials. That is because a coefficient hke b appears hnearly

and thus so does f(x). As a consequence, a multiphcation by the polynonfial denominator of

the rational f(x) will produce a new overall eqnivalent U(x, y) that is entirely a polynomial. In

mathematical terms, this means that we remain within the context of what are called algebraic

varieties (a term from algebraic geometry).

With this motivation, we proceed. The conditions which nmst be met are that the blending

function go from a constant value of q ah)ng tlw negative x-axis to another constant value of p
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along the positive x-azzis. Fo', this to happen asymptotically on either side of the origin, the highest

power of x in both the numerator and the denominator must match. The asymptotic value in this

process is then the ratio of the coefficients for these respective highest powers. This, however, is

just one number. But we actually need two different numbers if we wish to match two asymptotic

values. Thus, this tectmique fails.

The only hope to retrieve it is to allow a large growth in negative values as we migrate along

the axis in which there is to be no channel. For example, consider b to be the rational function

x3/(l+x3). This has a singularity (pole) at x = -1. Departing the pole in the positive direction, the

function increases from arbitrarily large negative values, passes through the origin, and continues

along the positive x-axis to approach tile asymptotic value of 1 from below. Departing the pole in

the negative direction, the fimction decreases from arbitrarily large positive values and approaches

the same asymptotic value from above. Thus, we must use the function on only the positive side

of the pole. With the pole of b at -1, we shall consider a channel radius of 0.5 along the y-axis.

This will be a safe distance away. We. can then expect to have the wall on the negative side of the

vertical channel to pass through tile tile x-axis (y -- 0) somewhere between a value of the chamml

asymptote (x = -0.5) asld the pole of b (at x = -1). That offset distance will be determined by

the choice of leading parameter a. To give a specific case, we will set a = 1. With this form, it is

then natural to view tim contour as a fimction x of the variable y. Tiffs fimction is smooth and

symmetric about x = 0. Upon evaluation at y -- 0, the level surface flmction reduces to a fifth order

equation in x whicll has an approximate sohition of x = -0.84. By separating out y, an evaluation

at the nearby x = -0.8 yields y = :t:0.92. Thus we see the trend of going from the negative peak

at -0.84 at y = 0 and dropping steadily to the asymptotic value of-0.5. Here, the offset distance

is 0.34. In summary, we have witnessed that, wlffle it is possible to use rational functions for tim

blending, more care and cleverness is required in its execution and the overall format is much more

restrictive. In tiffs paper, we will tlms use the flexil)ility of transcendental flmctions st) that we

caal conveuiently eml)loy mlrltiple asymptotes in a single t)lending flmction. In l)articular, we shall

utilize the hyperbolic tangent.

Three dimensional models

Having estabhshed tile basic properties in two dimensions, the extension into three dimensions

can be discussed with more brevity. To begin, the 2D level surface fimction U(x, y) = a - x2y 2 is

replaced by the 3D generahzation [5]

U(x,y,z) = 1 - (x2y 2 + x2z _ + y2z2) (5)

where now r = (x,y,z) and r = ]r] = x/x 2+y2+z 2. Tiffs gives the parallel to the previous 2D

curves that decayed at the rate of 1/r as each axis was traversed to infinity. For the same reasons

the one can be replaced by a parameter "a" to displace the effect of the decay. As before, this does

not remove the decay. The correction to pernfit constant cross-sections is the same as before. This

requires second order terms in each of x, y, and z to asymptotically select the appropriate parts of

the core quartic term. This gives us the basic fimction

U(r) = a + bx 2 + cy 2 + dz 2 - (x2y 2 + z2z 2 + y2z2) (6)

where a, b, c and d are constants.

With a simple analysis, we can show that for a > -n(ln{bc, bd, cd}, b > 0, Eq. 6 defines a

surface of 6 tubes intersecting at origin. The separation in x is explicitly seen by consideration of
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thereorderedfunction

U(r)=x 2.(b-y2-z 2)+a+c.y2.4_d.z 2-y2z: (7)

As r departs the origin along the x-axis, the first term becomes more and more dominant over the

others. In the level surface equation U(r) = 0, a division by x 2 will give an equivalent equation

where all terms except the first will approach 0 as x grows in the outward vicinity of the x-axis. In

the limit, the equation is just the circular cylinder of radius v_ about the x-axis.

The axes of the 6 tubes lay on the +x, -4-y and +z axes respectively. Asymptotically, the cross

sections of the tubes are circles of radius v/b, _ and v/-d for tubes along the +x, +y and +z axes

respectively. The asymptotical error in radius is,

a+b+c+d
< (8)

2r 2

The value of a determines the abruptness of the intersection. A larger a gives a lesser degree

of abruptness of the intersection.

The signs of b, c and d deternfine whether tubes in the corresponding directions will present.

if, say, b is negative, the tubes in the ix direction will disappear.

The analysis also shows that for the surface implicitly defined by U(r) = const, it is well

behaved near const = O.

The function can be generalized to enable the tube branchs to be switched on and off individ-

ually:

U(r) = a + Bx 2 + Cy 2 + Dz 2 - (x2y 2 + x2z 2 + y2z2) (9)

where B, C and D are functions of r. A set of choices are:

+ (1 + tanh(4x)) + s; • (1 - tanh(4x))B = -1 +% •

+. (1 + tanh(4y)) + s_- • (1 - ta_da(4y))C = -l+s_

D = -1 + s +. (1 + tanh(4z)) + s_- • (1 - taad_(Iz))

(10)

Here, a particular cheice of B, C and D is selected by setting six switch parameters to 0 or 1. Each

of the parameters controls one tube branch and a value of 1 (value of 0) means there is (is not) a

tube in the corresponding direction.

s + = Oor 1 for tube along +x axis.

s + =Oor 1 for tube along +yaxis.

s + =Oor l for tube along +z axis.

s x = 0 or 1 for tube along - x axis.

Sy = 0 or 1 for tube along - y axis.

s z = 0 or 1 for tube along - z axis.

(11)

The functional form can further generalized to allow the cross section of the tubes to be superellipses

of different degrees. The fltrther generalized formulas are listed in Appendix A.

GRID GENERATION WITH GridPro/az3000

Now we show how one can generate grids for the region inside the brazlctfing tubes defined

above using GridPro/az3000.
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Thegridgenerationpro"ess with GridPro/az3000 starts with the design of a block topology

(domain decomposition into hexahedras). Let's first consider the case where all 6 tube branches

are present. The surface under consideration is

U(r) = 2 + x 2 + y2 + z 2 _ (x2y2 + x2z 2 + y2z2).

Here, all 6 tube branches have the same radius, 1. We also decide that the grid will be generated

in the region -5<x < 5, -5< y< 5and-5< z<5.

In order to have the flexibility of changing configuration easily, we will build the block topology

in a component style. A component in GridPro/az3000 represents a subtopology or a portion

of the block topology that is conveniently grouped such that it can be reused in a similar fashion

as a subroutine can in, say, Fortran.

How a block topology should be designed and how the various components should be chosen

depend on marly factors. One of our considerations here is to be able to change the configuration

to include a different number of tubes rather quickly.

At this step, we choose to use two top level components, a canter component for tile center

intersection and a tube for a tube branch. Each of these two components is constructed by one

or more copies of tim component, soc. The soc component, in turn, is constructed by properly

linking two loop4 components into a hyperquad.

These topology components are shown in Fig 2. Here, a solid dot is a block corner defined in

the component, a solid line is a block edge defined in the component, and a circle is am imported

corner into the component. On the corner and link level, the components soc and tube look the

same. They differ maildy in whether the outer quad defines a block face. It is a face for soc, and

it is not a face for tube.

To run GridPro/az3000, the topology design or components must be programmed in the

Topology Input Language(TIL). The complete TIL code for tiffs case is listed in Appendix B. In

the following, we focus on ttLree components to illustrate the general flavor of TIL programming.

The most basic component in the above design is loop4, lit TIL code it looks like this :

Program 1 TILcomponent loop4

COMPONENT loop4(sIN surfl,surf2, cIN pos[1..4],cornl[1..4],corn2[1..4])

BEGIN

c 1 ¢<pos:l> -s surfl surf2 -L cornl:l corn2:l;

c 2 ©<pos:2> -s surfl surf2 -L cornl:2 corn2:2 1;

c 3 @<pos:3> -s surfl surf2 -L cornl:3 corn2:3 2;

c 4 ©<pos:4> -s surfl surf2 -L cornl:4 corn2:4 3 1;
END

Tiffs component imported two surfaces surfl and surf2, anti three corner arrays of length 4,

pos[1..4], cornl [1..4] and corn2[1..4], surf l, surf2, pos, cornl anti corn2 are sinfilar to

what are termed as (humny variables in Fortran subroutines. They do not introduce new surfaces

or corner to the topology. Instead, they oIdy provide a mechanism to refer to existing corners

and surfaces defined outside of the component. Corners and surfaces are constructed with corner

aald surface defufftion statements in components, and by INPUTing components that have corner

aald surface defilfftion statements in them. hi loop4, 4 corners are defined. For every call to tiffs
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Figure 2: Topology components. (a). The most basic component, loop4. (b). The component,

sac. It is constructed from two loop4's. (c). The component, center. It is constructed from two

sacs. Also, 8 open finks for connecting to a tube branch are shown. (d). The component, tube. It

is constructed by a sac with certain boundary conditions. Shown are 8 open links for connecting
to the center.

component, 4 corners will be constructed and inserted into the topology. A corner is generally

defined by specifying a corner id, an initial position, a list of surfaces that the corner is supposed

to be on, and a list of existing corners to which the current corner should have links. The surface

list and link list are optional. In this case, the initial positions are provided by the import variable

pos. All 4 corners are attached to both surfl and surf2. In addition, the corners are linked to the

imported corners cornl and corn2. They are also properly linked to each other to form a 4-corner

loop. The notation cornl : 3 simply means the 3 Td element of array cornl.

Two loop4's are used to construct the component sac.

Program 2 TIL component sac

COMPONENT sac(siN tuba,tuba_end,cIN pos[l..4],corn[l..8])

BEGIN

VECTOR p[l..4],shift;

INPUT I loop4(sIN (tube),(tube_end),

cIN (pos:l..4),(corn:1..4),(-4),
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c0?_ (I .4));

<shift> = O.05*0.25*(<pos:l>+<pos:2>+<l_S:3>+<pos:4>);

<p:l> = 0.8_<pos:l>+O.2*<pos:3>-<shift>;

(p:2> = 0.8_<pos:2>+O.2*<pos:4>-(shift>;

<p:3> = 0.8_<pos:3>+O.2$<pos:l>-<shift>;

(p:4> = 0.8*<pos:4>+O.2*<pos:2>-<shift>;

INPUT 2 loop4(sIN (tube_end),(-l),

cIN (p:1..4),(corn:S..8),(l:1..4),

cOWl" (1..4));

END

Here, vector operations are used to position the second loop4 relative to the first. The key word

c0trr exports some or all corners defined in the inputing component. Other components are similarly

constructed.

To complete the topology design, we need to have a head component to assemble the various

components together. This component must be the first one in the file. For our case, this component

is named Branching_Tubes:

Program 3 TIL component Branching_Tubes

COMPONENT Branching_Tubes()

BEGIN

VECTOR cut_x,cut_X,cut_y,cut_Y,cut_z,cut_Z;

s 1 -implic ''6jxXyYzZ.surf'' ; # 6 tubes

# s 1 -implic ''6jxXyYZ.surf'' ; # 5 tubes

# s 1 -implic ''6jxXyY.surf'' ; # 4 tubes

# s 1 -implic _'6jXYZ.surf'' ; # 3 tubes

<cut_x> = {-5, 0, O)

<cut_y> = { 0,-5, 0}

<cut_z> = { 0, 0,-5}

; <cut_X> = { 5, O, 0};

; <cut_Y> = { O, 5, o};

; <cut_Z> = { O, O, 5};

INPUT 1 center(siN (1), cOUT (3:1..48));

INPUT 2 tube_x(slN (1),clN (cut_x),(l:l

INPUT 3 tube_X(slN (1),clN (cut_X),(l:l

INPUT 4 tube_y(slN (1),tIN (cut_y),(l:l

INPUT 5 tube_Y(slN (1),tIN (cut_Y),(l:l

INPUT 6 tube_z(slN (1),clN (cut_z),(l:l

INPUT 7 tube_Z(slN (1),tIN (cut_Z),(l:l

END

.48));

.48));

.48));

.48));

.48));

.48));

Here a # symbol introduces colmnents ending at the end of the line. A TIL statement starting

with the key word s defines a surface. Here, one surface is defined. It is an implicit type and the

surface specification is in the file, 6jxXyYzZ.surf wtfich contains the surface in Eq. 9..12 with all six
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Figure 3: A grid for the inside of a 6-tube intersection. The thicker lines axe block boundaxies. (a).

azl outside view. (b). a cut away view.

tube branches present. The file, 6jxXyYzZ.surf is in the C prograznming language macro definition

style and is listed below.

Program4 Surface File 6jxXyYzZ. surf

#define FUNCU (xa=x*x, xl= xa*tanh(x*4), \

ya=y*y, yl= ya*tanh(y*4), \

zaf_*z, zlffi za*tanh(z*4), \

2.0 + xa ÷ ya + za - xa*ya - ya*za - za*xa)

For a non-build-in implicit surface, up to 9 pre-named macros must be defined. However, for a

fixed surface such as the one we have here, only FUNCU is needed, x, y and z axe the coordinate

variables, and xt, yl, zl, xa, ya and za axe intermediate variables, xl, yl and zl axe not really

used in the final formula. They will be used in a 5-tube surface. They axe included here for the

reason of easy comparison.

In Program 3, following the surface definition, a center component and 6 tube branches

components axe inputed. Six vectors axe used to allow different choices of tube lengths. A high

quality grid can be generated by running GridPro/az3000 on this topology. Fig 3 shows some

aspects of the generated grid. It consists of 31 elementary blocks. Grid densities, clustering and

other aspects of grids can be readily adjusted by setting proper paxazneters.

Now, suppose we want to generate a grid for the same surface, but without the tube branch

on the -z axis. The head component will be modified to look like this:

Program5 Modified TIL component Branching_Tubes
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COMPONENT Branching_Tubes()

BEGIN

VECTOR cut_x,cut_X,cut_y,cut_Y,cut_z ,cut_Z;

# s 1 -implic ''6jxlyYzZ.surf'' ; # 6 tubes

s 1 -implic ''CjxlyYZ.surf'' ; # 5 tubes

# s 1 -implic ''6jxXyY.surf'' ; # 4 tubes

# s 1 -implic ''6jXYZ.surf'' ; # 3 tubes

<cut_x> = {-5, O, 0}; <cut_I> = { 5, O, 0};

<cut_y> = { 0,-5, 0); <cut_Y> = { O, 5, 0};

<cut_z> = ( O, 0,-5}; <cut_Z> = { O, O, 5};

INPUT 1 center(siN (1), cOUT (3:1..48));

INPUT 2 tube_x(sIN (1),cIN (cut_x)

INPUT 3 tube_X(sIN (1),cIN (cut_X)

INPUT 4 tube_y(sIN (1),cIN (cut_y)

INPUT 5 tube_Y(sIN (1),cIN (cut_Y)

# INPUT 6 tube_z(sIN (1),cIN (cut_z)

INPUT 7 tube_Z(sIN (1),cIN (cut_Z)

END

(1:1

(1:1

(1:1

(1:1

(1:1

(1:1

.48));

.48));

.48));

.48));

.48));

.48));

We used a different surface specification file "6jxXyYZ.suxf", which has only 5 tube branches on

+x, +y and +z axes respectively. To accomplish this in "6jxXyYZ.surf", the FUNCU macro is
defined as:

Program6 Surface File 6jxXyYZ. surf

#define FUNCU (xa=x*x, xl= xa*tanh(x*4), \

ya=y*y, yl= ya*tanh(y*4), \

za=z*z, zl= za*tanh(z*4), \

2.0 + xa + ya + zl - xa*ya - ya*za - za*xa)

The second thing we did in Program 5 is to comment out INPUT 6, which builds the sub-topology

for a tube branch on the -z axis. Rmming GridPro/az3000 on this topology yields the grid

shown in Fig 4. Similarly, we can define a surface that has 4 tube branches or 3 tube branches,

and appropriately m_dify the component Branching_Tubes for the corresponding topologies. The

grids are shown in Fig. 5.

CONCLUSION

We have now witnessed an application of implicit surfaces in the full cycle of geometry modeling

and grid generation using GridPro/az3000. We have noted the high quality of both the geometry

model and the generated grid therein. We have also noted the ease with which changes can be made
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Figure4: A grid for the insideof a 5-tube intersection. The thicker lines are block boundaries. (a).

an outside view. (b). a cut away view.

to both aspects. The example class of multi filleted tubes has demonstrated a general philosophy

in a rather concrete setting which helps to establish a basic lmderstanding.

In a forthcoming paper, we will develop a well-defined and easy-to-follow procedure for implicit

surface modeling which allows the user to efficiently assemble simple implicit surfaces (e.g cylinders)

into a complex whole (e.g intersecting cylinders). With these results, we have provided a powerful

means to address many analysis applications, and moreover, have opened a path in the direction

of rapid prototyping in grid generation.
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(c) (d)

Figure 5: Grid for the inside of a 4-tube and 3 tube intersections. The thicker lines are block

boundaries. (a). an outside view for the 4-tube case. (b). a cut away view for the 4-tube case. (c).

an outside view for the 3-tube case. (d). a cut away view for the 3-tube case.
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APPENDIX A

To enlarge the scope of the geometry modeling for tube intersections, the function is generalized

to allow the cross section of the tubes to be superellipses of different degrees that can be switched

on and off individually. This generalization is given by,

U(r) = A + BX 2 + CY 2 + DZ 2 - (X2Y 2 + X2Z 2 + y2Z2)

where A, B, C, D, X,Y and Z are functions of r.

i_ , ---_ I_<') z=l _--_-I "¢_>
x : S_(r)l "(_) r = ]Su(r) ' Sz(r) "

r 2

+

+

[nx+ " 1 + tanh(4x) 1 - tanh(4x)
2 + n_ • 2 ] "x2

[n+. 1 + tan_h(4y) 1 - . y22 + n_-- tan_h(4Y)]2

[n+. 1 + tanh(4z)2 + n7 " 1 - tan.h(4z)].2 z2} "

s.(,) = Z{ =_
r 2

1 + tanh(4y) 1 - tanh(4y)], y2
+ [a+' 2 + a;y. 2

1 + tanh(4z) 1 - tanh(4z)], z2 } .
+ [ax+" 2 + a_-z- 2

[ay+. 1 + tanh(4x)2 + ay-_ • 1 - tanh(4x)].2 x2 + y2

+ [a+z " 1 + tazfl,(4z) _ 1 - tanh(4z)2 + a_ • 2 ] " z2} "

[a+x " 1 + tanh(4x)2 4- a_-_ • 1 - tanh(4x)].2 x2

1 + tanh(4y) 1 - tanh(4y)], y2 + z 2} .+ [a%. 2 + a:_. 2

A = constant(say, 1.2)

B = -1 + s+ • (1 + tanh(4x)) + s_- • (1 - tanh(4x))

C = -1 + s +- (1 + tanh(4y)) + s_- • (1 - tanh(4y))

n = -1 + s + • (1 + tanh(4z)) + s_- • (1 - tanh(4z))

These functions are controlled by a set of parameters. They are,

s + =0or 1 for tube along +x axis. s x =0or 1 for tube along -x axis.

s_ =0or 1 for tube along +yaxis. Sy =0or 1 for tube along -y axis.

s + = 0or 1 for tube along +: axis. s z = 0or 1 for tube along -z axis.
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n + - power of super ellipse

n_ - power of super ellipse

n + - power of super ellipse

n_- - power of super ellipse

n + - power of super ellipse

n_" - power of super ellipse

a+y length of x-senu

a_-_ - length of x-senu

a+_ - length of y-selm

ay-x - length of y-selm

a+x - length of z-senu

az-_ - length of z-selm

for tube along +x axis.

for tube along -x axis.

for tube along +y axis.

for tube along -y axis.

for tube along +z axis.

for tube along -z axis.

axis for tube on +y axis. a+_ - length of x-semi

axis for tube on -y axis. a-_z - length of x-semi

axis for tube on +x axis. a+z - length of y-senu

axis for tube on -x axis. au-z - length of y-senu

axis for tube on +x axis. a+u length of z-semi

axis for tube on -x axis. azu - length of z-seres

axis for tube on +z axis.

axis for tube on -z axis.

axis for tube on +z axis.

axis for tube on -z axis.

axis for tube on +y axis.

axis for tube on -y axis.

APPENDIX B

Files used to generate the grids with GridPro/az3000.

Program7

SET GRIDDEN 6

COMPONENT Branching_Tubes()

BEGIN

VECTOR shift_x,shift_X,shift_y,shift_Y,shift_z,shift_Z;

s 1 -implic "6jxXyYzZ.surf"

# s 1 -implic "6jxXyYZ.surf"

# s 1 -implic "6jxXyY.surf" ;

# s I -implic "6jXYZ.surf" ;

; # 6 tubes

; # 5 tubes

# 4 tubes

# 3 tubes

<shift_x> = {-5, O, 0}; <shift_X> = { 5, O, 0};

<shift_y> = { 0,-5, 0}; <shift_Y> = { O, 5, 0};

<shift_z> = { O, 0,-5}; <shift_Z> = { O, O, 5};

INPUT 1 center(siN (1), cOUT (3:1..48));

INPUT 2 tube_x(sIN (I)

INPUT 3 tube_X(sIN (I)

INPUT 4 tube_y(sIN (I)

INPUT 5 tube_Y(sIN (1)

INPUT 6 tube_z(sIN (1)

INPUT 7 tube_Z(sIN (1)

END

cIN (shift_x)

cIN (shift_X)

cIN (shift y)

cIN (shift_Y)

cIN (shift_z)

cIN (shift Z)

(1:1

(1:1

(1:1

(1:1

(1:1

(1:1

.48));

.48));

.48));

.48));

.48));

.48));

Topology File 6joint. fra
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# lines below are hidden from novice users

COMPONENT tube_x(sIN tube,cIN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:l..8)); END

COMPONENT tube_l(sIN tube,cIN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:9..16)); END

COMPONENT tube_y(sIN tube,cIN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:17..24)); END

COMPONENT tube_Y(sIN tube,cIN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:25..32)); END

COMPONENT tube_z(sIN tube,cIN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:33..40)); END

COMPONENT tube_Z(sIN tube,cIN shift,corn[1..48])

BEGIN INPUT 1 tube(siN (tube),cIN (shift),(corn:41..48)); END

COMPONENT center(siN tube)

BEGIN

VECTOR pos[l..4],x,y,z;

<x> = {1.5,0,0}; <y> = {0,1.5,0}; <z> = {0,0,1.5};

<pos:l> = <x> + <y> + <z>; <pos:2> = -<x> + <y> + <z>;

<pos:3> = -<x> - <y> ÷ <z>; <pos:4> = <x> - <y> + <z>;

INPUT 1 sec(sIN (tube),(-l),

cIN (pos:l..4),(-8), cOUT (1:1..4 2:1..4));

<pos:l> = <x> + <y> - <z>; <pos:2> = -<x> + <y> - <z>;

<pos:3> = -<x> - <y> - <z>; <pos:4> = <x> - <y> - <z>;

INPUT 2 sec(sIN (tube),(-l),

cIN (pos:l..4),(1:1..8), cOUT (1:1..4 2:1..4));

INPUT 3 shuffle(cIN (1:2 2:2 2:3 1:3 1:6 2:6 2:7 1:7

1:1 2:1 2:4 1:4 1:5 2:5 2:8 1:8

1:4 1:3 2:3 2:4 1:8 1:7 2:7 2:8

1:1 1:2 2:2 2:1 1:5 1:6 2:6 2:5

2:1..8 1:1..8),

cOUT (corn:l..48),

tube_xO(corn:l..8), tube_xl(corn:9..16),

tube_yO(corn:17..24),tube_yl(corn:25..32),

tube_zO(corn:33..40),tube_zl(corn:41..48));

g 1:1 1:5 3;

LABEL SHELL = e(1:1 1:5);

END

COMPONENT shuffle(cIN corn[1..48]) BEGIN END

COMPONENT tube(siN tube.cIN shift,corn[1..8])
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BEGIN

VECTOR pos [1..4] ,norm;

<norm> = [-<shift>] ;

s 1 -plane @(<norm>, <shiftY); # tube end

<pos:l> = 0.7*(<corn:l> + <shiftY); <pos:2> = 0.7*(<corn:2> + <shiftY);

<pos:3> = 0.7*C<:orn:_> + <shiftY); <pos:4> = 0.7*(<corn:4> ÷ <shiftY);

INPUT 1 sec(sIN (tube),(1),

cIN (pos:l..4),(corn:l..8), cOUT (1:1..4));

x f 1:1 1:3 corn:l corn:3;

END

COMPONENT sec(sIN tube,tube_end,cIN pos[1..4],corn[1..8])

BEGIN

VECTOR p[1..4],shift;

INPUT I loop4CsIN (tube),(tube end),

cIN (pos:l..4),(corn:l..4),(-4),

cOUT (1..4));

<shifty = O.05*0.25*(<pos:l>+<pos:2>+<pos:3>÷<pos:4>);

<p:l> = 0.8*<pos:l>+O.2*<pos:3>-<shift>;

<p:2> = 0.8*<pos:2>+O.2*<pos:4>-<shift>;

<p:3> = 0.8*<pos:3>+O.2*<pos:l>-<shift>;

<p:4> = 0.8*<pos:4>+O.2*<pos:2>-<shift>;

INPUT 2 loop4(bIN (tube_end),(-l),

cIN (p:l..4),(corn:5..8),(l:1..4),

cOUT (1..4));

END

COMPONENT loop4(sIN surfl,surf2,cIN pos[l..4],cornl[l..4],corn2[l..4])

BEGIN

c 1 @<pos:l> -s surfl surf2 -L cornl:l corn2:l;

c 2 @<pos:2> -s surf1 surf2 -L cornl:2 corn2:2 1;

c 3 @<pos:3> -s surf1 surf2 -L cornl:3 corn2:3 2;

c 4 @<pos:4> -s surf1 surf2 -L cornl:4 corn2:4 3 1;

END

Program8

step I: -S I00 -¢

write -a -D 3 -f grid.tmp

Program9

#define FUNCU (xa=x*x, xl= xa*tanh(x*4) \

ya=y*y, yl= ya*tanh(y*4) \
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ze=_*z, 71= za*tanh(z*4) \

2.0 + xa + ya + za -xa*ya- ya*za -za*xa)

Program 10

#define FUNCU (xa=x*x, xl= xa*tanh(x*4), \

ya=y*y, yl= ya*tanh(y*4), \

za=z*z, zl= za*tanh(z*4), \

2.0 + xa + ya + zl -xa*ya- ya*za -za*xa)

Program 11

#define FUNCU (xa=x*x, xl= xa*tanh(x*4), \

ya=y*y, yl= ya*tanh(y*4), \

za=z*z, zl= za*tanh(z*4),\

2.0 + xa + ya - za -xa*ya- ya*za -za*xa)

Program 12

#define FUNCU (xa=x*x, x1= xa*tanh(x*4), \

ya=y*y, yl= ya*tanh(y*4), \

za=z*z, zl= za*tanh(z*4), \

2.0 + xl + yl + zl -xa*ya- ya*za -za*xa)

Surface File 6jxlyYZ.surf

Surface File 6jxXy¥. surf

Surface File 6j XYZ. surf
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GridTool: A Surface Modeling and Grid Generation Tool

Jamshid Samareh-Abolhassani

Computer Sciences Corporation

NASA Langley Research Center

Hampton, Virginia

GridTool is an interactive program for grid�geometry applications. Most grid generation programs represent geometry by a set

of structured points which is not consistent with the Computer Aided Design (CAD) representation. The purpose of GridTool
is to bridge the gap between the CAD and the grid generation systems.

Introduction

GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of
grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface
representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the
original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD

surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID

I.L].and FELISA I21 systems, and it can be easily extended to support other unslxuctured grid generation systems.

The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the

entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and

optimization process.

GridTool is written entirely in ANSI "C", the interface is based on the ,F_dl_,q..._Q_Ig.[_, and the graphics is based on

the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is

allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid.

GridTool data structure is based on a link-list structure which allows the required memory to expand and contract

dynamically according to the user's data size and action. Data structure contains several types of objects such as points,

curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or

in their highlighted colors as defined by the resource file which will be discussed later.

Surface Representation and Grid Projection

References [41-[61 contain detailed descriptions of Surface Representation and Grid Projection. For completeness sake, a

short summary will be provided here. In CAD systems, curves and surfaces are represented typically by NonUniform
Rational B-Spllnes (NURBS) which is the most general mathematical representation for curves and surfaces. Most

parametric curves and surfaces can be converted to an equivalent _ representation without any loss of

accuracy.

The surface-grid can be generated either in a parameter space or on approximated/simplified NURBS surfaces. Grids

generated in a parameter space have two serious restrictions. The first restriction is that the choice of surface
parameterization affects the CFD surface-grid. As shown in Refs. Ref. 6 and Ref. 9, a poor parameterization may cause
the CFD surface-grid to be highly skewed. The second limitation is that a CFD surface-grid can not be generated over

several overlapping NURBS surfaces which is the most serious restriction.

In the second method, the NURBS surfaces are approximated by a few bi-linear patches, then, the surface grids are

generated based on these bi-linear patches. The resulting surface grids are close but they are not on the original NURBS
surfaces. This problem can be alleviated by projecting the resulting grid points onto the original NURBS surfaces. This

method is easy to implement, and it avoids the problems associated with surface parameterization. This method of grid

generation will require a very robust and fast grid point projection.

Advancing Front Applications (VGRID System)

In this section, using GridTool for VGRID system is described. VGRID system is a robust and fast unstructured grid

generator developed by VIGYAN Inc. for NASA Langley Research Center. The VGRID code is fully functional and

supported and can be obtained from NASA Langley Research Center (contact: Dr. Neal Frink,
N.T.FRINK@ I_aRC.NASA.GOV). The VGRID system is based on an advancing front technique, and readers are
referred to an excellent and detailed report by Parikh, Pirzadeh and I.,6 hner VGRID[II. A short description of advancing

front technique will be given here for the sake of completeness.

The advancing front method is an unstructured grid generation method similar to parabolic and hyperbolic methods for

BlOt"FIIJ.'I 
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structured grid generation. Grids are generated by marching from boundaries (front) towards the interior. First, the

domain of interest is subdivided into a set of patches which cover the entire domain. Next, these patches are triangulated
to form the "initial front". Finally, tetrahedral elements are generated based on the initial front. As tetrahedral elements

are generated, the "initial front" is updated until the entire domain is covered with tetrahedral elements, and the front is

emptied. The above process can be summarized in the following steps:

1. subdivide the domain of interest using GridTool,

2. specify grid spacings using GridTool,
3. generate the "initial front" using VGRID,

4. update the GridTool restart file to reflect the changes from VGRID using GridTool,
5. project the front onto the CAD surfaces using GridTool,
6. generate the volume grid using VGRID,

7. post-process the volume grid using VGRID.

The first step is to define the boundaries for the domain of interest. These boundaries are then subdivided into smaller

patches using GridTool. In this paper, a patch is synonymous with a three-dimensional polygon. In the VGRID system,
three types of patches are allowed: triangular Barnhill-Gregory-Nielson patches (three arbitrary sides), bilinear

transfinite Coon's patch (four arbitrary sides), and planar patches (defined by an arbitrary number of sides, all lying in

one plane). Each patch consists of several sides, and each side consists of several curves. In step 2, the grid spacing is
defined by nodal and linear sources. An excellent description of these sources can be found in Ref. I101. In step 3, all
patches are triangulated to form the "initial front" using the VGRID system. In this step, VGRID may change the patch
orientation. If so, in step 4, the GridTool restart file must be updated to reflect the changes. In step 5, the "initial front" is
projected back onto the original surfaces using GridTool. In step 6, the volume grid is generated in one run or several

restart runs using VGRID. In step 7, the volume grid can be post-processed to enhance grid quality. The details for steps
3, 5 and 6 can be found in Ref. 1.

GridTool Interface

The interface consists of a main panel and several sub-panels. The panels consist of a set of buttons, input-fields, sliders,
dials, positioners, browsers and message boxes. This section describes the user interaction with the GridTool interface.

The user interacts with GridTool program by pointing/clicking the mouse buttons and the keyboard while the cursor is

over a panel or the display window. Panels can be activated by pressing their buttons from the main window. They can be
stowed away either from the panel itself by pressing the "Stow" button or by pressing the panel's button in the main

panel. Whenever a panel is activated, the color of its button in the main panel will be changed from blue to green. Here is
a list of actions and how they can be accomplished in the panels.

• To press a button, place the the cursor over the button and click with any of the three mouse buttons.

• To change the value in an input-field, place the the cursor over the input-field, click with any of the three mouse

buttons, enter the value in the input-field, and complete the input by entering the "Return" key. The "ESC" key
can be used to delete the entire field, or the "BackSpace" key can be used to delete a portion of it.

• To change the position of a slider, dial or a positioner, hold and drag the right mouse while the cursor is over the
object.

• To select an object from a browse, place the the cursor over the object in the browser and click the right mouse.

The background color of the selected object in the browser will change from black to green when they are selected.

Fig. 1 Main Panel

ORIGINAL. IS
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Hot Keys

A series of h.9.t.Xf_ are available in the display window which allow the user to accomplish some tasks without use of the

panels. These keys can be activated by placing the cursor over the display window and clicking the hot key. The hot keys

can be used to translate/rotate/zoom the object, to pick or to create an object.

List of Hot Keys

Keys
Left Mouse

Middle Mouse

Right Mouae
SHIFT + Mouse

b

o

C

f

F

g

G

m

n

p
P

r

$

S

t

w

x

F1

F2

F5

F6

F7

F8

FI2

Action

Translate (gridgen mode), rotate x, and y (PLOT3D mode)

Zoom, rotate z (PLOT3D)

Translate (PLOT3D)

Sparse Mode

Make a source active

Make a curve aotiv@

Move o@nter of rotation to center of the active curve

Make a patch active

Move center of rotation to center of the active patch

Save the orientation

Restore the orientation

Move the active point to an existing point on a curve

Move the active source to an existing source and copy spacing

Make a point active

Move center of rotation to active point

Reset the image

Make a surface active

Move center of rotation to center of the active surface

Move the active point to an existing point on the active surface

Turn the active surface on/off

Turn axes on/off

The $amJ as "Next Curve" button

The same as "Next Point" button

The same as "Next Patch" button

The mama as "Next Edge" button

The same as "Find Edge" button

The same as "Reverse the Active Patch" button

Turn Surfaces on/off

GridTool Executions

GridToo] can be executed by typing "GridToor' or "GridTool options filename", and here is a list of command line

tratumtat,

Command Line Arguments

Arguments

-h

-f restart filoname

-gf gridgen_filename

-g gridgen_filenan_

-pf plot3d_filename

-p plot3d_filename

-IGES IGES filename

-felisa

Action

help

read a restart file

read a gridgen formatted file

read a gridgen binary file

read a plot3d formatted file

read a plot3d binary file

read an IGES file

run GridTool in FELISAMode

When GridTool starts, it looks for the resource file, ".GridTool". This file could be at either the user's root, the current

directory or defined by "setenv" unix command as "setenv GridTool_resources my_resource_filename". Users may
change the resource file by customizing it to their needs. If the resource file does not exist, GridTool will use the defaults
values which axe listed in the Av_endix A. The resource file may contain the preferred colors for displaying objects and

the boundary conditions. A comment line can start either with a space or "#" in the first column. The default boundary
conditions are based on the USM3D [11] code developed by Neal Frink at NASA/Langley Research Center. In the

following sections, the application of GridTool for setting up data files for an advancing front technique (VGRID system)
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is described. One important feature of GridTool is that each operation is accomplished in one step only. Therefore users
can create and manipulate objects randomly.

There is some limited on-line help which can be activated by pressing the "Help" button in the main panel which in turn

will open a browser. As the user moves the cursor over any object in the panels, a description of that button will be given
in the browser.

I/O

GridTool is capable of reading geometry/grid definitions in ASCII or C-Binary formats.

File input/output formats

File Type Options

read

RESTART read/write

read/write

read/write

CURVES read/write

LaWGS r15] read/write

-_ read/write

VGRID-FRONT [i] read/wrlte

VGRID-FRONT _Update) fl] read/write

VGRID-d3m fl] read/write

VGRID-d3m _U_date)[l] read/wrlte

FELISA system f21 read/write

(Binary as well)

(Binary as well)

The IGES (Initial Graphics Exchange Standard) files are based on the industry standard as described in

[121. GridTool is only capable of accepting the following entities: copious data (entity 106), lines (entity 110), parametric

splines (entity 112), parametric surface spline (entity 114), NURBS curves (entity 126) and NURBS surfaces (entity
128). Surfaces defined by points can be read/written in GRIDGEN [131, PLOT3D [141, LaWGS [151 or VGRID-NET 1_1
formats.

The surface triangulation, "the initial front", can be read/written in a front format defined by the _ or
_. The necessary information for advancing front methods can be read/written either in a "d3m"

input-file format for VGRID system [1] or in a "dat" input-file format ._,,L_LL_KCJ_L_. An ASCII "restart" file can

be read/written at any time, which contains all created/modified/read objects. It is possible to combine several restart files
to form one. This allows several people to work on the same configuration and combine all pieces at a later time. Before
reading/writing a "d3m", "front" or a "dat" file, a "project name" must be selected. This name is used as the file name

suffLx for all necessary files (e.g. project.front). Once the file is read/written, the "Files" browser will be updated. To
update the list displayed in "Files" browser, press the "Update" button.

Fig. 2 I/0 Panel
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Display and Viewing Controls

The display can be controlled either from the display window using the mouse and the keyboard, or from the "Viewing

Controls" panel. The mouse can be used either in a default mode or in a PI.,O'I3D [141 mode. The mode can be changed

by pressing the "PLOT3D" button which is located in the "Viewing Controls" panel. The default mouse mode is similar to

the GRIDGEN system [13]. In the default mode, while pressing the left mouse button, left, right, up, and down mouse

movements will cause the object to translate in the corresponding directions. By holding the middle mouse down, up and

down mouse movements will cause the object to zoom out and in. The object can be rotated using the numeric keypad,

and this will be explained later. In the PLOT3D mode, by holding the left mouse down, left/right and up/down mouse

movements will cause the object to rotate about the x and y screen coordinates, respectively. By holding the middle mouse

down, left/right mouse movements will cause the object to rotate about the z screen coordinate, up/down mouse

movements will cause the object to zoom out and in, respectively. By holding the right mouse down, left, right, up, and

down mouse movements will cause the object to translate in the corresponding directions.

Mouse Movements

Mode Movements LM (down) MM (down) RM (down)

Default, Right Translate Right N/A

Default, Left Translate Left N/A

Default, Up Translate Up Zoom out N/A

Default, Down Translate Down Zoom in N/A

PLOT3D, Right Rotate Screen y Rotate Screen z Translate Right

PLOT3D, Left Rotate Screen -y Rotate Screen -z Translate Left

PLOT3D, Up Rotate Screen x Zoom out Translate Up

PLOT3D, Down Rotate Screen -x Zoom in Translate Down

In either modes, the object can be rotated using the numeric keypad. The object can be rotated about two sets of axes:

screen coordinates and body coordinates (world). The top row of the numeric keypad, the "Num Lock", "fl' and "*" keys

control the rotation about the x, y and z world coordinates, respectively. The second row, the "7", "8" and "9" keys control

the rotation about the x, y and z screen coordinates, respectively. The rotation continues as long as the keys are pressed

down. The object can be rotated ninety degrees by holding the "PageUp" or "PageDown" key while pressing the

appropriate key on the numeric keypad. The object can be rotated in the reverse direction by holding down the "-" key

from numeric keypad and the appropriate rotation keys. The object orientation can be reinitialized by pressing the "r" key

which is the hot keys for resetting the object. All object manipulations can be accomplished from the "Viewing Controls"

panel as well.

Fig. 3 Viewing Controla Panel

Center of Rotation

This panel is designed to allow the user to move the center of rotation to an arbitrary point in space. The center of

rotation can be moved to: an exiting point by using the three sliders, "x", " y", "z" to centers of the active

surface/curve]patch]point by pressing the appropriate buttons. The center of rotation can be reset by pressing the "Reset

CR" button. The _, P, C, F, S can be used in the display window to move the center of rotation to the active point,

active curve, active patch and active surface.
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Fig. 4 Center of Rotation Panel

Surface Attributes

This panel is designed to allow the user to manipulate the surface properties. In order to change the background color of
the display window, the "Background" button in the "Attributes" panel should be pressed. Then, the color can be changed
by moving three sliders for the colors or by inputing the RGB color number (Red, Green, Blue) in the input-fields.

Fig. 5 Surface Attributes Panel

The surface properties such as color, direction and number of display paths can be changed in this panel. First, the"

Surfaces" button in this panel should be pressed, and then "On/Off' browser will appear. In order to change the properties
of some of the surfaces, first they must be turned on. This can be done either from the display window or from the"
On/Off' browser by placing the cursor over the surface number and clicking with the left mouse. In order to turn a

surface on/off from the display window, first the surface must become an active surface by placing the cursor over the

surface and hitting the hot_.q.L_ke"s". Then, the active surface can be turned on/off by hitting the hot_h.qL._y.ke"w". Once the

appropriate surfaces are turned on, then the properties can be changed. Surface colors can be changed by using the three

sliders for colors or by inputing the RGB color number in the input-fields. The direction of surfaces can be changed by

pressing the "Directions" button. The number of display paths can be changed by inputing the desired numbers of display

paths in u and v coordinates in the input-field for "number of display path" and then pressing "Change DP" button.

Projection Properties

This panel is designed for modifying the projection parameters, and it displays the projection parameters for the active

surface. For detail description of these properties, readers are referred to Refs. [41-[61. In this panel, it is also possible to
change the parameters such that part of a surface is displayed and projected to. This can be done by changing the limits
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ofthesurfaceparameters,us(minimum u), ue (maximum u), vs (minimum v), and ve (maximum v). The "ltraax" is the

number of iteration for the projection to converge. The "EPS" is the residual limit for the projection to converge. The "du"

and "dv" are the step size in u and v directions, respectively. The "magn" are parameters used to pull grid points to

boundaries, and their values range from 0-1.

1. "magl" for minimum v

2. "mag2" for maximum u

3. "mag3" for maximum v

4. "mag4" for minimum u

Fig. 6 Projection Propertiem Panel

Points/Curves

This panel contains several buttons, input-fields and a positioner, and they are used to create/modify/delete points and
curves. In GridTool, a curve is represented by a link-list of points. These points are either on a surface (surface points) or

somewhere in space (XYZ points). For surface points, in addition to the x, y, z, the surface number and its parametric

coordinates, u and v are stored in the data base. Curves can be created together as a family. For example, all curves
associated with a wing could be created together as a "wing" family. The family name for curves is selected fxom the"

Patches" panel which will be discussed later. To start a new curve, press the "Next Curve" button. To create a new point

for a curve, the "Next Point" button should be pressed, and this newly created point becomes the active point. Since every

operation is done in one step, the new point will be placed where the last point was, and then the user can move the new

point, (the active point), to any location. The active point can be moved to an existing point on a curve by placing the
cursor over the desired curve point and hitting the hot key "m". Similarly, the active point can be moved to an existing

point on the active surface by placing the cursor over the surface point and hitting the _ "t". Also, the active point

can be moved to any location on the active surface by either: (1) typing the parametric coordinates in the "U & V" input

box, (2) moving the "U & V" positioner, (3) moving the "U & V" sliders. In order to move the active point in space, first

the point should be converted to an "XYZ" point by pressing "On Surface" button. Once the active point is an XYZ point,

the "x", "y", and "z" sliders can be used to move the point to anywhere in the space. It is also possible to change the

coordinate by typing the values in the input field boxes. A point can be inserted ahead of the active point on a curve by

pressing the "Insert Point" button. The new point becomes the active, and if the two neighboring points are on the same
surface, then the inserted point will also be on the same surface. The point or the active curve can be deleted by pressing

the "Delete Point" or the "Delete Curve" buttons, respectively. A point or a curve can become active by placing the cursor

over it and hitting the hot key "p" or "c", respectively.
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Fig. 7 Points/Curves Panel

Patches

A patch is a closed three-dimensional polygon which is defined by a set of curves. Nonplan_r patches should be 3- or
4-sided, and planar patches could be n-sided. Each side of a patch could consist of several curves. Each patch is stored as
a link-list of curves. To create a patch, the "Next Patch" button should be pressed. Then, the first curve for the patch

must be activated by the user, and then it can be accepted as the first curve by pressing "Accept Edge" button. The

subsequent curves can be added by letting GridTool mad them. This can be done by pressing "Find Edge" button until the
correct curve is found. GridTool will find the next curve within the tolerance define in the" tol" input-field box. Once the

correct curve is found, it should be accepted by pressing the "Accept Edge" button. Once a patch is created, its direction

can be reversed by pressing the "Reverse Patch" button.

Fig. 9 Patches Panel

BOX

This panel is designed to allow the user to create/delete a box. To create a box, press "Create Box" button which will

create a box bounded by minmax in x, y, z coordinates defined in the six input-fields in the panel. The resulting curves
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and patches are grouped together as the "Box" family. To delete the box, press the "Delete Box" button which will delete

all patches and curves in the "Box" family.

Fig. i0 BOX Panel

Bg Grid

This panel contains several buttons and input-fields, and they are used to create/modify/delete nodal and linear sources.
In order to define grid spacing, nodal and linear sources must be created and placed in the right locations. In order to

create a source, the "Bg Grid;' and "Points�Curves" panels must be activated. To create a source, press the "Next Source"
button. This will create a source similar to the last source. If this is the t'trst source, it will create a nodal source and place

it in the middle of the domain. The location of a source can be moved by using the same techniques as described for

moving points. The value spacings, "S1" and "$2", are the sizes of ideal tetrahedrals for the source locations. An excellent

description of parameters "a_n, b_n, alpha" can be found in Ref. 10.

Fig. ii Background Grid Panel

Unstructured Grid

This panel is designed to manipulate the unstructured surface grid. The "Front" button is used to activate the "Front"

from which a surface triangulation can be projected onto a set of surfaces.

Front

This panel is used to project the surface triangulation (front) onto a set of surfaces, and this process can be divided into

five steps: (1) read the front using the "I0" panel, (2) turn the appropriate patches on, (3) turn associated surfaces on, (4)

project the front onto the surfaces, and (5) check for the validity of the new triangulation. In order to have a successful

projection, users are required to insure that: (1) the surface triangulation is close enough to the associated surfaces, and
(2) the associated surfaces have sufficient display paths.
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Fig. 12 Un=tructured Grid Panel

Structured Grid

This panel is used to project the entire or portion of a sm_ctured surface grid onto a set of surfaces, and this process can
be divided into five steps: (1) read the surface definition and the surface grid using the "I0" panel, (2) turn on associated
surfaces, (3) make the surface to be projected active, (4) project the surface grid onto the surfaces, and (5) check for the
validity of the new surface grid. In order to have a successful projection, users are required to insure that: (1) the surface

grid is close enough to the associated surfaces, and (2) the associated surfaces have sufficient display paths. User may
undo the projection or reinterpolate a protion of the surface grid.

Fig. 13 Structured Grid Panel
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Appendix A: Sample Resource File

#
# This is a co_ent line

This is also a comment line

# plot3d mouse movement

plot3d

#color item R G B

# Background Color for the Display

color background 0 0 0

# Color for the Active Surface

color active surface 199 21 133

# Colors for the Points

color xyz_pt 67 ii0 238

color active__t 255 0 0

color surface_pt 34 139 34

# Color for the Curves

color xyz_ourve I00 149 237
color active curve 255 0 0

color surface curve 34 139 34

# Color for the Patches

color normal_patch 219 112 147

color actlve_edge 199 21 133

color activepatch 199 21 133

# Colors for the Background Grid

color normal_bgs 255 255 0

color aotive_bgs 255 0 0

color active_bgs__pt 199 21 133

#
# BOUNDARY CONDITIONS Based on USM3D

#
bc freestream 0

bc reflection plane 1

bo extrapolation 2

bc Inflow/outflow 3

bc viscous 4

bc inviscid 5

bc nacelle inlet i01

bc nacelle exit 102

bc inlet mass ii0

bc inlet pressure iii

bo inlet mach 112

bc inlet velocity 113

bc special bcl i001

bc special bc2 1002

bc special bc3 1003

bc special bc4 1004

bc special bc5 1005

black

medium violet red

royal blue

red

forest green

cornflower blue

red

forest green

Pale violet red

medium violet red

modium violet red

yellow

red

medium violet red
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ABSTRACT

We generate high quality grids interactively on a computer workstation through opti-

mization for some simple yet commonly encountered geometric shapes.

1. INTRODUCTION

Algebraic and elliptic grid generation are the two most widely used methods for gen-

erating grids. Algebraic grid generation is known for fast interactive grid generation. The

grid smoothness and lack of skewness, however, are usually not assured. On the other

hand, elliptic grid generation can generate smooth grids but the time it takes to generate

them is usually too long for interactive response. It is naturally desirable to combine the

advantages of both methods and to generate high quality grids (ref. 1) fast and efficiently

on a computer workstation. This requires people to strike a proper balance between the

grid generation speed and the grid quality. We have pursued this idea for some simple

yet commonly encountered geometric shapes. Many of them have a symmetry that can be

used. We have been able to obtain high quality grids fast and interactively. Our method

is to analyze each case carefully and to take full advantage of the region symmetry (if any)

so that optimization is needed only for a part of geometric region under consideration.

We have combined various grid generation methods, such as a fast elliptic grid genera-

tion technique (combining the control point form of algebraic grid generation with elliptic

grid generation, ref. 2) and a transfinite interpolation with orthogonal boundary terms, to

achieve an optimization for each individual case. After such an optimization, we have been

able to generate excellent single- and multi-block grids quickly. This achievement enables

us to generate certain single- and multi-block grids interactively with reasonable response

even on modestly powered workstations.

at.ANKtrOTr'tt.t Z 
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2. GRID WITHIN A RHIOMBUS

A simple transfinite interpolation (TFI) will not generate an orthogonal grid in general.

A more general TFI with boundary derivative terms can improve grid orthogonality. In

certain cases, grid orthogonality can be achieved along edges of a face grid or on surfaces

of a volume grid. This, in general, requires a careful analysis for each geometry region

encountered. In this section, we present an example of carrying out such a detailed analysis.

We consider a surface grid bounded within a quadrilateral. Since each of four boundary

edges is a straight fine, a bicubically blended interpolation formula (i.e., with derivative

information) can be used,

r(u,v) = BT(u) S B_(v) , (1)

where S is a 4 x 4 matrix

[ r(0,0) r(0,1) r,,(0,0) r,,(0,1) '_

[ r(1,0) r(1,1) r,,(1,0) r,,(1, 1) )_S= /r,,(0,0 ) r,,(0,1) r,,,,(0,0) r,,.(0,1) '

\r,,(1,0) r,,(1,1) r,,,,(1,0) r,,.(1,1)

and B is a 4-component vector

/ lu)113u 2u3)B(u) = | B2(u) | 3u2- :u 3

\B4(u) \ - u 2 A-u a

(2)

(3)

In Eq. (1), u and v are parametric variables. Tlle parametric region of 0 _< u < 1,

0 _< v < 1 corresponds to the area within the quadrilateral. In Eq. (2), r(0,0), r(1,0),

r(0,1), and r(1,1) are four corncrs of the quadrilateral (i.e., the surface grid), four r,,'s

arc partial derivatives with respect to the variable u at four corners, four r.'s are partial

derivatives with respect to the variable v at four corners, and r_,v's arc second-order mixed

derivatives (also called twists) at four corners. In Eq. (3), the blending functions Bj(u)

have the propcrtics: B_(u) + B2(u) = 1, Bj(O) = (_jl, Bj(1) = _fj2, dBj(O)/du = _js,

dBj(1)/du=_j4.

In grid generation, the positions of four corners r(0,0), r(1,0), r(0,1), and r(1,1)

are known. However, the values of 8 first-order derivatives and 4 second-order derivatives

are not given. With a proper choice of these derivatives, one can generate a better grid

than those generated by the simple TFI or, for a quadrilateral, by the simple bilinear

interpolation. The idea is to require that the grid direction at the boundary edges point

to a desired direction. For example, on the v = 0 edge, the grid direction going inside the

quadrilateral can be easily found from Eqs. (1)-(3) to be

r,,(u,0) = Bl(u)r,,(0,0) + B2(u)r.(1,0) + Ba(u)r_,,,(0, 0) + B4(u)ruv(1,0) • (4)
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_y requiring it to be perpendicular to the v = 0 edge (a straight line here), it is possible

,to achieve boundary orthogonality at certain places on the v = 0 boundary edge.

In the following, we take a rhombus as an example to illustrate how a detailed analysis

can dramatically improve the grid orthogonality. A rhombus is a special parallelogram with

opposite sides and opposite angles equal but having no right angle. For a rhombus centered

rat origin (on the z = 0 plane), its four corner positions can be written as (see fig. 1)

r(1,1)--r(0,0)-hj, r(1,0)---r(0,1)=wi. (5)

r(0, 1)

Y

!............. .X

(1,0)

v r(0, 0)

Figure 1.--A rhombus centered at origin.

From symmetry considerations, we know (i) that the magnitudes of r,,(O, 0), r_(O, 0),

r,,(1,1), and ru(1,1) must be equal, and (ii) that the magnitudes of ru(1,0), r_(1,0),

x_(O, 1), and r_(O, 1) must be equal too. In other words, we have the following relations:

r,,(0,0)----r,,(1,1)--afl, (6a)

r_(0,0) = r,(1,1) = a_7, (6b)

r_(1,O) = r_(O, 1) = tiff, (6c)

where

r_(1,0) ----r_(0, 1) -- fl_' , (6d)
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a = (wi + hi)/j_'_ + h_, _ = (-wi + hi)/jw" + h_ (7)

are the unit vectors along the directions of r(1, 0) - r(0, 0) and of r(0, 1) - r(0, 0), respec-

tively. It is clear that both ot and/_ are positive: a > 0 and/_ > 0. Also, because of

symmetry, (i) twists r(0,0) and r(1,1) do not have z component whereas twists r(1,0)

and r(0,1) do not have Y component, and (ii) the magnitudes of the twists at each pair

of opposite corners are equal but point to opposite directions. Namely, twists satisfy the
relations

r_(1,1) = -r_(O,O) = aj , (8a)

r,,,,(1, 0) = -r,,,,(0, 1) = b i. (8b)

Expressions (6) and (8) are the most general form allowed (by the symmetry requirements)

for a rhombus. In other words, the symmetry consideration reduces the number of inde-

pendent first-order derivatives from 8 to 2, and also reduces the number of independent

second-order derivatives from 4 to 2. Now we only need to decide 4 scalar quantities: a,

fl, a, and b. For the rhombus shown in fig. 1, Eq. (4) reduces to

•_(=,o)= [_B,(=)+/_B_(=)]_-abe(=)j+ bB,(=)i. (9)

Without loss of generality, we assume in the following discussion that h > w. When

h > w, the angle between the two unit vectors fi and Or, which is the internal angle at

corner r(0,0), is less than 90 °, since Or. 6 = (h 2 - w2)/(h 2 + w 2) > 0. To determine

the 4 quantities o_,/_/, a, and b, we first consider an (unnormalized) orthogonality function

f(u) = r_(u, 0)-fi, which is a function (third-order polynomial) of the parametric variable u.

Its value at the two ends r(0,0) and r(1,0) of the v = 0 edge is positive: ](0) = ct_r. h > 0

and f(1) = fl_" • 6 > 0. We want to force the grid to be orthogonal at the middle of

the v = 0 edge (but not overly doing this enforcement). Specifically, we require that the

i and that the minimumorthogonality function f(u) reaches its minimum value at u =

value of the orthogonality function is zero (for the interval 0 < u < 1). These two

requirements lead to two conditions for the orthogonality function f(u),

1

dr(s) --0 f(½) =0. (10)
du '

From these two conditions, we can express the twists a and b in terms of the first-order

derivatives a and fl,

(5_ - Z)(h_ - w_)
a = h_/w 2 + h2 , (lla)

b= (5fl-a)(h 2 - w 2)

wx/w 2 + h 2
(::b)
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Eliminating the twists a and b in the orthogonality function f(u) with the help of Eqs.

(11), f(u) becomes

f(.) = 1,. a [(0+ #)(2. - 1)2 - (o - #)(2. - 1)3] (12)
2

1 (for the interval 0 < u < 1) for anywhich indeed reaches its minimum value of 0 at u = _ _ _

positive a and 3.

1
Next, we ask r_ and ru to be orthogonal at the center of the rhombus r(½, _) -- 0.

Due to symmetry, the angle between r,,(½, ½) and j is always equal to the angle between

r,,(½, ½) and j. Thus, asking r_ and r,, to be orthogonal at the center of the rhombus is
1 1 1

equivalent to requiring that r,,( ½, _).j = r,(_, _). (-i) and

r_,( 1 1 1_,_)-i = r,,(_,½).j .

Equation (13) leads to a third relation among the derivatives o, 3, a, and b,

(13)

ru(½, ½) - (j -- |) -- h - w (6jw2 + h' - _ - _) + a +_____bb+ 3(Z- _)(w + h) (14)
4x/w 2 + h 2 16 8x/w 2 + h 2

Substituting Eqs. (11) into Eq. (14), we can eliminate a and b and obtain an expression

relating a to fl,

(w + 5h)fl + 24wh(h- w)(w 2 + h2) -1/2,_= (15)
5w+h

Now we can still choose the value of fl as it fits. There is, however, a restriction. In the

case of h > w under discussion, the twists a and b, as determined by Eqs. (11), should not

be negative. Otherwise, the resulting grid will not look nice.

In practice, we find that a vanishing twist at the pair of obtuse angles of the rhombus,

i.e.,

b=o, (16)

is a good choice. This leads to

a = 5fl

:according to Eq. (llb). It follows from Eqs. (15) and (17) that

(17)

h(h-w)

_= Jw2 + h 2 , h > w .

Substituting Eqs. (17) and (18) into Eq. (11a), we find that correspondingly

24(h-w)(h 2 -w 2)
a _-

w 2 + h _-

(18)

(19)
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Equations (16)-(19) thus uniquely determine all 12 derivatives in Eq. (1).

Figure 2 shows three rhombuses inside a regular hexagon of side length 2w. Two

rhombuses with a pair of edges parallel to the z-axis can be obtained from the third

rhombus (oriented as in fig. 1) with a simple rotation of +120 ° around the corner r(1,0)

on z = 0 plane. For each rhombus in fig. 2, h = v/3w and Eqs. (18) and (19) give

/3 = 0.634w and a = 8.785w.

Figure 2.--A three-block grid inside a regular hexagon.

3. OTHER EXAMPLES

When the geometric region for a surface grid is no longer a quadrilateral (as in most

cases), a TFI formula with boundary information terms, i.e., a bicubically blended TFI

(see, for example, ref. 3), should be used to replace Eq. (1). By a careful analysis for

each geometric region or shape under study, one can properly choose the directions and
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magnitudes of boundary derivative terms and thus dramatically improve the grid quality

and smoothness. In this way, a surface grid with much improved grid orthogonality can

be generated. For a volume grid, one can also include boundary derivative terms into the

often-used volume grid FTI formula and thus generate a volume grid with improved grid

orthogonality. We have carried out this approach for some simple yet commonly encoun-

tered geometric shapes besides the rhombus case discussed above in section 2. Besides this

pure algebraic grid generation approach, we have also combined the control point form of

algebraic grid generation with elliptic grid generation (ref. 2). Here we first elliptically

generate a sparse net of control points and then use the control point form of algebraic grid

generation to generate a much denser grid. As a result, we generate a smooth grid with

less computational time and storage space. This approach also enables us to obtain a high

quality grid in an interactive environment on a computer workstation. We are incorporat-

ing these new grid generation techniques into a software product GridPro'rM/IGgen from

Program Development Corporation, so that a user will be able to readily generate high

quality grids interactively on a computer workstation. Currently, a collection of boundary

geometries are provided and a user can choose among them. In addition, the user can also

specify the grid type wanted, such as O-type, C-type, H-type, and/or multi-block grids.

The user can also specify the grid density and clustering pattern. Once the user makes

a choice, our software immediately generates high quality grids. In this section we show

some of the grids generated interactively using GridPro/IGgen.

Figure 3 shows a single-block 2D grid for a passage which has a circular extra space.

Due to symmetry, we only need to carry out grid orthogonality optimization for a half, a

quarter, or even one eighth of the grid.

Figure 3.--A single-block 2D grid inside a 2D pipe which has symmetric circular extra

space.
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Figure 4 displays an H-type 2D grid passing around a cylinder whose cross section

looks like a super circle. There are two blocks. One block is the mirror image of the other

block about the horizontal symmetry line. For each block, there exists a vertical symmetry

line. So we only need to do optimization for one quarter of the whole grid.

Figure 4.--A 2-block grid passing around a supercircle-like object.
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Figure 5 shows a single-block volume grid inside one half of a torus. Five surfaces

(except the top surface) are displayed. Symmetry of the geometry shape enables us to
focus on one sheet of the volume grid and do grid orthogonality well. Other sheets can be

obtained by rotations of different angles.

Figure 5.--Half of a single-block volume grid inside a torus.
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Figure 6 shows two pictures of a 7-block volume grid inside a sphere. Because of

symmetry, we only need to perform optimization for one of six side blcks and the center

block.

Figure 6.--Two views of a 7-block volume grid inside a sphere.
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These examples clearly show the smoothness and lack of grid skewness that can be

reliably expected in our new interactive environment.

4. SUMMARY

We have combined several new grid generation methods to obtain high quality grids

in an interactive environment. Grids can be generated reliably, and grid quality is high in

general. Currently, we are developing a grid generation program called GridProrM/IGgen

to take advantage of these new advances in grid generation. Our goal is to generate a range

of high-quality single- and/or multi-block grids interactively on a computer workstation.
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SUMMARY

NASA-IGES Translator (NIGEStranslator) is a batch program that translates a general IGES (Initial

Graphics Exchange Specification) file to a NASA-IGES-Nurbs-Only (NINO) file. IGES is the most popular

geometry exchange standard among Computer Aided Geometric Design (CAD) systems. NINO format is a

subset of IGES, implementing the simple and yet the most popular NURBS (Non-Uniform Rational B-

Splines) representation. NIGEStranslator converts a complex IGES file to the simpler NINO file to simplify

the tasks of CFD grid generation for models in CAD format.

The NASA-IGES Viewer (NIGESview) is an Open-lnventor-based, highly interactive viewer/

editor for NINO files. Geometry in the IGES files can be viewed, copied, transformed, deleted, and inquired.
Users can use NIGEStranslator to translate IGES files from CAD systems to NINO files. The geometry then

can be examined with NIGESview. Extraneous geometries can be interactively removed, and the cleaned

model can be written to an IGES file, ready to be used in grid generation.

INTRODUCTION

In April 1994 the NASA Geometry Data Exchange Specification for Computational Fluid

Dynamics (NASA-IGES) was published (ref. 1). The intend of this specification is to facilitate geometry

data exchange between CAD and Computational Fluid Dynamics (CFD) grid generation, and to provide

high quality data to CFD processes. From the inception of the NASA-IGES standard, the Geometry Data

Exchange Subcommittee (ref. 2) realize that it is very difficult to influent CAD system vendors to conform
to a standard from a small user community. Hence, the best approach to handle the interface between CFD

and CAD systems is to conform to the current CAD convention and yet to simplify the interface. Two steps

were taken to achieve to this goal.

First, the IGES file format (ref. 3), the most popular data exchange format among CAD systems,

was picked as the base of the CFD geometry standard. However, IGES contains hundreds of data exchange
elements, called entities. It would be extremely onerous to CFD processes if they have to handle all the

entities. Instead, the Subcommittee concentrated on entities that are essentials to CFD processes. Popular

NURBS representation is chosen as the backbone of the standard; a few structural and annotational entities

in IGES are also picked to facilitate, but not to complicate, the data exchange. A complete list of entities in
the NASA-IGES standard can be found in reference 1. Since NASA-IGES is a subset of IGES, CAD

systems have no problems in accepting files in NASA-IGES format. The NASA-IGES standard also

specifies an even simpler subset called NASA-IGES-Nurbs-Only format which represents geometries

solely with NURBS and trimmed NURBS. This single representation of geometry relieves CFD processes

from complicated geometry issues, and yet, grants CFD processes the access of high quality geometry data.

Even though CAD systems can read in NASA-IGES files, they do produce files containing entities

beyond NASA-IGES. To reduce the burden on grid generators, a second step was taken by the
Subcommittee: a translator that converts a general IGES file to NINO format was developed. Along with

the translator, a geometry viewer was also written to allow inspection and manipulation of NINO files. The

translator and viewer are detailed in the following sections.

l=tgnlB.m=l tit1"
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NASA-IGES TRANSLATOR

The translator reads in most geometry entities from an IGES file (Table I). It performs conversion

on those entities that require conversion. The conversion map is in Table II.

Translator Behavior Control

An IGES entity (the child) can be "physically depedent" on another entity (the paten0. The child

entity can exist only when the parent entity exists. An example is that each constituent curve is physically

dependent on a Composite Curve entity. The final model space location of a physically dependent entity

depends on the transformation matrix of its parent (and grandparents, etc., if any). Normally, the translator

discards any entity whose parent is not read in (not in Table I) or whose parent is discarded, even if the entity

itself is in Table I. This behavior conforms to the IGES specification. However, an option is provided in the

translator to override this behavior. When the option is used, the translator will convert a physically

dependent entity without parent. The translator will also change such entities to be physically independent.

However, the model space location of the entity in the output may not be correct, since the transformation

matrix of its parent (grandparents) may not be available.

Normally the output of the translator contains the following entities: 124, 126, 128, 141,142, 143,
212 (Form 0), 402 (Forms l, 7, 14, 15), 406 (Form 15). A Subfigure Instance (Entity 408) is instantiated

and converted to a group entity (Entity 402) containing a copy of all the geometries (converted) in the

subfigure. This behavior eliminates instances from the output file and conforms to NINO format. The

advantage of this format is that CFD processes which handle the NINO files do not have to deal with

instances, which can be quite complex. The disadvantage of instantiating instances is that the output file

may become quite large. The current translator contains an option that allows the user to suppress the

instantiation of instances. When this option is used, the Subfigure Definition (Entity 308) and Subfigure

Instance (Entity 408) are written to the output file.

Conversion Approximation

Most of the conversions listed in Table II are mathematically exact (ref. 4). When exact

conversions do not exist, approximations are used. Tolerance control is provided to the user through a

tolerance variable in the translator resource file. Three kinds of approximation may take place. The first

kind is for offset curves and offset surfaces. In general offset curves and surfaces can not be represented in
the forms of its progenitors (ref. 5). For example, the offsets of bspline curves/surfaces are generally not

bspline curves/surfaces. To convert offset entities to bsplines, approximation to the offset is required.

The second kind of approximation is for ruled surfaces when the rail curves of the ruled surfaces

can not be converted to bsplines parametrically identically (ref. 6). An example is that of a ruled surface
constructed between a circular arc and a line. Since the parametrization of arcs in IGES is defined

trigonometrically, it is not rational. Hence, it is not possible to represent the parametrization with bsplines.

IGES also allows ruled surfaces be defined by arc length parametrizations of the rail curves. It is well

known that nearly all the arc length parametrizations are not rational.

The third kind of approximation occurs on trimmed or bounded surfaces when the parametrization

of the underlying surfaces cannot be converted to bsplines exactly. This may happen when the underlying
surfaces are ruled surfaces, surfaces of revolution, tabulated cylinders, and offset surfaces. When the

parametrization of the surfaces cannot be converted exactly to bsplines, the parameter space curves of the

trinmmd/bounded surfaces need to be regenerated. Approximations are used for this regeneration.
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NASA-IGESVIEWER

Overview

NIGESviewis anapplicationthat permits the viewing and manipulation of objects read from a

NINO file. The program reads in the NASA-IGES-Nurbs-Only subset of IGES and converts the resulting

geometry into SGrs Open Inventor format which is then displayed. The input file should conform to the
IGES Version 5.2 Specification (ref. 3). It is intended to be used in conjunction with the NIGEStranslator

(Figure 1). NIGESview2.0 was developed using Open Inventor-2.0 and compiled on an SGI Indigo2/

Extreme running IRIX-5.2 with 64Mbytes of RAM and 132Mbytes of swap space.

Open Inventor is a C++ API that rests on top of OpenGL and implements a display-list oriented

graphical structure of your scene. This is stored as a "scene graph" and contains all of the items relevant to

the geometry as well as the geometry itself. Many of the tedious aspects of OpenGL are removed so that
the developer may concentrate on the application rather than the idiosyncrasies and event-handling nature

of a low-level graphics API. The Open Inventor libraries should be available on vendor platforms other than

SGI some time in 1995.

One of the goals of NIGESview is to eliminate the need for an expensive CAD package just to verify

the correctness of NINO files. The other is to provide very simple editing of files to delete entities or merge

entities from multiple files. In addition, few CAD packages have the ability to view entities 143 and 141

(Bounded surfaces), which NIGESview can display and manipulate.

The graphical interface permits a variety of editing features to manipulate the geometry in NINO
files. The modified geometry can then subsequently be written out to either Inventor or NINO files. For

example, if an IGES file contains a wing-body aircraft configuration, but also contains engine struts and
cowls, these can be selected and deleted. Then the remaining geometry may be written to another NINO file.

During parsing of NINO files, entities in the input file that are not part of the NINO specification

are thrown away. Entities that are not used for geometry viewing (e.g., properties, groups, etc.) will not be

displayed, but are kept in memory so that they may be written to a NINO file, if the user chooses so.
Physically dependent entities are ignored until the parent of the entity is parsed, then it is processed. If the

entity has no parent, then the entity is lost, which is acceptable since the file is actually invalid. Note that
the NIGEStranslator would not write out such an invalid file.

As each entity is parsed, it is converted to a group of Open Inventor "nodes," which represent

graphical/attribute objects that we want to place in our scene graph. NIGESview uses the Open Inventor

concept of a "kit" to represent an IGES geometry. The kit contains Open Inventor equivalents of IGES

concepts such as subscript names (for info only), line widths and fonts, color, transforms, and of course,

control points and NURBS data. So a kit is an entire encapsulation of an IGES geometry and its directory
section information (Figure 2). See references 1 and 3 for details of IGES geometry attributes.

Two problems were encountered when we used Inventor for NURBS display. First, Inventor (also

OpenGL) is extremely slow when the NURBS surface(s) is large. Second, Inventor can not render bsplines

of order greater than 8. We circumvented these problems partially by tessellating unbounded NURBS
surfaces ourselves. When unbounded NURBS surfaces are encountered, NIGESview calls routines to

evaluate and tessellate the surface into a quadrilateral mesh. The resolution of the evaluation is determined

using heuristics at parsing time, but the user may change this interactively after the file is loaded - to increase
or decrease resolution. Due to the excellent performance of our tessellation routines and the high rendering
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speedof quadrilateralsbyInventor,NIGESviewcanhandlelargeunboundedNURBSsurfacesreasonably
well.

NIGESviewsupportstwokindsof "resolution" or complexity of geometries. The one for

unbounded surfaces (discussed above) is called "Unbounded Complexity". Everything else in the scene

(curves, bounded surfaces, text) is driven by "General Complexity," which is controlled by one value. A

dialog box is provided for users to change either or both complexities at any time. In addition, a popup menu

in the drawing area provides even more resolution flexibility with drawing styles such as Bounding Box,
Low-res, Points, and Wireframe.

Editing

After a file is loaded and converted to Open Inventor, there exists two copies of the data in memory:
one for Inventor, the other for IGES. When users modify geometries with NIGESview editors, both the

Inventor and IGES data are modified. For example, when a user deletes an entity, not only is the Inventor

data deleted, but also the IGES data in the model; if the NINO file is written out, the entity will not be in the

output. For cases where the user translates, rotates, or scales the geometry, the result of writing an IGES

file is that an IGES Transformation Matrix entity (124) is created or added to the modified entity. All IGES
protocols regarding order of matrix multiplication, and so forth, are obeyed (Figure 3).

Editing Physically dependent entities (bounded surfaces) requires more caution. There are many

IGES entities associated with one bounded surface - the trimming curves (parameter and model space

NURBS curves), the coordinates, and the underlying surface. When copying/pasting/deleting a surface,
NIGESview provides an interface dialog to specify how to process physically dependent surfaces and their
"relatives".

Also available to the user is the ability to inquire IGES information that comes from the input file.
The Start Section, for example, can be edited like standard text, and it will be reformatted and written out

to the output IGES file when a user requests it. Data such as the list of read entities and the global section
can not be directly modified, but can be viewed in a separate dialog window.

Issues

One of the difficulties of any package is dealing with large files having many large entities (or worse

- lots of trimmed surfaces). NIGESview is no exception, but if the file can be parsed by lower level libraries,
then the user can improve the usability of NIGESview with the complexity options discussed earlier.

NIGESview can be sensitive to large files because there are always two copies in memory at any time. IGES

data is not structured in a way that allows OpenGL or Open Inventor to merely reference the data - they must
copy the data.

There are features provided by Open Inventor which are virtually free of (engineering) cost. These

features are included in NIGESview for high quality image rendering. A brief list includes the following:
editing of 6 axial lights, surface material editing (color, transparency, lighting reflective properties),

background color, depth cueing, and choice of box or line highlighting of picked objects. These types of
attributes are NOT saved to NINO files (IGES provides no support for these).

NIGESview limitations include features such as transforming groups of entities at once, editing raw
control points of NURBS curves and surfaces, automated evaluation/tessellation of bounded surfaces and

curves, saving color modifications of entities, and UNDO operations while editing.
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DISTRIBUTION

The NIGES software including NIGEStranslator, NIGESviewer, and a set of IGES test files is

available from NASA Ames Research Center. The software runs on SGI IRIX 5.2 machines. All software

distribution includes source code. In case recompilation is necessary, SGI C++3.1 is required; in addition,

•Openlnventor 2.0 development environment is required for NIGESViewer. In the near future the software
will be forwarded to COSMIC for distribution.
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Table I: Entities in the IGES input file read in by NIGEStranslator.

i!ii}  iii  }  i!!  }  i  !     ii    i!ii   i ii  ii ii  i  i  i  iiiii  iiiii  iii  }iii iiiiii ii iiii}iiiiiiiiiiiiiiiiiiiii ii!i!  !! i!  i iii  iiiii  {ii  i  {  i  i!i  i!!!  i  i!ii

Entity 100 Circular Arc

Entity 102 Composite Curve

Entity 104 Conic Arc

Entity 106 (Forms 1,2,3,11,12,13,63) Copious Data

Entity 108 (Form 1) Bounded Plane

Entity 110 Line

Entity 112 Parametric Spline Curve

Entity 114 Parametric Spline Surface

Entity 116 Point

Entity 118 Ruled Surface

Entity 120 Surface of Revolution

Entity 124 Transformation Matrix

Entity 126 Rational B-Spline Curve

Entity 128 Rational B-Spline Surface

Entity 130 Offset Curve

Entity 140 Offset Surface

Entity 141 Boundary

Entity 142 Curve on Parametric Surface

Entity 143 Bounded Surface

Entity 144 Trimmed Parametric Surface

Entity 212 (Form 0) General Note

Entity 314 Color Definition

Entity 402 (Forms l, 7, 14, 15) Associativity Instance,

Entity 406 (Form l) Property, Definition Levels

Entity 406 (Form 15) Property, Name

Entity 308 Subfigure Definition

Entity 408 Singular Subfigure Instance
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CircularArc

CompositeCurve

ConicArc

CopiousData

Copious Data

Copious Data

Plane

Line

Parametric Spline
Curve

Parametric Spline Sur-
face

Ruled Surface

Surface of Revolution

Table II: NIGEStranslator Conversion Map

iiiili_iiiii_iiiiiii_ii!i_!_i ii!i!iiiii iiiiiiiii!iiiii_iiiiiiiiiiiiii_!ii_!ii_i:i_ii_ii!!!iii!iililiiii_:_i_:!_i_!i;!i_i!_i_i_i!iiiiii_:i!_ii_!_ii!i_)_iiiiii!_iiii_i_iii_i_!_!_ii!!_i_iii!i_i_!ii_i_i_

Type 100 Rational B-Spline Type 126, Form 2,
Curve Degree 2, PROP1 1,

PROP3 0, PROP4 0

Type 102 Rational B-Spline
Curve

Type 104

Type 106, Form 1 or 11

Rational B-Spline
Curve

Rational B-Spline
Curve

Type 126, Form 0

Type 106, Form2, 3, 12
or 13

Type 106, Form 63

Type 108, Form 1

Type 110

Type 112

Type 114

Type ll8

Type l20

Type 126, Form 3, 4, or

5 as appropriate,

Degree 2, PROPI 1,
PROP3 1 for parabola,
PROP3 0 for others,

PROP4 0

Type 126, Form 0,

Degree 1, PROPI 1,
PROP3 1, PROP4 0

Rational B-Spline Type 126, Form 0,

Curve Degree 1, PROP3 1,
PROP4 0; Note: The

Rational B-Spline
Curve

Bounded Surface/

Boundary

Rational B-Spline
Curve

Rational B-Spline
Curve

Rational B-Spline Sur-
face

Rational B-Spline Sur-
face

Rational B-Spline Sur-
face

information about the

vectors associated with

the points will be lost.

Type 126, Form 0,

Degree I,PROPI 1,
PROP2 1, PROP3 1,

PROP4 0

Type 143, Form 0/

Type 141, Form 0

Type 126, Form 1,

Degree 1,PROP1 1,

PROP3 1, PROP4 0

Type 126, Form0

Type 128, Form 0

Type 128, Form 8

Type 128, Form 6
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TableII: NIGEStranslator Conversion Map

i,,i,,iiiii,,i,,i,,ii iENNi   ,iii,,iii,,i,,iiiiiiE',iiiiiii',iii',i',iiiii',iiEi ii i fiii' !',ii!',!',i' i',i' iii',i' i',!',i',i',
!Hi3_i_i_:_iili@_i[i_ili_iHih ii_iiiii[iiiiiiii!i_iii_i!i!iii_i[ii:[i i:[:i:i:[:i:::::::::::::::::;:"

Tabulated Cylinder Type 122 Rational B-Spline Sur- Type 128, Form 7
face

Offset Curve Type 130 Rational B-Spline Type 126, Form 0

Offset Surface

Curve On Parametric

Surface

Curve On Parametric

Surface

Trimmed Surface

Definition Levels

Type 140

Type 142 (Not part of
144)

Type 142 (Part of 144) Boundary

Typel_

Type 406, Form 1

Type 408Singular Subfigure
Instance

Curve

Rational B-Spline Sur-
face

Curve On Parametric
Surface

Bounded Surface

The entity with this

property is placed in
the first level identified

by this Definition Lev-

els entity.

A group (Associativity
Instance Entity) of the

geometry using original
entities. These entities

are then converted as

specified in these Con-
version Maps. This

conversion takes place
if the "-s" flag is not
used

Type 128, Form 0

Type 142, with all
curves and surfaces

converted to B-Splines

Type 141, with all
curves and surfaces

converted to B-Splines

Type 143, with all
curves and surfaces

converted to B-Splines

nonc

Type 406
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NigesView Help

Thumbwheels:

X Axis rotation

Y Axis rotation

Cursors/Feedback:
Virtual trackball cursor

Translating cursor

Dolly cursor

"Seek" cursor

"Roll" fe

Left Mouse
Rotate virtual trackball

Ctrl + Left Mouse:
Used for "Roll" action

s + Left Mouse:
Alternative to "Seek"

button. Press s key,
then click on target

object.
Mid Mouse:

Translate

up,down,left,right
Left + Mid Mouse:

Dolly in and out

Right Mouse:

Pop-Up menus

Other Fe( Jback:
Axes show center of rotation of

camera. Axes may be scaled or

\
Thumbwheeh

Dolly (In and out of screen)

hidden by modifying the preference

Figure 1.

This viewer uses a virtual trackball to rotate the view. The point of rotation is by default the

center of the scene bounding box, but can be placed anywhere in the scene. This viewer

also allows you to translate in the scre3n plane, as well as dolly in and out

(forward/backward movement).
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sceneGraph

igesGeometry

lightsEnviron ment

Units Complexity

lGESkit
IGESkit

Switch

..... ETC.

Geometry Nodes

Geometry is different tbr every type of

IGES entity -> IV kit conversion. Nurbs have

Coordinates, maybe Profiles, Nurb Nodes.

General Notes have 3D-Text nodes.

Figure 2:

Inventor uses a directed acyclic graph to represent data. To render a scene, Inventor

traverses the graph depth-first, left to right. The graph is easy to manipulate and only
needs created once, which for NIGESview, is when the IGES file is parsed.
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Figure 3.. example of a surface being edited by NIGESview Inventor options. Note that the

Scaling change will be saved to an IGES geometry file.
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